
ptg

Silverlight™ 4
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Laurent Bugnion

www.free-ebooks-library.com

ptg

Silverlight™ 4 Unleashed
Copyright © 2011 by Pearson Education

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33336-8
ISBN-10: 0-672-33336-1

Library of Congress Cataloging-in-Publication Data

Bugnion, Laurent.
Silverlight 4 unleashed / Laurent Bugnion.

p. cm.
Includes index.
ISBN 978-0-672-33336-1

1. Silverlight (Electronic resource) 2. Multimedia systems. 3. Application software—
Development. 4. Web site development. 5. Internet programming. 6. User interfaces
(Computer systems) I. Title.

QA76.575.B839 2011
006.7’6—dc22

2010040175

Printed in the United States on America

First Printing October 2010

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Sams Publishing cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development Editor
Mark Renfrow

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Keith Cline

Indexer
Brad Herriman

Proofreader
Jennifer Gallant

Technical Editor
Peter Bromberg

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Composition
Gloria Schurick

 From the Library of Wow! eBook

www.free-ebooks-library.com

ptg

Contents at a Glance

Foreword ..xxiii

Introduction..1

1 Three Years of Silverlight ..7

2 Setting Up and Discovering Your Environment ...27

3 Extending Your Application with Controls ...49

4 Investigating Existing Controls75

5 Understanding Dependency Properties ...103

6 Working with Data: Binding, Grouping, Sorting, and Filtering129

7 Understanding the Model-View-ViewModel Pattern157

8 Using Data Controls ..187

9 Connecting to the Web ...215

10 Creating Resources, Styles, and Templates . ..247

11 Mastering Expression Blend ..273

12 Sketching User Experience ...301

13 Creating Line-of-Business Applications ...329

14 Enhancing Line-of-Business Applications and

Running Out of the Browser ...365

15 Developing Navigation Applications and Silverlight for

Windows Phone 7 ..401

16 Using Effects and Recording Media ...435

17 New Transforms, Right Click, HTML Browser, WebBrowserBrush, and

Isolated Storage ...467

18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling,

Notification Windows, and Splash Screens..503

19 Authentication, Event to Command Binding, Random Animations,

Multitouch, Local Communication, and Bing Maps Control539

20 Building Extensible and Maintainable Applications573

21 Optimizing Performance ...609

22 Advanced Development Techniques . ..641

Conclusion ..675

Index ...677

 From the Library of Wow! eBook

www.free-ebooks-library.com

ptg

Table of Contents

Foreword xxiii

Introduction 1

1 Three Years of Silverlight 7

Discovering Silverlight 4. ...7
Learning Silverlight Is Betting on the Future8
How Can They Be So Fast? . ..9
How About Compatibility with Older Versions?..................................9

Cross-Browser and Cross-Platform Compatibility.10
Windows and Macintosh ..11
Linux. ..12

Alternatives to Silverlight12
In the Web Browser ...12
Out of the Browser . ..13
Legacy Technologies . ..14

A Short History of Silverlight15
Silverlight 1.0...16
Silverlight 2. ..16
Silverlight 3. ..16
And Silverlight 4… ..17

Previewing the Future of Silverlight ...17
Installing Silverlight 4 as a User ...18

Opening a Silverlight 4 Application ...19
What to Do If Silverlight Is Not Installed? ...19

Exploring Silverlight 4 Demos. ..19
Deep Zooming the Matterhorn ...19
Getting Involved Socially with Sobees..20
Navigating with Bing Maps Streetside and PhotoSynth.....................21
Visualizing Information with the Pivot Viewer..................................23
Drawing on the Web with Fantasia...25

How Can You Get Involved? ..25
Summary26

 From the Library of Wow! eBook

ptg

2 Setting Up and Discovering Your Environment 27

Installing Visual Studio. ...27
Visual Studio 2010...27
Visual Web Developer Express ..28
Installing the Silverlight Tools for Visual Studio28
Verifying the Installation ..29
Inspecting the Application..31
Unpacking an XAP File..32
Using the Visual Studio Designer..32

Implementing Hello Silverlight . ..33
Checking the Properties Editor ...34
Adding Some Text. ..36
Using Design Time Width and Height..39
Saving the Application . ..40

Installing Expression Blend . ..40
Creating a New Silverlight Application ..40
Opening Hello Silverlight. ..41
Adding an Effect . ..42
Creating a Pulse Animation . ..44
Triggering the Storyboard. ..45
Testing the Application46

Summary ...47

3 Extending Your Application with Controls 49

Extending XAML. ...49
Mapping a Prefix to a CLR Namespace...49
Why Is a Prefix Not Always Needed?. ..52
Adding a Namespace to Any Element. ...52
Defining Your Own URI and Mapping CLR Namespaces...................52

What’s a Control?53
User Controls ...53
Custom Controls ...63

Summary ...73

4 Investigating Existing Controls 75

Reviewing the Basics ...75
Show Me Some Code! ...76
Changes in Existing Controls ...77

Mouse Wheel Support ...77
Localizing for Right-to-Left Languages ...77
Getting a Control Template’s Current State78

Contents v

 From the Library of Wow! eBook

ptg

Silverlight 4 Unleashedvi

Adding SelectedValue and SelectedValuePath79
Adding Command and CommandParameter79

Presenting and Editing Text with the RichTextBox84
Zooming with the Viewbox85
Opening a ChildWindow . ..87
Finding More Information. ..90
Where to Find Additional Controls?. ..90

Do You Really Need a Control?...90
The Silverlight Toolkit91
Installing the Silverlight Toolkit92
Third-Party Providers. ...101

Summary ...102

5 Understanding Dependency Properties 103

Inheriting DependencyObject ...104
Threading...104
Accessing a Dependency Property’s Value ..105
Using a DependencyObject as Data Item...105

Registering Dependency Properties . ..108
Defining Metadata...109
Initializing Dependency Objects ...111

Understanding Attached Properties. ..114
Using Attached Properties for Values..114
Registering an Attached Property. ..115
Using Custom Attached Properties in XAML118
Implementing an Attached Behavior..118
Building on Attached Behaviors with Blend Behaviors....................122

Adding a New Property with Snippets123
Installing the Snippets for Silverlight ...123
Using the Snippets. ...124

Calculating a Dependency Property’s Value . ..124
Getting the Property’s Base Value ...126
Reading the Local Value . ..126

Summary ...127

6 Working with Data: Binding, Grouping, Sorting, and Filtering 129

Diving into Data Bindings. ..130
Understanding a Binding’s Elements ..130
Understanding the Namescope132
Setting the Source . ..133
Refining the Path. ...136

 From the Library of Wow! eBook

ptg

Contents vii

Flowing in Two Directions ..138
Converting the Values ...138
Changing the Format . ..139
Handling Special Cases. ..141
Property Trigger142
Validating Input. ...142

Using the Visual Studio Binding Dialog...146
Using the Expression Blend Binding Dialog ..148
Debugging Data Bindings149

Checking the Output Tab..149
Creating a Test Converter. ..150

Grouping, Filtering, and Sorting Data. ..151
Working with the CollectionViewSource ..151
Using a PagedCollectionView. ...154
Binding Directly to the Source . ..154

Summary ...155

7 Understanding the Model-View-ViewModel Pattern 157

About Design Patterns ..157
Separating the Concerns...158

Why Is Separation Good?. ..158
Classic Separation Patterns. ..158

History of MVVM. ..159
Developing Expression Blend. ..160
Presentation Model for WPF and Silverlight160

Architecture of MVVM. ..160
Translating to Silverlight161
Two Kinds of View-models ..162

Binding the View to the View-model. ...163
Understanding the Data Context. ..163
Inheriting the Data Context164
Binding to the View...164

Building a Sample Application168
The Model’s Interface ..168
Building a CustomerViewModel . ..170
Calling the Service in the MainViewModel...172
Binding to Results. ..174
Testing the Application ...177

Bridging the Separation ..178
Implementing a ViewModelBase Class ..178
Using Commands . ..180
Sending Messages . ..183

 From the Library of Wow! eBook

ptg

Silverlight 4 Unleashedviii

Using an MVVM Framework ..184
What Could Be Better?184
Summary184

8 Using Data Controls 187

Filtering and Paging with the PagedCollectionView188
Preparing the Sample...188
Building the PagedCollectionView...190
Filtering Data192
Paging Through Data...194
Optimizing Data Handling..195
Implementing Custom Sorting ...195

Adding a DataPager Control ..196
Customizing the Display ...197

Validating Data Input197
Using Interface-Based Validation ..198
Validating with Data Annotations ..201
Validating Before or After the Data Is Set ...203
Validating on the Client and on the Server......................................203

Reviewing the DataGrid. ..204
Using the DataGrid with Automatic Columns204
Choosing Between DataGrid and ListBox208

Editing Data in the DataForm208
Adding a Description...210
Validating the Input ..211
Committing Changes Manually..211
Defining Fields Manually ..212
Getting More Information ..213
Making a Simple Property Editor ..213

Summary ...214

9 Connecting to the Web 215

Getting Information from Cross-Domain Servers.216
Checking Whether a Policy File Exists..216
Working Around Cross-Domain Restrictions....................................217

Placing Simple Calls. ..218
Informing the User ..218
Learning with a Sample...219
Downloading Strings ...219
Detecting Errors, Checking the Result ..223
Opening a Resource for Reading ...224
Uploading a String. ...225

 From the Library of Wow! eBook

ptg

Contents ix

Opening a Resource for Writing..227
Accessing Headers. ..231

Sending Complex Messages. ..231
Posting a File to the Server with HttpWebRequest231

Discovering the New Networking Stack. ...234
Using the Client HTTP Stack. ...235
Using Other HTTP Methods..236
Using the CookieContainer. ...236

Handling Responses ..237
Handling XML Responses..238
Handling JSON Responses238

Communicating with WCF ..239
Setting Up a Service...239
Connecting the Client Application...241
Updating the Code on the Server ...244
Publishing the Service ...244

Summary ...245

10 Creating Resources, Styles, and Templates 247

Working with Resources in XAML248
Using Local Resources..248
Merging Dictionaries249
From the Same Assembly ..250
From a Different Assembly..251
Resolving Resources254

Working with Resources in Blend . ..256
Merging a Resource Dictionary ...256
Creating New Resources . ..257
Selecting a Resource for a Property ...257
Using the Resources Panel...257

Cleaning Up Unused Resources. ..259
Using the Pistachio Tool..259

Styling a Control. ...260
Using Implicit Styles..261
Creating a Hierarchy of Styles ...263
Creating a New Style in Blend ..264

Templating a Control..265
Copying a Template in Blend..265
Creating a Custom Easing Function ...269
Making a Control in Blend270

Applying a Theme...271
Summary272

 From the Library of Wow! eBook

ptg

Silverlight 4 Unleashedx

11 Mastering Expression Blend 273

What Is Blend, Exactly? . ..274
Working as a Tool for Integrators..274
Editing XAML Markup . ..274
When Should You Use User Controls?..274

Making an Application Blend. ...275
Why Is Some Code Not Executed?..275
Why Does Some Code Fail? . ..275
Detecting the Cause of an Exception..276
Isolating Code in Design Mode. ...278
Creating Design Time Data in Blend . ..280
Understanding the Design-Time Data Context288

Using Blend Behaviors . ..289
Behavior, Trigger, or Action? ...292
Adding a Blend Behavior in Code...293
Creating a New Blend Behavior ..293

Finding More Information..300
Summary300

12 Sketching User Experience 301

Sketching as a Discovery Process. ..301
Using Sketching and Wireframing Tools ..302
Other Kinds of Sketching . ..303

Discovering SketchFlow. ..304
Creating a New SketchFlow Application...305
Checking the Panels . ..305
Creating and Connecting Screens. ...305

Building the UI308
Creating a Component Screen ..309
Using Sketch Controls310
Exploring the Sketch Controls . ..313
Creating States and Transitions. ...318
Building an Animation. ..321

Deploying the SketchFlow Application..323
Running the Prototype323

Giving Feedback ..324
Importing and Managing User Feedback ...325
Importing and Exporting. ..325

Importing from Photoshop and Illustrator.......................................326
Importing from PowerPoint . ..326
Exporting to Word. ...326

 From the Library of Wow! eBook

ptg

Contents xi

Integrating and Collaborating. ..327
Integrating into SharePoint...327
Integrating into Team Foundation Server...327

Summary ...328

13 Creating Line-of-Business Applications 329

Preparing the Server-Side ..331
Prerequisites ...332
Preparing the Server-Side Application...332

Creating the Silverlight Client..333
Bringing the Client and the Server Together ...334

Adding a Domain Service ..334
Inspecting the Domain Service Class..335
Inspecting the Metadata..336
Creating a New Server-Side Query ..336

Working with the Visual Designer338
Understanding the DomainDataSource ..339
Calling a Query with Parameter. ..339
Sorting the Data. ...341
Adding a Pager. ...341

Refactoring the Application to MVVM . ..342
Adding a View-model ..342
Adapting the XAML Markup...345
Customizing the Columns ..346
Localizing the User Interface...347
Adding a RelayCommand Class ..348
Executing the CRUD Operations in Code ..348
Displaying Messages from the View-model351
Deleting an Order . ..354
Validating the Values...357
Filtering the Data. ...360
Showing Feedback While Processing ..362
Sharing Code363

Summary ...363

14 Enhancing Line-of-Business Applications and
Running Out of the Browser 365

Enhancing LOB Applications365
Adding Paging..365
Showing Errors...369
Reconciling Data..371
Copying and Pasting Rows..373
Printing . ..373

 From the Library of Wow! eBook

ptg

Silverlight 4 Unleashedxii

Taking Silverlight Out of the Browser . ..382
Setting Up the Application..383
Uninstalling the Application. ...384
Debugging the OOB Application ..385
Looking Under the Hood . ..386
Changing the Settings ...387
Updating the Application. ..391
Installing from the Code393
Saving Files . ..395
Working Offline. ...398

Summary ...399

15 Developing Navigation Applications and Silverlight for
Windows Phone 7 401

Navigating with Silverlight. ...401
Should You Always Use a Navigation Application?..........................404
Creating a New Navigation Application404
Accessing Navigation Information. ..412
Providing Custom Navigation. ...413
Adding Navigation to a Non-Navigation Application.414

Developing with Silverlight for Windows Phone 7415
Getting Hardware ..416
Targeting a Specific Audience..416
Developing for Windows Phone 7 ..416
Developing for a Uniform Hardware Platform417
Designing for the Phone ...418
Installing the Tools ..419
Selling Your Applications ..420
Building Compatible Applications for the Desktop

and the Phone ...420
Continuing the Exploration..432

Summary ...432

16 Using Effects and Recording Media 435

Creating Effects with Pixel Shaders . ..435
Writing, Finding, and Compiling Shader Files436
Creating and Modifying Shaders with Shazzam...............................437
Integrating Shaders in the Application. ...438
Adding Properties and Animating Shaders440
Using Shaders for Transitions in the VSM ..443

 From the Library of Wow! eBook

ptg

Contents xiii

Accessing the Webcam and the Microphone. ...443
Getting the List of Devices ..444
Enabling Access. ..448
Displaying the Video Output ..448
Detecting Whether Other Applications Use the Device...................449

Capturing Audio ...450
Converting to a WAV File..450
Creating a Sink . ..450
Using the SaveFileDialog452
Using the Sink and Adding Commands ...454
Wiring the Commands..456
Testing Audio Recording457

Writing to a Bitmap ..457
Saving the Picture to a PNG File ...459
Manipulating Pixels. ...460

Extending WriteableBitmap..462
Using the Open File Dialog ..464
Learning About News in Media..465
Summary466

17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage 467

Transforming Elements in a Projection. ..467
Setting Additional Properties...469
Using a Matrix3DProjection..470
Animating the PlaneProjection ...470

Composing Transforms...472
Handling the Right-Click Event ...473

Handling a Routed Event ..473
Displaying a Context Menu ..476

Hosting an HTML Browser (Out-of-the-Browser Only)478
Understanding the Limitations...479
Building a Simple Web Browser ..480
Loading HTML Content from Memory ..484
Invoking JavaScript. ..485

Writing and Reading in the Isolated Storage485
Saving to the Isolated Storage ...485
Reading from the Isolated Storage ..492
Deleting Files495
Using the IsolatedStorageSettings ...496
Trusting the Isolated Storage or Not ...499

Painting with HTML ...499
Summary501

 From the Library of Wow! eBook

ptg

Silverlight 4 Unleashedxiv

18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling,
Notification Windows, and Splash Screens 503

Dragging and Dropping. ..503
Dragging Files on the Silverlight Application...................................504
Drag-and-Drop Restrictions505

Working in Full Screen507
Getting Keyboard Support in Full-Screen Mode

(Elevated Permissions)...507
Using Full Screen on a Monitor While Working on Another509

Copying to and from the Clipboard . ..510
Working with COM (Elevated Permissions). ...512

Understanding the Restrictions...512
Communicating with Microsoft Office...512

Communicating over Duplex Polling . ..519
Implementing the Server-Side Service...519
Unregistering a Client524
Configuring the Service. ...524
Implementing the Client. ...525
Unsubscribing and Resubscribing528
Testing the Application529

Displaying Notification Windows . ..530
Understanding the Restrictions...530
Adding a Notification Window...531
Queuing Notification Windows ..533
Interacting with the Main Window ..533

Creating a Custom Splash Screen...534
Summary537

19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control 539

Logging In with Authentication. ...539
Creating a New Website ..540
Adding and Managing Users ...541
Configuring the Authentication Web Service...................................542
Checking the Access . ..544
Adding References to the Services...544
Implementing the Client...545

Binding an Event to a Command . ..547
Executing a Command When a TextBox Loses Focus......................548

Building Random Animations . ..554
Creating the Base Animation in Blend ...554
Randomizing the Animation. ...555

 From the Library of Wow! eBook

ptg

Contents xv

Implementing Multitouch in Silverlight. ..557
Getting the Right Computer ...558
Investigating Existing Elements ..559
Using Multitouch Libraries. ..560
Scaling, Rotating, and Translating . ..560
Implementing a Multitouch Application..561
Using Multitouch in Windows Phone 7 Applications......................563
Finding More Information . ..563

Enabling Local Communication . ..563
Understanding the Restrictions...564
Building a Receiver . ..564
Building a Sender. ...565
Testing the Application567

Mapping with the Bing Maps Control567
Adding the Map...568
Getting Location Information and Marking It569
Getting More Information ..571

Summary ...571

20 Building Extensible and Maintainable Applications 573

Inverting Dependencies with Unity573
Refactoring to Smaller and Simpler Classes575
Setting Up the Services . ..578
Calling the Setup Method and Wiring Up582
Discovering More About Unity583

Composing an Application with MEF. ..583
Exporting and Importing ..584
Downloading on Demand...594
What About Prism?603

Using an MVVM Framework . ..604
Discovering the Components ...604
Sending Messages . ..604

Summary ...607

21 Optimizing Performance 609

Improving the XAP Download Time. ..609
Loading Content on Demand ...611
Caching Common Assemblies ..615

Virtualizing the User Interface616
Virtualizing the ItemsControl ..617
Unvirtualizing the ListBox ..619
Simplifying the DataTemplate...619

 From the Library of Wow! eBook

ptg

Silverlight 4 Unleashedxvi

Creating Items in Batches. ...620
Working in Threads ...621

Accelerating the User Interface. ...624
Enabling Hardware Acceleration in the Browser624
Enabling Hardware Acceleration Out of the Browser628
Accelerating with Care . ..629
Accelerating in the Windows Phone 7..630

Using a Code Profiler ..630
Avoiding Memory Leaks ...631

Saving an Object on the Stack or the Heap......................................631
Collecting Garbage and Leaking Memory632
Living a Shorter Life . ..635
Unregistering Event Handlers635
Disposing Objects . ..637
Using Weak References . ..637
Finding a Leak638

Summary ...639

22 Advanced Development Techniques 641

Using New C# and .NET Features. ...641
Using Modern Programming Syntax...641
Creating Extension Methods. ...645
Consuming Dynamic Objects646
Using Named/Optional Parameters. ...646

Localizing Applications. ...647
Adding a Resource File...647
Making an Application Localizable...648
Using Tools . ..651
Downloading Resource Applications on Demand............................652

Encrypting and Decrypting . ..652
Understanding the Encryption/Decryption Mechanism..................652

Multithreading . ..653
What Is a Thread?..653
Using the ThreadPool ..654
Dispatching Back to the UI Thread...657
Creating and Using a BackgroundWorker ..660
Locking Critical Resources...663
Enhancing Multithreaded Code..666

Unit Testing the Application ..667
Installing a Unit Test Framework ..668
Adding Functionality with TDD ...668

 From the Library of Wow! eBook

ptg

Contents xvii

Using Code Coverage ..673
Unit Testing Windows Phone 7 Applications...................................673

Summary ...674

Conclusion 675

Index 677

 From the Library of Wow! eBook

ptg

About the Author

Laurent Bugnion works as a senior user-experience integrator for IdentityMine, one of
the leading companies committed to redefining the user experience and a Microsoft Gold
Partner dedicated to easing the adoption and optimal use of Microsoft presentation tech-
nologies, including Windows Presentation Foundation (WPF), Silverlight, Windows Phone
7, Surface, and Windows 7.

Originally an electronics engineer, Laurent achieved postgrad credentials in software engi-
neering in 1999. Before IdentityMine, he worked for Siemens for 13 years, introducing
WPF and other .NET 3.5 technologies worldwide. His responsibilities involved developing
with the previously mentioned technologies, training and coaching his colleagues, coordi-
nating and integrating the graphic-design work, and fostering relationships with
Microsoft. Before that, he wrote embedded C/C++, and then moved to desktop computers
in Java, JavaScript, and eventually .NET (desktop and ASP.NET).

Privately, he codes in Silverlight, WPF, and ASP.NET. He blogs on http://blog.galasoft.ch
and writes on http://www.galasoft.ch, where he publishes articles, prototypes, and demos
related to the previously mentioned technologies. In 2008, he earned an MCTS for WPF.
(In October of that same year, his book Silverlight 2 Unleashed was published.) This year,
2010, is his fourth year as a Microsoft MVP (Silverlight), and he was selected this year as
Silverlight MVP of the year.

Laurent is based in Zurich, Switzerland, where he lives with his wife, Chi Meei, and his
two daughters, Alise and Laeticia.

 From the Library of Wow! eBook

http://blog.galasoft.ch
http://www.galasoft.ch

ptg

Dedication

Thank you Chi Meei for not killing me when I said
I wanted to write a new book.

Thank you for supporting me during the 11 months that it took.
I love you.

To my princesses Alise and Laeticia for bringing light in my life,
and for making me keep things in perspective.

I love you both so much.

To my parents and my grandparents,
for helping me become who I am today.

Imagination is more important than knowledge.
—Albert Einstein

Il nous faut écouter
L’oiseau au fond des bois

Le murmure de l’été
Le sang qui monte en soi
Les berceuses des mères
Les prières des enfants
Et le bruit de la terre

Qui s’endort doucement.
—Jacques Brel

 From the Library of Wow! eBook

ptg

Acknowledgments

Thanking everyone who helped me complete this book would probably take another 700
pages. So, to keep these acknowledgments concise, I want to generally thank everyone
who helped in any way, while specifically calling out a few without whom I couldn’t have
completed this work.

The Silverlight community has been nothing short of fantastic. I received wonderful
motivation every time I was about to throw in the towel (usually around 2 a.m.). I found
documentation about the most cryptic topics in amazingly rich and detailed blog posts,
and I had the best reviewers in the world, who did all that work with just the promise of
a “thank you” and a beer next time I meet them. It is a wonderful time to develop soft-
ware.

I especially want thank the following (in no particular order) and apologize to those I
might have forgotten:

At IdentityMine: Nathan Dunlap, Josh Wagoner, Josh Smith, Andrew Whidett, and
Jonathan Russ for teaching me all I know (or so it feels); Lu Silverstein, Mark Brown,
Chad Brown, and Craig Jaris for encouraging me to write this book and dealing with the
disturbance.

The designer dream team: Jonah Sterling, Javier Roca Garcia, Jamey Baumgardt, Stuart
Mayhew, Lydia Bagwell, and more who help me to think differently. And all the others
for making me part of the family. It is a privilege to work with you.

My dream team of reviewers: Corrado Cavalli, Laurent Kempé, David Gardner, Peter
Bromberg, David Anson, Josh Smith, Shawn Wildermuth, Christian Schormann, Colin
Blair, Tim Heuer, Rene Schulte, Walt Ritscher, and Glenn Block. Thank you so much.

A very special extra thank you to Laurent Kempé and Corrado Cavalli for jumping in at
the last minute to review additional chapters.

At Microsoft: For building these fantastic frameworks and tools, and for answering my
frequent pleas for help: Scott Guthrie, Ian Ellison-Taylor, Tim Sneath, Nikhil Kothari, John
Gossman, Jaime Rodriguez, Laurence Moroney, Jesse Liberty, John Papa, Rob Relyea, Ted
Hu, Stefano Malle, Ronnie Saurenmann, Sascha Corti, Pete Brown, Jeff Wilcox, David
Anson, Christian Schormann, Pete Blois, Unni Ravindranathan, Kirupa Chinnathambi,
Joanna Mason, David Teitlebaum, Tim Heuer, Glenn Block, Karen Corby, Mike Harsh, Joe
Stegman, Rochelle Benavides, Grant Hinkson, Katrien de Graeve, Lisa Feigenbaum, Mark
Boulter, Chad Royal, Chris Koenig, and all the others at the DevDiv.

The source of eternal inspiration and support: Dave Campbell, Adam Kinney, Robby
Ingebretsen, Kevin Moore, Charles Petzold, Marlon Grech and all the WPF disciples,
Shawn Wildermuth, Walt Ritscher, Justin Angel, Davide Zordan, David Yack, Don Burnett,

 From the Library of Wow! eBook

ptg

Erik Mork, Brian Noyes, Ward Bell, Rob Eisenberg, Dan Wahlin, Chad Campbell, John
Stockton, Jonas Follesoe, Seema Ramchandani, Brian Henderson, Ian Smith, Scott Barnes,
Jeremy Likness, Page Brooks, Rick Barraza, Cigdem Patlak, Michael Sync, Victor Gaudioso,
David Kelley, Anand Iyer, all the Silverlight MVPs, and the whole vibrant and amazing
Silverlight community.

The great team at Sams: And especially Neil Rowe (my editor, mentor, and friend since
2007), Andy Beaster, and Mark Renfrow.

 From the Library of Wow! eBook

ptg

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or email address. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

 From the Library of Wow! eBook

ptg

Foreword

The growth of Silverlight has been perhaps faster than any of us involved in its inception
would have predicted. In less than three years, Microsoft has released four desktop
releases, each packing a payload of hundreds of features in response to customer feedback.
Silverlight is now deployed on somewhere approaching two-thirds of all Internet-
connected PCs,1 and it’s the primary platform for general-purpose development on the
new Windows Phone 7. Silverlight powers all manner of mainstream applications: from
high-end media experiences like Netflix, NBC Sports, and Sky Player to the web version of
Office. It’s in use at top consumer websites like eBay and for mission-critical applications
inside the firewall of numerous Fortune 500 companies.

In one sense, Silverlight is, of course, just an evolution of the .NET Framework that has
been central to Microsoft’s developer strategy for the past ten years. It stands on the
shoulders of giants like Windows Presentation Foundation (WPF,) the big-sister technol-
ogy that preceded it and laid the groundwork—with an architecture and XAML format
that had already proved itself in real-world implementations.

When we started building Silverlight, one of the greatest constraints was size. We knew
we needed something that was lightweight and easy to deploy without requiring a big
download or dependencies on other prerequisites. At the same time, we wanted to ship a
high-quality product as quickly as possible. There was a lot of debate internally about
whether we should start with the existing .NET codebase and “take away” code or
whether we should “build up” by starting with a clean slate and gradually adding features
until we had an attractive product. In the end, we went with the latter approach, and I
think it shows in the final product: Silverlight contains the key things that a developer
needs while bringing little cruft along for the ride. For me, this is one key reason why
Silverlight offers a unique sweet spot of power, flexibility, and easy deployment that suits
it well for both consumer and business usage.

But a framework alone isn’t sufficient for most pragmatic developers, who are less inter-
ested in history lessons or arcane details of internal architecture and more concerned with
what they themselves can create quickly and efficiently. Over the last year or two since
the last Silverlight Unleashed book was published, it’s true that Silverlight has been
expanded and enhanced; but even more important, the palette of tools available to a
Silverlight developer has grown tremendously. In particular, the release of Visual Studio
2010 brought true WYSIWYG in-place editing to Silverlight, along with WCF RIA Services,
a set of classes and design-time tools that offer major productivity gains to business appli-
cation authors.

Beyond the core elements of Silverlight, a burgeoning community has sprung up over the
past couple of years both inside and outside of Microsoft. The engineering team them-
selves have released a plethora of open source controls, components, and themes along
with rich frameworks for media, extensibility, and analytics. Others have contributed
libraries and components for everything from PDF creation to physics engines and full 3D

 From the Library of Wow! eBook

ptg

support: CodePlex alone shows nearly 500 projects that are based on Silverlight. And of
course, there is an endless supply of great content targeted at Silverlight developers,
including the weekly Silverlight TV show at http://silverlight.tv.

What of the future of Silverlight? Some have argued that the rapid rise of HTML5 presents
a new competitive threat to Silverlight. It’s certainly true that the browser wars of old are
back, with vendors duking it out to deliver the most advanced hardware-accelerated
graphics platform for developers while delivering a stable and secure browser for a broader
audience. It’s also true that HTML in general has the most pervasive reach of any client
platform. Indeed, the momentum behind Internet Explorer 9 shows that we at Microsoft
are also putting a lot of energy into providing first-class support for “standards-based”
web development.

A favorite business read among Microsoft executives is Built to Last by Jim Collins and
Jerry Porras, which highlights how easy it is to be trapped by a false dichotomy (the
“tyranny of the ‘OR’”). The authors note how many strategic decisions are framed incor-
rectly as a choice between A or B (but not both). Yet often the correct answer is an and
rather than an or.

In this vein, there need be no fork in the road between HTML5 and Silverlight. Both serve
key needs that developers have, and both have powerful strengths. Even more important,
many so-called Silverlight applications are in fact hybrid solutions that combine both
technologies. Silverlight contains many useful bridging features to enable developers of
both hues to access code and UIs written in the opposite framework. Silverlight develop-
ers should therefore feel confident that their skills have value for the indefinite future and
that Silverlight itself has a rosy future.

I want to close this foreword by noting my delight to see this update to Laurent’s popular
predecessor title, Silverlight 2 Unleashed. I’ve had the privilege of knowing Laurent for
some years now, and I can tell you that few in the Silverlight community command the
respect that he does. He combines a passion for writing quality client software with a
deep, practical, real-world knowledge of the tools and framework. He has had an insider’s
view of each release of Silverlight as it has been developed, and his feedback has shaped
the product for the better. Laurent’s own experience developing complex, large-scale
Silverlight applications shines through, particularly in the more advanced topics toward
the end of the book.

I heartily commend this book, both to newcomers to Silverlight as well as to those who
already have experience with early releases of Silverlight and want to “upgrade” their
knowledge with the latest advances.

—Tim Sneath
Senior Director, Client Platform Evangelism
Microsoft Corp.

1 As attested by our internal data and sites like riastats.com, which measure deployments of plug-ins
based on millions of real-world users.

Silverlight 4 Unleashedxxiv

 From the Library of Wow! eBook

http://silverlight.tv

ptg

Introduction

Silverlight 4, released to the public in April 2010, represents a major forward step in the
history of this still-young technology. Although we’ll certainly see later versions of the
framework with additional features in the future, the current version is very mature and
easy to work with. In addition, the tools used to develop Silverlight have also grown and
offer the same level of maturity and ease of use.

It is interesting to take a good look at the extended Silverlight community today. From a
niche topic, Silverlight has become the source of many discussions on Twitter and various
blogs. Also, since days of Silverlight 2, we have witnessed the emergence of design patterns
and of polished external frameworks. It is now possible to talk to Silverlight experts who
have developed many professional applications, and who know what works best.

The book you have in your hands (or on your computer/e-reader/tablet/phone screen)
tries to describe the current version of Silverlight version 4) as fully as possible. Doing so
represents a difficult task, however, because of the multiple facets of this technology and
the number of problems it can solve. You will find that this book goes into much more
detail than Silverlight 2 Unleashed. That increased level of detail is intentional, and in fact,
this book builds on the foundation presented in that earlier publication.

Honing Your Basic Skills
Silverlight is very much a story of continuity between versions. Most changes are in fact
additional features. For developers who were already active in earlier versions of
Silverlight, the skills that you already own are going to help you advance in Silverlight 4.

For developers who are completely new to Silverlight, we provide a free copy (as a PDF
download) of Silverlight 2 Unleashed. This book was written with beginners in mind, and
will bring you up to speed with fundamental concepts such as XAML, basic controls,
transforms, animations, and more.

What Can You Learn from Silverlight 2 Unleashed?
The following chapters in Silverlight 2
Unleashed will help you to understand
the basics of Silverlight 4:

. Chapter 1, “Introducing
Silverlight,” explains where
Silverlight comes from. Although
the landscape of web technologies
evolved in two years, most of the information in this chapter is still very much
valid. Note, however, that most demos described in Chapter 1 are not current
anymore. In some cases, you will get errors, or the page will simply not be found
anymore.

T I P

If you are already experienced with Silverlight
2 or Silverlight 3, feel free to skip this step
and jump right into Chapter 1.

 From the Library of Wow! eBook

ptg

. Chapter 2, “Understanding XAML,” is still valid. You can learn a lot about the
fundamentals of XAML by reading this chapter.

. Chapter 3, “Playing with XAML Transforms and Animations,” is still valid. All the
transforms and animations present in Silverlight 2 work unchanged in Silverlight 4.

. Chapter 4, “Expression Blend,” refers to Expression Blend 2. Many basic features are
still valid, but we will cover Expression Blend 4 in this book.

. Chapter 5, “Using Media,” is still valid and describes colors, vector graphics, and
basic image and video handling.

. Chapter 6, “Blending a Little More,” is still an interesting read, and provides an
overview of functionalities that are still available in Expression Blend 4 (transforms,
opacity masks, paths, clipping paths, grouping controls, and making user controls).

. Chapter 7, “Deploying to a Web Page,” is still valid with minor changes. It shows
you how to select a provider for your website and how to deploy your Silverlight
application to that site.

. Chapter 8, “Programming Silverlight with JavaScript,” is less relevant to Silverlight 4
than it was to Silverlight 2. However, JavaScript is an important skill to have for
anyone who is involved into creating web applications.

. Chapter 9, “Understanding .NET,” and Chapter 10, “Progressing with .NET,” provide
a tutorial from scratch about the most important constructs of the C# programming
language and of the .NET framework. It is a good read for people who come to
Silverlight from Flash, for instance, and have never worked in .NET before.

. Chapter 11, “Progressing with Animations” is still valid and will teach you how to
create animations in Blend, how to start and stop animations in code, and other
special kinds of animations. Silverlight 4 and especially Blend 4 build on this and
offer additional features that you will discover in the present book.

. Chapter 12, “Encoding Videos with Expression Encoder,” and Chapter 13,
“Progressing with Videos,” are based on Expression Encoder 2. The current version
of this software (Expression Encoder 4) available today offers much of the same
functionalities, with added features and a slightly different look and feel. Note,
however, that the Microsoft Silverlight Streaming servers are unfortunately not
available anymore.

. Chapter 14, “Letting Silverlight and JavaScript Talk,” is less relevant to Silverlight 4,
although most of the techniques will still work.

. Chapter 15, “Digging into Silverlight Elements,” and Chapter 16, “Digging Deeper
into Silverlight Elements,” are still very much current. In fact, it is almost a must-
read before starting to work in Silverlight.

. Chapter 17, “Using Resources, Styling, and Templating,” is still valid; however, it is
possible to store resources in external resource dictionaries in Silverlight 4, which
was not the case in Silverlight 2.

Silverlight 4 Unleashed2

 From the Library of Wow! eBook

ptg

. Chapter 18, “Data Binding and Using Data Controls,” will be developed deeper in
Silverlight 4 Unleashed. The section about the DataGrid is still an interesting read if
you are working with this control. Note, however, that the DataGrid is now part of
the core Silverlight framework.

. Chapter 19, “Creating User Controls and Custom Controls,” overlaps in part with
the present book’s content. Controls are a very important part of the Silverlight
framework, and it is important to understand how they are built and how they
work.

. Chapter 20, “Taking Silverlight 2 One Step Further,” and Chapter 21, “Taking
Silverlight 2 Even Further,” lists various topics, some of them overlapping with the
present book’s content.

. Chapter 22, “Connecting to the Web,” overlaps in part with the present book’s
content, but also has some interesting techniques to download files and access their
content.

. Chapter 23, “Placing Cross-Domain Requests and Handling Exceptions,” contains
information about the topic of cross-domain communication that is still current in
Silverlight 4, as well as a tutorial about exceptions and how to handle them.

. Chapter 24, “Silverlight: Continuing the Journey,” contains various information
that can be interesting for Silverlight developers.

About Code in This Book
We tried to keep formatting as consistent as possible throughout this book and to make
the code look like it does in Visual Studio. The source code is color-coded to help you to
work faster and so that you can recognize key concepts in Visual Studio and in Expression
Blend. Note that depending on the context where a keyword is used (XAML or C#, Visual
Studio, or Expression Blend), the color code might differ.

The source code lines are numbered only where relevant (for example, when the text
makes explicit reference to a line number).

The whole source code for this book is available online at
http://www.galasoft.ch/SL4U/code. A translation of the C# code into VB.NET is being
prepared at the time of this writing.

Adding a Reference to a Namespace
In some listings, classes from other namespaces/assemblies are added to the code. In some
occasions, doing so might cause a compilation error with the following message:

The type or namespace name ‘MyClass’ could not be found (are you missing a using directive or
an assembly reference?).

Introduction 3

 From the Library of Wow! eBook

http://www.galasoft.ch/SL4U/code

ptg

To correct this, make sure that the assembly in which MyClass is defined is added to the
References folder in the Visual Studio Solution Explorer. If that is not the case, right-click
this folder and select Add Reference from the context menu. In the Add Reference dialog,
browse to the missing assembly and add it to the project.

If the error persists, you must add a reference to the namespace in which MyClass is
placed in the source code file. You can do so by adding an entry at the top the current
page, as follows (where SilverlightApplication1.AnotherNamespace is the namespace in
which MyClass lives):

using SilverlightApplication1.AnotherNamespace;

In Visual Studio, this step can be automated by placing the cursor inside the name
MyClass and pressing Ctrl+. (Ctrl and a dot) to open the context menu. Then, select the
first entry of the menu to add a using directive.

Setting the Right Project as Startup
When an existing solution is opened, and this solution contains a web project hosting
the Silverlight application (in the ClientBin folder), the web project should be set as
Startup. This means that when Ctrl+F5 is pressed in Visual Studio, the Silverlight applica-
tion will be executed in http: context, and not in the file: context that has more
restrictions. To ensure that the web project is set as Startup, follow these steps:

1. Check in the Solution Explorer whether the web project is represented in bold. If
that is the case, skip to Step 3.

2. If that is not the case, right-click the web project’s name and select Set as StartUp
Project from the context menu.

3. Right-click the HTML test page name (usually named
[YourSilverlightApplication]TestPage.html or index.html) and select Set as Start Page
from the context menu.

Using the var Keyword
Since Silverlight 3, it has been possible to use the var keyword to implicitly type a local
variable. For example, in the following code, both expressions are exactly similar after the
code is compiled:

var myVariable1 = new Button();

Button myVariable2 = new Button();

There is a lot of discussion in the .NET community about the usage of the var keyword.
Choosing to use the keyword or not is very much a matter of personal preference, and
there is unfortunately no way to please everyone in this matter. In this book, the var
keyword is used consistently as shown here.

Silverlight 4 Unleashed4

 From the Library of Wow! eBook

ptg

Happy Coding!
Now it’s time to start! I wish you a successful journey in this book, and I am anxious to
hear from you on Twitter (@LBugnion). I cannot promise to reply to every message, but I
will definitely do my best, and I am very open to criticism (as long as it is constructive)
and questions. Enjoy the trip, and happy coding!

Laurent

Stäfa, Switzerland, September 2010

Introduction 5

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Discuss what happened since
Silverlight 2 Unleashed came
out.

. Talk about cross-browser and
cross-platform compatibility
for Silverlight 4.

. Consider alternatives to
Silverlight, both in the
browser and out-of-the-
browser.

. Look at the earlier versions of
Silverlight 1.0, 2 and 3 and
take a look into the future of
this technology.

. Install Silverlight 4 as a user
and explore a few demos.

CHAPTER 1

Three Years of
Silverlight

In three short years, Silverlight has come a very long way.
In this chapter, we review what Silverlight is, where it
comes from, and try to peek into the future of this technol-
ogy, illustrated by the “shiny logo” shown in Figure 1.1.

Discovering Silverlight 4
It seems like yesterday that we published Silverlight 2
Unleashed and introduced it at the Professional Developer
Conference 2008 in Los Angeles just a few days after
Silverlight 2 had been released to the Web. And yet here we
are talking about Silverlight 4 already! In these less than
two years, the Silverlight team at Microsoft has been very
active listening to the community’s feedback and imple-
menting new features to transform what was an already
solid, yet basic platform into a very rich framework, able to
accommodate most client application developers’ needs.

 From the Library of Wow! eBook

ptg

The very first public glimpse of Silverlight 4 beta was offered at
the Professional Developer Conference 2009, when Scott
Guthrie (Corporate Vice President, .NET Developer Platform,
Microsoft) gave one of the exciting talks full of demos for
which he is famous. Although still in beta stage, we were
already able to clearly see the direction that the technology
was taking. Even more important, we were told often that
Silverlight is the future of client applications at Microsoft!

With this new release, the border between web applications
and desktop applications is becoming much thinner. For
example, Silverlight 4 can now install applications “out of the
browser,” with a shortcut in the Start menu or on the desktop.
Although these applications have fewer
privileges and features than full-blown
desktop applications, they have the
huge advantage to be cross-platform
(you can run them on Apple computers,
too) and provide a very elegant way to
offer rich functionality in online and
also offline mode. We talk a lot more
about out-of-the-browser applications in
this book.

A lot of other features, which we discuss
later too, help the developers to build
so-called line-of-business (LOB) applications (for example, rich data applications for busi-
nesses, catalogs for products, data visualization screens, and many more). Silverlight is
often mistaken for yet another media framework, when it is in fact much more than this.
This new release makes the point very clear, and should help to put Silverlight in the
focus of enterprise applications developers while continuing to build on the success it
already has for multimedia applications.

Learning Silverlight Is Betting on the Future
With all this in mind, it is quite clear that learning Silverlight is a perfect way to advance
in the future of client application development:

. For web developers, it adds important skills to your arsenal that will help enrich
your web pages. Silverlight is not replacing classic web technologies such as
Hypertext Markup Language (HTML), Cascading Style Sheets (CSS), and JavaScript,
but it enhances them and plays an important role in the way that websites are
evolving always more from document presentation to rich interactive applications.

CHAPTER 1 Three Years of Silverlight8

FIGURE 1.1
Silverlight logo.

T I P

What About Windows Presentation
Foundation?

The richer (but running on Windows only) “big
sister” of Silverlight called Windows
Presentation Foundation (WPF) is still actively
developed and extended by Microsoft,
although in a maybe less-glamorous way. See
the section “Alternatives to Silverlight,” later
in this chapter.

 From the Library of Wow! eBook

ptg

. For “classic” desktop developers in the Windows world (with technologies such as
Microsoft Foundation Classes [MFC] or Windows Forms), it teaches you a modern
and exciting framework with revolutionary features such as the fantastic data
binding system, rich animations and graphics, media integration, and so on.

. For WPF developers, you leverage a lot from what you already know and gain cross-
platform compatibility for your applications, easy web deployment, and exposure to
a wider audience.

One important thing to keep in mind is that Silverlight is not a replacement for HTML
web pages, and will absolutely not kill HTML. Silverlight is here to enhance your web
pages with richer content, and with the out-of-the-browser feature, to create lightweight
applications that can function online or offline. Learning Silverlight does not mean that
you should avoid writing HTML code, or that you should stop investing in technologies
such as ASP.NET. But it means that you can now realize applications that were impossible
(or very difficult) to do in HTML/CSS/JavaScript, and that you can use the same languages
(and in some cases reuse code) on the server and on the client.

How Can They Be So Fast?
There are a few aspects that explain how new versions of Silverlight can hit the market so
fast, and yet be so stable:

. Silverlight is developed in an agile manner. With short iterations and early releases,
the team is able to react quickly when problems are found in the code or new
features are suggested. This explains why we had three releases in less than three
years.

. Silverlight is taking advantage of the experience gathered by the Windows
Presentation Foundation team. Many features are similar, and some code can even
be reused. Other features are re-implemented in a different way based on customer
feedback. The teams are communi-
cating to leverage the experience
gained since WPF was released.

. The community is involved in an
interactive manner. Your input
counts! We will talk about ways to
get involved in this chapter.

How About Compatibility with Older Versions?
An agile team at work for Silverlight provides a great basis for a rich feature set evolving
very fast. With version 4, we can say that Silverlight is reaching maturity. There will, of
course, be additional versions in the future, but it is obvious that versions 3 and 4 were

Discovering Silverlight 4 9

1

T I P

The Community Counts!

Did you know that approximately 70% of the
features requested by the Silverlight commu-
nity have been implemented in Silverlight 4!

 From the Library of Wow! eBook

ptg

major steps for this platform, which explains Microsoft’s enthusiasm at the conferences
where early versions were shown. Note, however, that a lot of effort has been put into
backward compatibility:

. If you open a Silverlight 2 (or 3) project in the Silverlight 4 development environ-
ment, a lot of your code will work as is. Some of it will need to be updated, but the
changes are, in general, painless ones. Note that the project files (*.CSPROJ) will be
updated to the new environment, though.

. If you run a Silverlight 2 (or 3) application on a PC with Silverlight 4 installed, it
will run without glitches, because the runtime environment is fully backward
compatible.

In fact, your Silverlight 2 (or 3) applications should run even better in a Silverlight 4
runtime environment, because of the improvements brought to the core and to the plug-
in. This history of backward compatibility is most certainly going to continue with future
versions, so what you learn now is going to be a major skill for your future as a developer.

Cross-Browser and Cross-Platform Compatibility
The version of Silverlight developed by Microsoft is available on a wide variety of plat-
forms, both on the Windows and Macintosh operating systems. This plug-in will run on
all these platforms with the same feature set (with one exception that we will discuss in
Chapter 18, “Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling,
Notification Windows, and Splash Screens,” namely the COM integration that is of course
available only on Windows operating systems).

In addition, Novell is working on a version named Moonlight, available for certain distri-
butions of Linux. The effort by Novell is encouraged by Microsoft but is conducted inde-
pendently. This is why the version releases are not necessarily coordinated, and there
might be some discrepancies in the feature set, too. However, a great effort is being
expended to create a plug-in that is largely compatible with the one developed by
Microsoft.

Finally, we will also take a look in Chapter 15, “Developing Navigation Applications and
Silverlight for Windows Phone 7” at Silverlight for the mobile platform. After announcing
that they wanted to support the mobile platform, Microsoft did not communicate much
and encountered a few technical difficulties that took longer than expected to solve. This
year, however, we finally heard much more about support for the mobile platform, and
we will take a first look at what will be available in the near future.

In short, Silverlight is your best bet if you want to run .NET-based code on a large number
of platforms!

CHAPTER 1 Three Years of Silverlight10

 From the Library of Wow! eBook

ptg

Windows and Macintosh
The following table shows in detail what is and is not possible with the plug-in imple-
mented by Microsoft.

Cross-Browser and Cross-Platform Compatibility 11

1

T I P

Things Are Moving Fast

Table 1.1 is a snapshot at the time of this writing. The situation keeps changing, with new
browsers and platforms being added. To get the latest information, make sure to visit the
Silverlight.net website!

TABLE 1.1 Cross-Platform and -Browser Compatibility

OS IE8 IE7 IE6 FF3 Safari3 Safari4 Chrome

Windows Yes Yes n/a Yes n/a n/a Yes
7
Windows Yes Yes n/a Yes n/a n/a Yes
Vista
Windows Yes Yes n/a Yes n/a n/a Yes
Server
2008
Windows Yes n/a n/a n/a n/a n/a Yes
Server
2008 R2
Windows Yes Yes Yes Yes n/a n/a Yes
XP SP2
and SP3
Windows n/a n/a Yes n/a n/a n/a n/a
2000
SP41

Windows Yes Yes Yes Yes n/a n/a n/a
Server
2003
Mac OS n/a n/a n/a Yes Yes Yes Yes
10.4.8
and later
(Intel
based)

1 Windows 2000 requires the installation of an update (KB 891861) to execute Silverlight applications.

Note the following restrictions:

. The Opera web browser is not officially supported at the time of this writing.

. PowerPC-based Apple computers support only Silverlight 1.0.

 From the Library of Wow! eBook

ptg

Linux
For Linux, FreeBSD, and Solaris operating systems, things are changing fast, so the best
thing to do is to check the information on the Novell Moonlight website at
http://www.galasoft.ch/sl4-moonlight.

Alternatives to Silverlight
Because Silverlight 4 can run inside or outside of the web browser, its alternatives cover a
wider landscape. Interestingly, though, not many technologies allow you to program just
once but run on multiple platforms and in multiple modes (offline/online, in the
browser/out of the browser). In that sense, Silverlight is pretty unique.

In the Web Browser
Silverlight is traditionally a connected application running within a web browser. In that
field, the landscape didn’t really change much since Silverlight 2, with the exception
maybe of XHTML, which is barely mentioned anymore and considered already obsolete
now that HTML5 is becoming a trending topic.

Adobe Flash
This is the obvious contender, the one technology that is most often mentioned when
Silverlight is compared to other frameworks. Adobe Flash is installed on a huge number of
computers and various operating systems. It is also a well-known environment, and many
companies develop applications in Flash for the Web.

As mentioned when Silverlight 2 was released, Flash is not going to be killed by
Silverlight, and in fact this was never Microsoft’s intention. Rather, Silverlight provides a
welcomed alternative to firms who do not want to invest in two very different technolo-
gies for the desktop and the Web. In that sense, Silverlight is a great choice because it is
developed with the same languages and the same tools as the well-known Windows
Forms, ASP.NET, and WPF.

Silverlight and Flash are coexisting on the Web, sometimes even in the same web pages.
Thankfully, this is easy to realize, and there is even a possibility to let these mixed appli-
cations communicate together through JavaScript. This allows a gradual modification of
existing websites from Flash to Silverlight, without breaking the functionalities or forcing
the users to adapt to large-scale changes. We actually saw some striking examples of this
at Microsoft itself, with existing Flash applications being gradually converted to
Silverlight without disruptions.

DHTML and AJAX
DHTML (Dynamic HTML) and AJAX (Asynchronous JavaScript and XML) are often used
together on web pages to create a more interactive experience. This was made popular
with web developers by the release of JavaScript frameworks such as jQuery.

CHAPTER 1 Three Years of Silverlight12

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-moonlight

ptg

The advantage of these frameworks is
that they standardize the JavaScript
functions by providing a layer on top of
the various implementations available in
different web browsers on different plat-
forms. jQuery can be extended by plug-
ins that are available for the user
experience itself (for example, to create
smoother animations), or at a lower
level to enhance the communication with the web server, and so on. Also, they do not
require an additional component in the web browser to run.

However, programming in JavaScript is not an easy task. The dynamic nature of the
language makes it more difficult to offer advanced development tools (such as IntelliSense
in Visual Studio) and to find and correct bugs. Also, the HTML platform is limited:
Advanced and smooth animations with high frame rates are impossible to realize, it is
impossible to create certain transformations for graphic elements, and so forth.

Note, however, that using Silverlight on a web page doesn’t prevent you from using
jQuery or another JavaScript-based framework—on the contrary. Here, too, these tech-
nologies complement each other.

HTML5
This new revision of HTML intends to provide a wide range of rich functionality, allowing
developers to reduce the use of third-party plug-ins. In this matter, it positions itself as a
concurrent of Adobe Flash and Microsoft Silverlight.

Although it is true that plug-ins cause problems, they also solve some. One big issue with
HTML is that different web browsers have different implementations of the standard. This
is a well-known issue: Testing a web page for all major web browsers on all major operat-
ing systems can be a real hassle. On the other hand, Silverlight as a plug-in is guaranteed
to run the same in every supported web browser. It is the old “write once, run anywhere.”

The major issue that HTML5 faces is that a wide adoption will take a lot of time. Also, if
we learned anything from the past, it is that each browser is likely to offer a slightly
different feature set. Some features will simply be missing from some browsers; other
features will be implemented in a different manner. Compatibility will take a lot of time,
if it is ever achieved. In the meantime, and until we know whether HTML5 really delivers
what it promises, Silverlight offers a real alternative.

Out of the Browser
Running a Silverlight application out of the browser is similar to running a desktop appli-
cation. Therefore, Silverlight can be seen as an alternative to any desktop technology,
including “classic” MFC and Windows Forms applications on Windows or Mac applica-
tions on Mac OS. Let’s just take a look at two modern desktop technologies.

Alternatives to Silverlight 13

1

T I P

Using jQuery in ASP.NET

Did you know that Microsoft supports jQuery
development by contributing to this open
source project, and including it in ASP.NET
MVC (Model, View, Controller) projects in
Visual Studio.

 From the Library of Wow! eBook

ptg

Windows Presentation Foundation
When Silverlight functionalities are not enough to accomplish what you want, the answer
is probably to look into WPF, Silverlight’s “big sister.” Even though the convergence is
always greater between these two technologies, and Silverlight becomes richer and steps
on WPF’s playground, there are still some scenarios for which Silverlight is not suitable.

CHAPTER 1 Three Years of Silverlight14

T I P

Deploying WPF on the Web

Did you know that WPF applications can be deployed and installed from a web server using
the ClickOnce technology? See http://www.galasoft.ch/sl4-clickonce.

Also, a WPF application can be deployed and run inside some web browsers on Windows, and
provide an interesting alternative to Silverlight. See http://www.galasoft.ch/sl4-xbap.

The biggest disadvantage of WPF with regard to Silverlight is that it runs only on
Windows systems. Also, it requires the complete .NET framework (instead of the
Silverlight subset), which is larger and takes more time to install on the target machine if
it is not already present. Finally, although WPF is richer than Silverlight, this richness also
makes it more complicated to learn. It is easier to start with Silverlight.

Note that thanks to the combined efforts of the Silverlight team and the WPF team at
Microsoft, the compatibility between both technologies has never been greater, and it is in
fact possible to convert a Silverlight application to WPF with a large portion of shared
code. Generally speaking, however, and because Silverlight is a subset of .NET, it is easier
to start in Silverlight and extend the application to WPF than the contrary. Similarly, it is
also easier to start learning Silverlight and then to move to WPF.

Adobe AIR
A less well-known platform developed by Adobe is called AIR and allows creating desktop
applications. As such, it is not a concurrent of “in-browser” Silverlight, but rather of the
out-of-the-browser applications.

For users, AIR applications are known to be heavy in memory consumption, and require
an additional framework that must be installed the first time you run an AIR application
(even if you have Flash already installed). This can be a problem on corporate networks,
where IT departments are often reluctant to install new components on users’ PCs.
Silverlight, on the other hand, is installed once and gets the out-of-the-browser capabili-
ties immediately.

Legacy Technologies
Some technologies are still running inside some web browsers, but are becoming obsolete
with time. The two mentioned in this section are not the only ones, but they are the best
known, and it is possible that a developer starting a new project will be asked to consider
these in the variant analysis.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-clickonce
http://www.galasoft.ch/sl4-xbap

ptg

Java Applets
Java as a plug-in is quite widespread and allows small applications known as applets to
run in the web browser. Java was revolutionary in that way when it was released, but it
suffers from a lot of issues:

. Java is notoriously slow. It’s slow to install on a new computer, and especially slow
to start.

. Java applets have a bad reputation when it comes to security. This claim might not
be as true in newer versions as it used to be, but Java’s adoption in the corporate
world has suffered a lot from this concern.

. Java is cumbersome for .NET developers. The tools and the language are unusual
and require additional training.

Silverlight addresses these concerns and offers a convincing alternative to Java applets.
Perhaps the most compelling argument is that Silverlight is .NET. If your developers
already know .NET-based client application technologies (WPF, Windows Forms, ASP.NET,
and so on), they will feel at home very fast with Silverlight, and have a solid foundation
to build on.

Microsoft ActiveX
Similarly to Java applets, ActiveX controls were once very popular to enrich a web page,
but are rendered pretty much obsolete nowadays by the many improvements made to
new technologies, and especially Silverlight. If you are a developer or maintainer of
ActiveX controls, it is probably time to consider moving to the newer, richer, and safer
platform that Microsoft is developing. ActiveX controls suffer from the same problems as
Java applets regarding security and restrictions in the enterprise world; in addition, they
run only on Windows-based operating systems, which prevents a large user base from
using them.

Silverlight differs significantly from ActiveX, and converting existing applications to this
new technology is not the easiest task a developer can dream of. With this step, however,
you will offer a newer, richer, and much friendlier interface to your users, and make a big
step toward the future of software development.

A Short History of Silverlight
The development of Silverlight has been consistently incremental. Silverlight 4 is a super-
set of Silverlight 3, which is a superset of Silverlight 2. Some of the code might not be
completely compatible between versions, mostly because when some things were missing
developers had to use workarounds. After a feature has been added in a later version,
however, the workarounds might not work properly anymore, and it is time to upgrade
the code to the proper implementation.

In some rare cases, the interface to some functionality might have changed because the
team came up with a better implementation. These occurrences are rare, however, and
upgrading an application to a newer version of Silverlight should be easy enough.

A Short History of Silverlight 15

1

 From the Library of Wow! eBook

ptg

Silverlight 1.0
This early release of Silverlight (May
2007) was far from complete, and in fact
did not support any .NET code; it had to
be programmed in JavaScript. It did,
however, support a small subset of
XAML (eXtensible Application Markup
Language), the language used to define
the user interface of Silverlight applica-
tions.

The main purpose of Silverlight 1.0 was to rapidly create a base of installation for the
Silverlight plug-in. Other features were, however, supported in Silverlight 1.0. For
example, you could already create some animations. There were no built-in controls
(apart from the TextBlock), but using
shapes, you could create buttons and
other basic building blocks for your
application that would trigger
JavaScript-based code. For instance,
some video players still available today
on the Web are entirely written in
Silverlight 1.0, without any .NET code.

Nowadays it is clear that Silverlight 1.0
was just a step on the road to rich inter-
active applications, and very soon the
focus shifted to Silverlight 2, the first
.NET-based version.

Silverlight 2
For a very short time, this version was named Silverlight 1.1, but considering the major
changes implemented (and also to simplify the versioning process), it made sense to
change the version number to a full digit instead.

Silverlight 2 (released shortly before the Professional Developer Conference in October
2008) was revolutionary because it brought for the very first time the .NET framework (as
a subset) to other platforms than Windows. It also included a rich set of controls,
enhanced video, new tool support, and many other exciting features.

When you study Silverlight 4, you will use a lot of features that were already available in
Silverlight 2.

Silverlight 3
This version (again a full-digit increment) was released in July 2009, a mere nine months
after Silverlight 2. In this short time, the team managed to bring Silverlight to a more
mature version.

CHAPTER 1 Three Years of Silverlight16

T I P

Video as an Incentive

Studies have shown that a user is most
likely going to accept installing a new plug-in
on his computer to watch videos. This is why
the main focus has been put on video in
Silverlight 1.0.

T I P

Code Name WPF/E

You might have heard the name Windows
Presentation Foundation Everywhere, or
WPF/E. This was the code name under which
Microsoft developed Silverlight, in reference
to Windows Presentation Foundation, the rich
desktop programming framework included in
.NET 3.0 and later. Very soon, however, this
name was abandoned in favor of the catchier
Silverlight.

 From the Library of Wow! eBook

ptg

Controls and features were added, and the data layer extended to provide a stable founda-
tion for more business-oriented scenarios. At the same time, the existing media layer was
extended with new formats being supported, and new powerful effects (known as pixel
shaders) being introduced. On the user experience level, it was now possible to transform
2D elements into the 3D space (what was sometimes called “pseudo 3D” or “2.5D”).
Animations were pushed further, with smoother and more lifelike movement. Some steps
were also taken to enable hardware acceleration (which is a real challenge on mixed plat-
forms such as the ones supported by Silverlight).

It’s also in Silverlight 3 that we saw the out-of-the-browser (OOB) feature for the first
time. It was still rather incomplete: For example, the OOB application still couldn’t get
any additional permission, so it was pretty limited in its actions. It was also not possible
to give a custom look and feel to the OOB window. Still, it was an intriguing first step,
and the community’s response was very encouraging.

In short, we wanted more…

And Silverlight 4…
And here we are! Silverlight 4 will not be the final version of this technology, but one
thing is sure: If you were still hesitating to invest in Silverlight, now is a great time to
start. We know a lot about what Silverlight is, what it can do and cannot do, and we have
a quite clear vision of what will happen in the near future. We also have Silverlight
experts with (in some cases) two or three years of experience with this technology.

Silverlight 4 is a very stable release. What we predicted when Silverlight 2 was published is
proven true today: Silverlight is here to stay, and Microsoft is betting a lot on this technol-
ogy. In these three years, it went from “Flash contender” to major user interface technology.

According to recent numbers, the Silverlight installation basis grew very fast since
Silverlight 2 was released, and you can count on approximately 60% of all the connected
computers having Silverlight 3 or Silverlight 4 already installed.2

Previewing the Future of Silverlight
The next burning question, of course, is where Silverlight is going. As usual, predicting
the future of any technology is a difficult exercise, as the past few years have proven. The
situation on the .NET front is a bit clearer now than it was two years ago, though; so
what did we learn?

. Silverlight has strong support at Microsoft. They are pushing it very hard; they
release new features at a fast pace, and managed in just a few years to create a very
rich framework. This is not going to stop with Silverlight 4; more is coming.

. A convergence is occurring between Silverlight and WPF. More and more features
are shared. The movement is toward compatibility, with Silverlight becoming a
complete subset of WPF. Not just compatibility of interfaces, but also binary
compatibility. We will probably see this happening in the next few years.

Previewing the Future of Silverlight 17

1

2 Source: http://riastats.com

 From the Library of Wow! eBook

http://riastats.com

ptg

. There is already a large adoption of Silverlight by developers and firms worldwide.
We saw lots of interesting projects in the past few years, and more are coming. We
also see a lot of firms that were reluctant to move to WPF embracing Silverlight for
their rich application development because it is easier to learn.

. Finally, the installation base has literally exploded, going from approximately 25%
for Silverlight 2 to 60% for Silverlight 3 and 4. The smooth update mechanism
makes it painless to upgrade Silverlight if needed; and as new applications are being
published on the Web, more users are installing Silverlight to access them.

Here’s a quote from Pete Brown, who works for Microsoft as client application evangelist
(http://www.galasoft.ch/sl4-convergence):

In the future, it is very likely that both Silverlight and WPF will be a single technology with
a single codebase.

So here it is, the probable future of Silverlight and WPF: A continuum framework that can
be used on the desktop (very rich clients with full features / rich clients with fewer
features and permissions) and in the web browser (very similar to what we have now, but
with added functionality).

Installing Silverlight 4 as a User
Installing Silverlight 4 is very easy. For many users, a version of Silverlight might in fact
be already installed on their computer. For instance, if you install one of the applications
distributed under the label Windows Live (such as Live Messenger, Live Writer, and so on)
and keep the default options, Silverlight will be installed on the target PC.

Similarly, Silverlight can be installed by the Windows Update program. This enables
administrators to make sure that the latest versions of Microsoft applications are consis-
tently installed in a corporate network. For home users, Windows Update is a great way to
make sure that you get notified when a new version of a driver, an application, or a
framework (such as Silverlight) is available.

That said, because it is so new, you might not have the latest version of Silverlight and
will need to upgrade when you navigate to a Silverlight 4 application in your web
browser. Or, you might not have Silverlight installed at all, and here too you will be noti-
fied when you reach the page you want to see.

CHAPTER 1 Three Years of Silverlight18

T I P

Not Completely Compatible Yet

Today, Silverlight is already in great part a subset of WPF in terms of interfaces. Many
classes that are in Silverlight also exist in WPF. However, some new classes have been
added to Silverlight 3 and 4; some of them have made it into WPF 4, some of them are still
missing. The situation is not as clean as one would want.

Also, even though we see first steps in that direction, the binary compatibility is still limited.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-convergence

ptg

Opening a Silverlight 4 Application
Silverlight applications are always embedded in an HTML page. Opening a Silverlight
application for the first time is always a matter of navigating to a web page in a supported
web browser.

With the possibility of saving Silverlight applications locally and to run them out-of-the-
browser, the startup point might not be a web page anymore, but more classically a short-
cut in the Start menu or on the desktop. However, an application may only be installed
locally following a user action (for example, a click on a button or a right-click on the
application and selecting Install from the Silverlight context menu). It always starts on
the web page!

What to Do If Silverlight Is Not
Installed?
If Silverlight is not installed at all on the computer
you are using (not even an earlier version), you will
see an image asking you to install Silverlight, as
shown in Figure 1.2. Note, however, that this experi-
ence can be customized, and you might see different
pages with elaborate designs.

Exploring Silverlight 4 Demos
Now that Silverlight 4 is a little older, it is possible to see some nice samples on the web.
To see these demos, you just need to install Silverlight 4 and to navigate to a URL.

Deep Zooming the Matterhorn
The Matterhorn Deep Zoom application was developed by Microsoft Switzerland to cele-
brate their 20th anniversary in Switzerland. It features multiple gigapixel pictures stitched
together and processed in order to be rendered by the DeepZoom technology. We already
talked about DeepZoom in Silverlight 2 Unleashed: A composer application prepares a
large image by splitting it into a collection of tiles. Multiple resolutions of each tiles are
prepared. When the image is loaded in the DeepZoom viewer (powered by Silverlight),
the user can zoom in or out (for example using the mouse wheel or, if he has a supported
multitouch screen, with a “pinch” gesture).

When the image is zoomed, the DeepZoom viewer dynamically loads the corresponding
tiles from the server. To render the experience more dynamic for the user, the tiles are
loaded at low resolution first, and then gradually the image is rendered with a finer grain
until the maximum resolution is reached.

To start the Matterhorn DeepZoom application (shown in Figure 1.3), navigate to
http://www.galasoft.ch/sl4-matterhorn. Clicking on the demo sets the application in
full screen. Select one of the pictures and use the mouse’s wheel to zoom in. Notice how
the zoom action is smooth, and how the tiles, blurry at first, become sharper as more

Exploring Silverlight 4 Demos 19

1

FIGURE 1.2 Install Microsoft
Silverlight.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-matterhorn

ptg

information is loaded by the application. More information about the pictures can be
seen by clicking on the “info” button, which is a nice way to enrich a presentation.

CHAPTER 1 Three Years of Silverlight20

FIGURE 1.3 The Matterhorn DeepZoom application.

Getting Involved Socially with Sobees
In today’s World Wide Web, social networks have gained in popularity to become an
unavoidable part of the browsing experience. Many people, however, do not use the
social websites but prefer to use a rich aggregator instead. Sobees offer such applications
for multiple platforms, including one built in Silverlight 4 and running either in the
browser or installed out-of-the-browser. The Sobees application can be used to visualize
entries from Twitter, Facebook, MySpace, and LinkedIn within one single window. It is
also possible to perform multiple searches on Twitter.

To run the Sobees Silverlight application (shown in Figure 1.4), navigate to
http://sobees.com/web. Follow the instructions to connect to the services that you want
to aggregate. In order to install the application and run it like a normal Windows (or
Mac) application, right click anywhere on the application’s surface and select Install
Sobees web alpha onto this computer. After confirming the operation, this creates a short-
cut in your Start menu and/or on your desktop that you can use to run the application
without starting the web browser.

 From the Library of Wow! eBook

http://sobees.com/web

ptg
FIGURE 1.4 Sobees Silverlight application.

Navigating with Bing Maps Streetside and PhotoSynth
Bing maps and the Streetside application are an interesting way to navigate geographical
maps and to immerse yourself in a city, either to discover it in advance or to remember
where your steps took you. Note that the “classic” Bing maps application uses standard
web technologies; to get the Silverlight version, follow the URL: http://www.bing.com/
maps/explore.

After the application is loaded, use the mouse wheel to zoom into the map. Note the
smooth loading of details, powered by Silverlight. As you zoom in, the level of detail
changes, and switches from map view to satellite view. This can be controlled using the
“+” and “-” buttons on the bottom of the page (shown in Figure 1.5).

Two additional features are available in selected areas: Streetside and PhotoSynth.

Exploring the Streets with Streetside
The idea behind Bing maps Streetside is not new but
Silverlight provides a very smooth and innovative experi-
ence. First, you need to locate a region where Streetside is
enabled. Click the second button from the right in the
controls at the bottom of the page, as shown in Figure 1.5.
This adds a number of blue areas to the map. Use the zoom
controls to dive into one of these areas (for example the city
of Seattle in the USA).

Exploring Silverlight 4 Demos 21

1

FIGURE 1.5 Bing maps
controls.

 From the Library of Wow! eBook

http://www.bing.com/maps/explore
http://www.bing.com/maps/explore

ptg

After entering the Streetside view, you can use the mouse to click around your location
and navigate the available area. It is interesting to see how the pictures are deconstructed
and reconstructed to provide an impression of speed as the view advances along the
streets. It is also possible to press and hold the mouse to pan the picture around, and the
mouse wheel to zoom in and out. For example, the Seattle Aquarium building is shown in
Figure 1.6.

CHAPTER 1 Three Years of Silverlight22

FIGURE 1.6 Bing maps Streetside in Seattle.

Discovering a Landscape with PhotoSynth
The PhotoSynth technology uses Silverlight
to combine multiple pictures taken around
a same object (building, monument,
landscape, and so forth). To dive into a
PhotoSynth from the Bing Maps viewer,
look for a small icon as shown in
Figure 1.7.

Once the PhotoSynth viewer is started, use
the mouse to click on the panes shown in
Figure 1.8, in order to see a different view FIGURE 1.7 PhotoSynth icons.

 From the Library of Wow! eBook

ptg

FIGURE 1.8 PhotoSynth of the Statue of Liberty.

Visualizing Information with the Pivot Viewer
The Silverlight Pivot viewer is an innovative way to display large quantities of informa-
tion and to sort it. Some examples start being published on the Web, for example the
page at http://www.galasoft.ch/sl4-pivot which represents all the editions of MSDN
magazine since 2000. Using links or a search box, you can refine the search as shown in
Figure 1.9 and Figure 1.10.

Exploring Silverlight 4 Demos 23

1

of the same object. The view is composed of multiple pictures stitched together automati-
cally. Silverlight is used to smoothly pass from one picture to another, providing an
impression of 3D as the viewer navigates around the object. For more information about
PhotoSynth, refer to http://photosynth.net/.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-pivot
http://photosynth.net/

ptgFIGURE 1.9 Pivot Viewer: All MSDN editions.

CHAPTER 1 Three Years of Silverlight24

FIGURE 1.10 Pivot Viewer: MSDN editions by popularity, zoomed in.

 From the Library of Wow! eBook

ptg

The Pivot Viewer is but one possibility to represent information in a rich manner with
Silverlight. In this book, we will work with data often and create rich connected business
applications with Silverlight. The power of computation that Silverlight has over classic
web solutions, as well as innovative representations such as shown in Figures 1.9 and 1.10
allow creating compelling experiences.

Drawing on the Web with Fantasia
The Fantasia drawing application demonstrates some advanced graphics features of
Silverlight 4, such as using loading and modifying pictures, adding effects to a scene,
opening pictures from Flickr directly, and saving the result as an image file locally on the
computer. We will talk about many of these features, especially in Chapter 16, “Using
Effects and Recording Media.” The Fantasia drawing application shown in Figure 1.11 is a
nice place to see all these in action, and to realize what advanced graphics features are
included in this version of Silverlight. It is available at http://nokola.com/fantasia/.

How Can You Get Involved? 25

1

FIGURE 1.11 The Fantasia Drawing Application.

How Can You Get Involved?
If you are (or want to become) an active Silverlight developer, there are ways to make
yourself heard. You can collaborate with your local Microsoft development and platform
evangelists, or participate in the forums at http://silverlight.net, the official home page of
Silverlight, where you will get all the information needed to get started.

 From the Library of Wow! eBook

http://nokola.com/fantasia/
http://silverlight.net

ptg

FIGURE 1.12 The Silverlight.net landing page.

Another great way to get involved in the Silverlight community is to participate in one of
the many Silverlight user groups that have been created around the world. You can find
more information about the Silverlight community at http://silverlight.net/community.

Finally, many Silverlight experts and members of the Microsoft Silverlight team are on
Twitter. You will find their usernames at http://www.galasoft.ch/sl4-twittermvp and
http://www.galasoft.ch/sl4-twittermsft.

Summary
This chapter explained what Silverlight has to offer for client application developers in
terms of skills reuse (for .NET programmers) and cross-browser, cross-platform compatibil-
ity. We talked about a few alternative technologies, both in the web browser and outside.
Then we saw how Silverlight evolved in the past few years to become Silverlight 4, and
talked about the future. Finally, we installed Silverlight 4 (if it was not there already) and
visited a few demos showing off some nice features available in the framework.

In the next chapter, we install the tools that we need to develop Silverlight applications,
and take a tour of their features. This will be very important because we will spend many
hours in those tools, both in this book and, should you like Silverlight, after you have
finished reading.

The Silverlight.net website (shown in Figure 1.12) is also where you will find even more
information about Silverlight, compatibility, deployment tips, samples to help you get
started, and so on.

CHAPTER 1 Three Years of Silverlight26

 From the Library of Wow! eBook

http://silverlight.net/community
http://www.galasoft.ch/sl4-twittermvp
http://www.galasoft.ch/sl4-twittermsft

ptg

IN THIS CHAPTER, WE
WILL:

. Install Visual Studio 2010 and
the Silverlight tools for this
Integrated Development
Environment (IDE).

. Create a first Silverlight 4
application and inspect its
files.

. Use the Visual Studio
designer and understand the
relationship between XAML
and design.

. Install Expression Blend and
use it to add an effect and an
animation to the Silverlight
application.

CHAPTER 2

Setting Up and
Discovering Your

Environment

Before we start programming, we need to install and
configure some tools. We will also take a short tour of the
applications in which you are going to spend quite a lot of
time while you read this book, and hopefully after you are
done reading, too!

Installing Visual Studio
Nowadays, the line between design tool and development
tool is a little more blurry than it used to be, with the addi-
tion of visual designers in Visual Studio and of code editors
in Expression Blend. Still, some people tend to prefer one
or the other for a given activity. The best is to try all the
tools for yourself and to decide what you prefer depending
on which activity you perform.

Visual Studio 2010
This is the (almost) unavoidable step for any .NET
developer, and Silverlight is no exception. Installing
Visual Studio will give you access to the full range of
.NET technologies, server side and client side.

If you are an experienced developer in .NET, you
probably already have Visual Studio installed on your PC.
Unfortunately, it is not sure that you have the right
version: You need Visual Studio 2010 to develop
Silverlight 4.

Visual Studio can be downloaded from http://www.
galasoft.ch/sl4-vs10.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-vs10
http://www.galasoft.ch/sl4-vs10

ptg

If you have an MSDN subscription, Visual Studio is available to you as part of the
subscription. Depending on your subscription, you might have a more- or less-elaborate
version of Visual Studio, with more or fewer additional tools, but you don’t need those to
build Silverlight applications.

CHAPTER 2 Setting Up and Discovering Your Environment28

WA R N I N G

Visual Studio 2010 Only

Silverlight 4 can be developed only in Visual Studio 2010, not in earlier versions. Note,
however, that Visual Studio 2010 can be installed side by side with earlier versions without
issues. Also, Visual Studio 2010 can be used to create and maintain applications in
Silverlight 3 and in Silverlight 4.

Visual Web Developer Express
As with earlier versions of Silverlight, it is also possible to develop Silverlight 4 applica-
tions using the free edition of Visual Studio for the Web: Visual Web Developer Express.
Of course, the free edition is more limited than the commercial one, but it provides a
great place to start at no cost.

Visual Web Developer Express can be downloaded from this address:
http://www.galasoft.ch/sl4-webexpress. In this book, we use Visual Studio 2010 for the
samples, but you should be able to easily adapt the steps to Visual Web Developer Express.

T I P

Choosing a Programming Language

Silverlight can be programmed in Visual C# or in VB.NET. Depending on your past experi-
ences, you may choose one or the other indistinctly. Other .NET languages are supported, too
(for example, the dynamic languages IronPython and IronRuby).

Installing the Silverlight Tools for Visual Studio
Once Visual Studio (or the Express edition) is installed, you need additional tools for
Silverlight 4 development, to be downloaded at http://www.galasoft.ch/sl4-tools
(Silverlight 4 Tools for Visual Studio 2010).

These contain the following elements:

. The Silverlight developer runtime: This is a special version of the Silverlight plug-
in that Visual Studio can attach a debugger to, to help you understand where issues
come from, and to solve them.

. New templates for Visual Studio: These are used to create new projects and new
items (pages, controls, classes, and so on) in your Silverlight application.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-webexpress
http://www.galasoft.ch/sl4-tools

ptg

. The Software Development Kit (SDK) for Silverlight: This kit contains all the
libraries you will need to create and deploy Silverlight applications, tools to create
and package Silverlight application (for example, on a build server), and pointers to
additional resources online such as the official Silverlight documentation.

After you have installed the Silverlight tools for Visual Studio, you are ready to create
your first Silverlight application.

Verifying the Installation
The best way to verify the installation is to create a new Silverlight application. We will
also use this opportunity to discover basic Silverlight-related functionality in the environ-
ment. Follow these steps:

1. Start Visual Studio 2010.

2. Select File, New, Project.

3. In the New Project dialog box, select the Silverlight category on the left, and create
a new Silverlight Application named HelloSilverlight, as shown in Figure 2.1.

Installing Visual Studio 29

2

FIGURE 2.1 New Project dialog box.

4. In the next dialog box, shown in Figure 2.2, choose whether you want to create a
new Web Application Project, a new ASP.NET Website, or a new ASP.NET MVC appli-
cation to host the Silverlight application.

 From the Library of Wow! eBook

ptg

FIGURE 2.2 New Silverlight Application dialog box.

Choosing between web application project, website, or MVC application depends on what
you want to achieve, personal preferences, what existing website you want to integrate
your Silverlight application into, and so forth. The Silverlight application will be strictly
the same, only the hosting web application will differ. The experience shows that web
application projects are more flexible than ASP.NET websites, so this is what we will use in
this book. ASP.NET MVC applications are also very interesting and offer a nice alternative
to ASP.NET web applications. For more information about ASP.NET, check out the website
at http://www.asp.net.

CHAPTER 2 Setting Up and Discovering Your Environment30

T I P

Creating a Web Project or Not

It is not compulsory to create a web project to host the Silverlight application. You can either
create one later or attach your Silverlight application to an existing ASP.NET web project. You
can also create the Silverlight application without any host, and run it from a simple HTML
page. If you do not create a web project, Visual Studio and Blend will generate a test HTML
page for you and open it in the web browser when you run the application.

To understand better what is happening, let’s create a new web application project for this
new application:

1. In the New Silverlight Application dialog box shown in Figure 2.2, check the first
check box and make sure that ASP.NET Web Application Project is selected in the
combo box. You can also enter a name for your web application and then click OK.

2. Make sure that Silverlight 4 is selected in the Silverlight Version combo box. Visual
Studio 2010 allows creating Silverlight 3 applications without installing additional
tools, and Silverlight 4 applications after you install the Silverlight tools for Visual
Studio like we did earlier in this chapter.

 From the Library of Wow! eBook

http://www.asp.net

ptg

3. Do not check the Enable .NET RIA Services check box for now. We cover this option
in Chapter 13, “Creating Line-of-Business Applications.”

4. Click OK.

5. To make sure that we have all the files ready, build the application by selecting
Build, Build Solution from the menu.

Inspecting the Application
Based on the indications we gave, Visual Studio created two projects, as shown in
Figure 2.3. It is indeed possible to mix Silverlight application and “full .NET” applications
in a single solution.

Let’s review the projects and the files:

. HelloSilverlight is the Silverlight appli-
cation itself. It contains four important
files:

App.xaml and the attached App.xaml.cs
contain the global application object,
global event handlers, global resources,
and so on. This is also the main entry
point for the application.

MainPage.xaml and the attached
MainPage.xaml.cs are like the name
indicates the main page for the applica-
tion. You can have multiple pages in
the application; the main page is the
one that is created when the application
starts.

. HelloSilverlight.Web is the web application, running on ASP.NET. It contains the
files that will be downloaded to the web browser.

. ClientBin\HelloSilverlight.xap is a zip file with all the binary files needed to run the
application in the plug-in (in our case, this is just HelloSilverlight.dll), and a file
named AppManifest.xaml, called the application manifest. It contains information
that the plug-in needs to start the application, as well as optional indication about
the possibility to run the application out of the browser, and so forth.

. HelloSilverlightTestPage.aspx and HelloSilverlightTestPage.html are two generated
test pages hosting the Silverlight application. If you open either file, you will see
generated HTML and JavaScript code, including the object tag within which the
Silverlight plug-in will run.

. Silverlight.js is a utility file with JavaScript functions that can be interesting to use
within the HTML page. For example, there is a function helping you to check which
version is installed on the client PC, and to react accordingly by alerting the user.

Installing Visual Studio 31

2

FIGURE 2.3 The created projects in the
Solution Explorer.

 From the Library of Wow! eBook

ptg

Unpacking an XAP File
If you want to look by yourself at the content of a XAP file, follow these steps:

1. Right-click the ClientBin folder in the Solution Explorer, and select Open folder in
Windows Explorer from the context menu.

2. Make a copy of HelloSilverlight.xap and rename it to HelloSilverlight.zip.

3. If the operating system supports it (for example, in Windows 7), you can open the
zip file just like any other folder and see the content.

4. On operating systems that do not support this function, you can use a zip tool to
unpack the XAP file.

Note that if you want, you can recompress the XAP file with a higher level of compres-
sion and get smaller files to send to the web browser. The file will be transmitted faster,
but it will take more time to unpack it to start the application.

Using the Visual Studio Designer
Open the file MainPage.xaml. If you didn’t change the Visual Studio settings, you should
now see some XAML code. XAML is an XML-based language used in Silverlight and
Windows Presentation Foundation (WPF) to describe the user interface. There are other
possible usages for XAML, and in fact it is really just a serialization language for .NET. If
you want more information about XAML, you can refer to Silverlight 2 Unleashed,
Chapters 2 and 3.

CHAPTER 2 Setting Up and Discovering Your Environment32

T I P

Opening in the Designer or in the Source Editor

By default, XAML files open in the Visual Studio designer. However, the designer takes some
time to start. Many developers prefer to change the default by following these steps:

1. Right-click any XAML file.

2. Select Open With from the context menu.

3. In the Open With dialog box, choose Source Code (Text) Editor. If you want, you can set
this as the default using the corresponding button.

4. Click OK.

Opening XAML files will be faster now, but you lose the designer functionality. To open a
XAML file in the designer anyway, follow these steps:

1. Right-click the XAML file.

2. Select View Designer from the context menu.

With MainPage.xaml open in the designer, you should see tabs at the bottom, as shown
in Figure 2.4.

 From the Library of Wow! eBook

ptg

On the other side of the bar, you will see
three small buttons and a grip, as shown
in Figure 2.5.

The buttons and the grip in Figure 2.5
and the tabs in Figure 2.4 are used to
switch between XAML view and design
view, or to split the editor window and
have the XAML and the design on the
same screen:

. Use the XAML tab to see the XAML code, and the Design tab to see the scene in the
designer.

. Use the grip in Figure 2.5 to slide the separator up, and visualize the XAML code on
top, and the design surface on the bottom.

. Using the buttons in Figure 2.5, you can split the editor vertically or horizontally
and see the XAML and the design surface. The last button (with a double arrow)
collapses or expands the design surface.

If you don’t like to have the XAML on top, you can switch the XAML and the design
surface by pressing the small button with two arrows located between the XAML tab and
the Design tab, as shown in Figure 2.6. Note that this button is visible only when the
window is split.

Another important element of the visual
designer is the property editor. When
one element is selected in the designer,
the property editor shows all the
element’s properties that you can
modify. You will learn how to use the property editor in the next section.

Implementing Hello Silverlight
To get to know Visual Studio a bit better, let’s implement a simple application with the
following steps:

1. Set a LinearGradientBrush in the main Grid by adding the XAML code from Listing
2.1 within the Grid tag. You must copy these lines between the opening tag <Grid
x:Name=”LayoutRoot”> and the closing tag </Grid>. You must also remove the
Background property that was set in the Grid tag initially.

LISTING 2.1 Setting a LinearGradientBrush

<Grid.Background>

<LinearGradientBrush StartPoint=”0,0”

EndPoint=”1,1”>

<GradientStop Offset=”0”

Implementing Hello Silverlight 33

2

FIGURE 2.4 Bottom of the XAML editor.

FIGURE 2.5 Grip and split buttons.

FIGURE 2.6 Switching XAML and Design
view.

 From the Library of Wow! eBook

ptg

Color=”Red” />

<GradientStop Offset=”0.5”

Color=”Red” />

<GradientStop Offset=”1”

Color=”Orange” />

</LinearGradientBrush>

</Grid.Background>

Checking the Properties Editor
If you are not quite sure what you are looking at and what a brush is in Silverlight, you
can refer to Silverlight 2 Unleashed, Chapter 4.

With the visual designer open (in full-window or in split mode), you should now see the
scene shown in Figure 2.7. In this figure, notice the bread crumb bar in the bottom, with
the full path leading to the element that is selected in the XAML editor (in this case, the
LinearGradientBrush). Passing your mouse on one of the elements in the path will display
a small thumbnail of the element in question, which is very useful when you try to
isolate a given element in a complex user interface.

CHAPTER 2 Setting Up and Discovering Your Environment34

FIGURE 2.7 Grid background in the visual designer.

2. With the LinearBackgroundBrush selected in the XAML editor, press F4 (or select
View, Properties Window from the Visual Studio menu).

3. You should now see all the properties of the brush in the Properties window, as in
Figure 2.8; for example, notice the GradientStops collection, which define each
“stop” where a color is applied. Silverlight then calculates the gradient between the
different stops.

 From the Library of Wow! eBook

ptg

4. Click the small button shown in
Figure 2.8 to open the
GradientStops Collection Editor.

5. On the left of the Collection
Editor, shown in Figure 2.9,
select the GradientStop in the
middle.

6. On the right, with the medium
GradientStop selected, expand
the Color property editor.

Implementing Hello Silverlight 35

2

FIGURE 2.8 LinearGradientBrush properties.

FIGURE 2.9 Collection Editor for the GradientStops collection.

7. Pick a new color for this gradient.

8. Using the Offset property, you can also move the gradient from the middle (it is
now set at 0.5) to a different position.

9. Finally, using the Add button, you can set additional gradient stops with different
colors, to create the brush that you desire.

There are many different ways to modify a property using the Properties editor, depend-
ing on the property’s type. Everything you do in this editor is directly reflected in the
XAML code. There is nothing hidden. Some developers prefer to edit the XAML markup,
whereas others are more visual and prefer the property editor, or even Expression Blend
that we will use later in this chapter. Most probably you will find yourself somewhere in
the middle, and use both the XAML editor and the visual designer.

 From the Library of Wow! eBook

ptg

Finding a Property
When you have many properties in an element, it can be tough finding the correct one.
Thankfully, the property editor helps you with the following functions:

. To sort the properties alphabetically and group them by category or by property
source, use the small buttons on the left of the Search box in Figure 2.8.

. To look a property up, use the Search function. It is very useful because the search
fragment may appear within the property name. For example, searching for the
word align will show both the HorizontalAlignment and VerticalAlignment
properties.

Creating Event Handlers
The Properties editor can also be used to create event handlers. To display all the events
for a selected element, click the Events tab shown in Figure 2.8. In this case, we see all the
events for the grid panel. Double-clicking in the field next to the event’s name will add
the event handler to the XAML code and implement the empty event handler in the code
behind.

Alternatively, it is also possible to type the event name in XAML and use IntelliSense to
create the event handler in the code behind automatically.

Adding Some Text
We will now add a text block to our scene by following the steps:

1. Make sure that the Toolbox is visible in Visual Studio. It should be visible on the far
left of the Visual Studio window, just below the toolbars. If you do not see the
Toolbox, select View, Toolbox from the menu.

2. If the Toolbox is collapsed, expand it by passing the mouse on the vertical Toolbox
button, as shown on Figure 2.10.

CHAPTER 2 Setting Up and Discovering Your Environment36

WA R N I N G

Populating the Toolbox

It can take some time for the Toolbox to be populated with controls the first time that you
expand it. If your Toolbox is empty when you expand it, give a little time to Visual Studio to
scan the assemblies and add all the controls to it.

 From the Library of Wow! eBook

ptg

3. From the Common Silverlight
Controls section in the Toolbox,
drag a TextBlock and drop it on
the grid in the visual designer.

4. With the new TextBlock selected,
in the property editor, click the
name textBlock1 just above the
Properties and Events tabs. This
allows you to edit the name. For
now, we don’t need a name for
this text block, so you can just
delete it.

Implementing Hello Silverlight 37

2

FIGURE 2.10 Toolbox.

T I P

Name, x:Name, or No Name

The Name property is available only on certain XAML elements. On the other hand, you can
add x:Name to any element. (This is part of the eXtensibility in XAML.) Where available, the
Name property is equivalent to the x:Name property.

Names are often not needed, except if the element is used in the code behind (for example,
to set some properties programmatically). You also need a name if the element is the source
of a binding, the target of an animation, and so forth. Names can be useful when you try to
structure a very complex user interface with many nested elements. Adding a name will,
however, have a small impact on performance, so it is recommended to avoid naming
elements if possible.

If you do name an element, it is recommended to choose x:Name rather than just Name.
Because x:Name is available everywhere, it brings more consistency to your XAML code.

5. Using the Properties editor or directly in XAML, find the Text property and set it to
Hello Silverlight. Then change the following properties:

. Set the HorizontalAlignment and VerticalAlignment properties to Center.

. Set the Margin property to 0.

. Set the Width and Height properties to Auto.

. Set the FontFamily property to Verdana.

. Set the FontSize to 72 and the FontWeight to Bold.

. Finally, type White in the Foreground property.

After you complete these steps, you should see the image shown in Figure 2.11 in the
visual designer.

 From the Library of Wow! eBook

ptgFIGURE 2.11 Text block with formatting.

Short Reminder About Colors in Silverlight
We talked a lot about colors in Silverlight 2 Unleashed (Chapter 5, “Using Media”). If you
need to refresh your memory, you can check that chapter. Here is a quick reminder,
though:

. Colors are coded in XAML using three or four hexadecimal numbers, each from 0
(#00) to 255 (#FF).

. The first two hexadecimal digits define the Alpha transparency of the color. #00
means that the color is completely transparent, and #FF completely opaque. These
digits are optional. If they are omitted, the color is opaque.

. The second, third, and fourth posi-
tions define the Red, Green, and
Blue channels. So, for example, the
color blue is coded #FF0000FF (or
#0000FF if you omit the Alpha
channel).

. There is a large set of named colors
available in Silverlight, using the
same name as the named colors in
HTML. There is a combo box
below the color swatch that you
can expand to show named colors,
such as in Figure 2.12.

CHAPTER 2 Setting Up and Discovering Your Environment38

T I P

Styles or Direct Values

In a real-world application, such formatting will be applied to an element using styles. You’ll
learn more about styles in Chapter 10, “Creating Resources, Styles, and Templates.”

FIGURE 2.12 Named colors.

 From the Library of Wow! eBook

ptg

Using Design Time Width and Height
As you can see in Figure 2.11, the text block is too wide for the grid. In fact, neither the
grid nor the UserControl containing it have any width and height. If you check these
properties in the Properties editor, you will see that they are set to Auto, which is the
default value. It means that the element will resize itself to fill the available space,
depending on the size of its parent, on its content, on the alignment properties, and so
forth.

In the application we are implementing now, because the user control does not have a
size, it will take the size of the containing object tag in the HTML page. On the design
surface in Visual Studio (and Expression Blend), however, there is no container, so the
element would take the minimal size possible. In some cases, the automatic width and
height can even be zero, which makes it impossible to design a background, for example.

To solve this problem, you can set the DesignWidth and DesignHeight properties in XAML.
These two properties are defined (along with a few others) in the namespace assigned to
the d: prefix in the current document.

The interesting thing with d: is that all these properties will be ignored when the applica-
tion is running. They will be applied only on a design surface (for example, Visual Studio
designer, or Expression Blend). This is a very convenient help for designers, who can visu-
alize what they create without having to run the application. You’ll see more examples of
this in Chapter 11, “Mastering Expression Blend.”

Implementing Hello Silverlight 39

2

T I P

Scrubbing Your XAML

The mechanism to ignore the attributes prefixed with d: involves two additional declarations:
xmlns:mc and mc:Ignorable. If you decide not to use d:DesignHeight or d:DesignWidth (or
any of the other d: attributes that we will talk about in this book), you can safely remove
xmlns:d, xmlns:mc, and mc:Ignorable from your XAML code, as well as any attribute starting
with the d: prefix.

To modify the design time width and height, you can either set these properties in the
XAML code itself, or follow these steps:

1. Set the cursor in the UserControl tag in the XAML editor, or select the UserControl
in the crumb bar.

2. There is a small icon indicating that the element is sized in design mode (Auto Size)
or has a fixed width and height (Fixed Size), as shown in Figure 2.13.

3. Resize the UserControl in the
designer. Switch from Auto Size to
Fixed Size and back using the
small icon, and observe the
changes in the XAML code.

FIGURE 2.13 Auto Size and Fixed Size
icons.

 From the Library of Wow! eBook

ptg

Saving the Application
In the next section, we use Expression Blend to refine the application and add movement
to it. Because Expression Blend and Visual Studio work on the exact same files, it is
important to remember to save all the files before you move from one environment to
another.

The easiest way in Visual Studio to save all the files (including the project files) is by using
File, Save All. Make sure that you remember where you saved the application, because we
will extend it soon.

Installing Expression Blend
Blend is the tool used to visually design a Silverlight or WPF application. It is a very inno-
vative tool, and might seem a little unusual to traditional software developers.

To develop Silverlight 4 (or WPF 4 for that matter), you will need the newest version of
Blend, named Microsoft Expression Blend 4. You can download this version from the
Blend website, http://www.microsoft.com/expression.

Note that there is currently no Express version of Expression Blend, only a commercial
version is available. The price is $599 for a full version, part of a package called Expression
Studio 4 Ultimate with a number of applications (including Expression Blend, Design,
Web, and Encoder). If you have an MSDN Premium subscription, Expression Studio is
included. If you work in a software development firm, you should check whether you
have it already available!

CHAPTER 2 Setting Up and Discovering Your Environment40

WA R N I N G

Blend 4 Only

Silverlight 4 can be developed only into Microsoft Expression Blend 4, and not in earlier
versions. Note, however, that the latest can be installed side by side with earlier versions.

We take a quick tour of Expression Blend in this chapter, before diving deeper in
Chapter 11.

Creating a New Silverlight Application
When you first start Expression Blend, you see the Welcome screen, as shown in Figure
2.14. This screen allows you to open an existing project or create a new one, to find some
help before starting, or to open preinstalled samples. If you close the Welcome screen,
you can always bring it back with Help, Welcome Screen.

The installed samples for Silverlight 4 are quite interesting because they help explain
some of the capacities of Blend and of Silverlight. Don’t hesitate to explore them. You can
open any sample and run it by pressing F5 (or selecting Project, Run Project from the
menu).

 From the Library of Wow! eBook

http://www.microsoft.com/expression

ptg

If you choose to create a new Silverlight
4 application, you must choose between
a Silverlight 4 application (with or
without website) and a Silverlight 4
control library, used to host controls
that can be included in multiple applica-
tions. Just like in Visual Studio, selecting
Silverlight 4 Application + Website will
create an ASP.NET web application
project with a link to the actual
Silverlight application. Note, however,
the following:

. In Expression Blend, you do not
have the choice between ASP.NET
Web Application, Website, or
ASP.NET MVC.

. If you create a Silverlight applica-
tion without a hosting website,
you cannot add this application to
another website in Blend. You also
cannot create a new website in
Blend without an attached
Silverlight application.

If you need more extended options when creating your application, you need to create it
in Visual Studio. Because Expression Blend and Visual Studio use exactly the same solu-
tion files, project files, and code file, you can create an application in the environment of
your choice and then modify it somewhere else. You can even open the projects in both
environments at the same time, as you will see in Chapter 11 which is especially useful
when you do design work on your application’s screens.

Opening Hello Silverlight
We will refine our Hello Silverlight application and add some movement and effects. This
is the perfect task for Expression Blend: Even though most of what you can do in Blend
can also be done in Visual Studio (and vice versa), Blend is more suitable for design tasks,
and Visual Studio for development tasks. It is really up to you to choose the tool that
suits you the best.

To refine the application we created earlier in this chapter, follow these steps:

1. Select Open Project from the Welcome screen shown in Figure 2.14, or with choose
File, Open Project/Solution from the menu.

2. Navigate to the folder in which you last saved the Hello Silverlight application.

3. Select the solution file HelloSilverlight.sln and open it in Blend.

Installing Expression Blend 41

2

FIGURE 2.14 Expression Blend Welcome
screen.

 From the Library of Wow! eBook

ptg

Using Shortcuts to Open a Solution in Blend from Visual Studio
This way of opening an application is a bit slow, and there are ways to speed things up,
by selecting one of the alternatives:

. In Visual Studio, right-click a XAML file, and select Open in Expression Blend from
the context menu. This will start Blend and open the solution.

CHAPTER 2 Setting Up and Discovering Your Environment42

WA R N I N G

Choosing the Right Version

If you have Blend 3 and 4 installed side by side, chances are that the Open in Expression
Blend context menu will pick the wrong version. In some cases, the menu might even be
missing altogether. To correct this, refer to Tim Heuer’s blog:
http://www.galasoft.ch/sl4-integration.

. Right-click the solution in the Solution Explorer, and select Open Folder in
Windows Explorer. Then in Windows Explorer, right-click the solution
HelloSilverlight.sln and select Open With, Microsoft Expression Blend 4 from the
Windows Explorer context menu.

Using Shortcuts to Open a Solution in Visual Studio from Blend
The same shortcut exists from Expression Blend, too: In Expression Blend, right-click the
solution file, any project file, or any code file in the Projects panel, and select Edit in
Visual Studio from the context menu.

After opening the solution and MainPage.xaml in Blend, you should be now seeing the
exact same scene as in Visual Studio’s designer. Only a few adorners are different. The
design time width (d:DesignWidth) and height (d:DesignHeight) are also honored in
Expression Blend!

Adding an Effect
We will now add a shadow effect to the Hello Silverlight text block. To do this, follow
these steps:

1. Locate the TextBlock in the
Objects and Timeline panel. This
panel displays the tree of all the
elements on the page, as shown in
Figure 2.15: The UserControl (the
page) contains a Grid, which
contains a TextBlock.

2. Select the TextBlock and then copy
and paste it. You can use the
context menu for that, or Ctrl+C, Ctrl+V.

FIGURE 2.15 The elements tree.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-integration

ptg

3. Click twice slowly on the first TextBlock in the tree to make its name editable, and
change the name to Shadow.

Installing Expression Blend 43

2

T I P

Working in Blend, Working in XAML

Just as with the Visual Studio designer, everything we do in Blend is immediately reflected in
the XAML code: Open the page in split mode, using the Split button located on the top right
of the main panel, as show in Figure 2.16. Then press Ctrl+Z to cancel the last operation,
and then Ctrl+Y to repeat it. Observe how the XAML code is modified by Blend.

You should now see two text blocks in
the Objects and Timeline panel: One is
named Shadow, and the second doesn’t
have a name. However, both have
exactly the same features, and therefore
the front one is hiding the back one in
the designer. Let’s change this with the
next steps:

FIGURE 2.16 Using the Split button.

T I P

Understanding the Z-Order

Because the order in the tree reflects the order in which objects appear in the document, the
Shadow (higher in the tree) appears behind the nameless TextBlock.

1. Select the Shadow element in the
Objects and Timeline panel.

2. Make sure that the Properties panel is
selected on the right side of the
window, and using the brush editor,
change the Shadow’s foreground to
black, as shown on Figure 2.17.

3. On the left of Blend’s window, you
should see the tabs Projects, Assets,
States, and Parts. You’ll learn more
about all the panels in Chapter 11.
For now, select the Assets tab. This is
where you will find all the controls
and effects that we can use in
Silverlight.

4. Select the Effects category. You will see the two built-in effects in Silverlight 4: Blur
and DropShadow.

FIGURE 2.17 Solid color brush editor.

 From the Library of Wow! eBook

ptg

5. Select the Blur effect and drag/drop it with the mouse on the Shadow TextBlock in
the Objects and Timeline panel, as in Figure 2.18.

6. With the BlurEffect selected in
the Objects and Timeline panel,
check the Properties panel on the
right of the window, and set the
Radius property to 40. You should
now see a shadow right behind the
Hello Silverlight TextBlock.

Creating a Pulse Animation
We will now add some movement to the
scene, by animating the Shadow when
the TextBlock is clicked. Follow these steps:

1. In the Objects and Timeline panel shown in Figure 2.18, click the small plus sign (+)
located on the top right of the panel to create a new storyboard.

2. In the Create Storyboard Resource dialog, name the storyboard ShadowStoryboard.

3. Notice how Blend turns in animation recording mode, with a red border signifying
that the actions you perform now on the scene will be part of the storyboard.

CHAPTER 2 Setting Up and Discovering Your Environment44

T I P

Loading Additional Effects, Performance

Effects in Silverlight 4 are rendered by small components called pixel shaders. Although the
default installation of Silverlight contains only two effects, you can find more online and add
them to your application, as you will see in Chapter 16 “Using Effects and Recording Media.”

For this effect, we will use a Blur effect applied to the TextBlock in the background. Note
that we could also use the DropShadow effect available in Blend. However the DropShadow
effect is slower than the Blur effect; if you can, it is recommended to use a Blur effect
instead, as we do here.

FIGURE 2.18 Dragging and dropping the blur
effect.

T I P

More About Storyboards and Animations

For more information about storyboards and animations, you can jump into Chapter 3 of
Silverlight 2 Unleashed.

4. Move the yellow vertical line (called the timeline) to 500 milliseconds, as shown in
Figure 2.19.

5. Select the Shadow TextBlock.

 From the Library of Wow! eBook

ptg

6. Click the Record Keyframe button.
This button is circled in orange in
Figure 2.19.

This operation is adding a keyframe to
the Silverlight scene at 500 milliseconds
after the start of the storyboard. Now we
need to modify the scene with the next
steps to tell Silverlight what the user
should see during these 500 millisec-
onds. We will also set a few properties on the storyboard itself. Silverlight will calculate
the smooth transition to apply:

1. With the Shadow TextBlock selected, set the Opacity property to 0% in the
Properties editor.

2. Click the name ShadowStoryboard in the Objects and Timeline panel. You should
now see the storyboard’s properties in the Properties panel.

3. Check the AutoReverse check box. This means that the storyboard will reverse auto-
matically after 500 milliseconds and restore the scene to the original state.

4. Finally, set the RepeatBehavior to 3x. This means that the storyboard will run three
times when triggered. Possible values are 1x, 2x, 3x, 4x, and so on. You can also
enter Forever, meaning that the storyboard will never stop.

5. Close the storyboard by clicking on the small X button on the right of the name
ShadowStoryboard.

Triggering the Storyboard
Now it’s time to trigger the storyboard and to test it in the web browser. To do this, we
will handle an event in C# code with the following steps:

1. Select the TextBlock in front of the scene (the one with no name).

2. To notify the user that something will happen if he clicks the TextBlock, set the
Cursor property to Hand.

3. In the Properties editor, click the
Events button, shown in Figure
2.20 (circled in orange). This
displays the list of all the events
for the TextBlock control.

Installing Expression Blend 45

2

FIGURE 2.19 Recording a timeline.

FIGURE 2.20 The Events button in the
Properties editor.

 From the Library of Wow! eBook

ptg

4. Double-click in the field next to the name MouseLeftButtonDown. This event will
be triggered when the user presses the mouse’s left button on the TextBlock control.
Depending on your settings, this opens a C# code file in Expression Blend’s code
editor, or in Visual Studio. You’ll learn more about Blend options in Chapter 11.
This code file is named the code behind file, and this is the location where event
handlers and other methods for the Silverlight page are implemented.

The double-click action you performed in step 4 added a new event handler to the code
file, named TextBlock_MouseLeftButtonDown. Modify this event handler as shown in
Listing 2.2.

Listing 2.2 Implementing the Event Handler

1 private void TextBlock_MouseLeftButtonDown(

2 object sender,

3 MouseButtonEventArgs e)

4 {

5 var storyboard

6 = this.Resources[“ShadowStoryboard”] as Storyboard;

7 if (storyboard != null)

8 {

9 storyboard.Begin();

10 }

11 }

. On lines 5 and 6, we get the storyboard we just created in Expression Blend from
the resources. You’ll learn more about resources in Chapter 10. If you check the file
MainPage.xaml, you will see that Blend did create the storyboard within the
UserControl.Resources section.

. Because the objects in the resources are stored with a type of object, we need to cast
the object back to a Storyboard class, telling the compiler that we expect this object
to be of this type, and that we will use the Storyboard methods and properties. This
is what line 6 does.

. Finally, we check if the Storyboard has been found and cast properly on line 7, and
then we start it on line 9 by calling the Begin method.

Testing the Application
Now it’s time to run and test the application. You can do this in Expression Blend by
pressing the F5 key (or selecting Project, Run Project from the menu); you can also do this
in Visual Studio by pressing Ctrl+F5 (or selecting Debug, Start Without Debugging). If
everything goes well, your default web browser should start, and you will see Hello
Silverlight.

CHAPTER 2 Setting Up and Discovering Your Environment46

 From the Library of Wow! eBook

ptg

Pass your mouse over this text block (it should turn into a Hand cursor) and press the left
mouse button. Observe how the shadow below the text block animates smoothly three
times.

Summary
In this chapter, you saw how to install Visual Studio and Expression Blend, and how to
start developing a simple Silverlight application. You will spend a lot of time in Visual
Studio, so it is important to set it up correctly and to understand its features. For those
interested in pushing the design of your application further than what the Visual Studio
designer allows, Expression Blend is the perfect tool.

This chapter also got you started with a Silverlight application, and showed that creating
a rich application using gradients, effects, and animations is quite simple with the right
tools.

The next chapters cover Silverlight controls, especially the new controls (and related
features) added in Silverlight 3 and 4. These are the building blocks for your application,
and a good understanding of these elements is vital.

Summary 47

2

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Extend XAML documents with
namespaces from the applica-
tion.

. Understand what a user
control is, and how they are
created and used in Visual
Studio and in Blend.

. Understand what a custom
control is, what the parts and
states are, and how templates
are “wired” to the control.

CHAPTER 3

Extending Your
Application with

Controls

Controls are the fundamental building blocks of your
Silverlight 4 application. It is hard to imagine any user
interface framework without a rich control set nowadays.
In fact, we sometimes talk about “control ecosystem,”
because, as you will see in this chapter, in addition to the
controls that are built in to the framework, multiple
providers are offering controls for the Silverlight frame-
work.

Extending XAML
One great feature of XML that also applies to XAML is its
extensibility. This is in fact what the X in XML and XAML
stand for (XAML means eXtensible Application Markup
Language). Thus it is possible to import external elements
into a document without breaking rules.

Mapping a Prefix to a CLR Namespace
Extensibility works in XML by defining a set of XML name-
spaces (xmlns). You can map a unique identifier to a prefix,
thus notifying the XML parser that additional rules must
be used when loading this document. Let’s take a look at a
simple example to illustrate this.

 From the Library of Wow! eBook

ptg

Let’s imagine that you want to place a Double value in the document’s resources. Because
XAML is by default configured for user interface elements, the default XML namespaces
do not map to the Double type. We need to import this type in the document by creating
a new xmlns statement, with the following steps:

1. Create a new Silverlight application in Visual Studio and name it
DoubleInResources.

2. Open MainPage.xaml.

3. In the UserControl tag (the root tag), add an xmlns statement mapping the prefix
sys to the CLR namespace System in the assembly mscorlib. This assembly and this
namespace are where the Double type is defined in .NET. The syntax to import this
namespace and assembly is shown in Listing 3.1. The prefix you choose is free, but
it must be unique within the XAML document, and must comply with the XML
naming rules. (For example, there may not be a space or a period within such a
prefix.)

4. Notice how Visual Studio helps you with IntelliSense: When you type the equals
sign (=), quotes are added for you and a list of all the .NET namespaces defined in
the application and in the referenced assemblies is proposed, as shown in Figure 3.1.
This is very helpful because the syntax used to reference .NET namespaces in exter-
nal assemblies is a bit difficult to remember.

CHAPTER 3 Extending Your Application with Controls50

T I P

CLR Namespace and xmlns

When working in XAML, you are confronted with two different concepts: Common Language
Runtime (CLR) namespaces and XML namespaces.

. CLR namespaces are used in .NET code (for example, C# or VB.NET) to group
classes that logically belong together.

. XML namespaces (xmlns) are used to extend an XML document (in this case,
XAML) with additional declarations.

In this book, we consistently talk about XML namespaces and CLR namespaces to try and
reduce the confusion.

FIGURE 3.1 Adding a new xmlns statement with IntelliSense.

 From the Library of Wow! eBook

ptg

5. Add a Double value to the UserControl’s resources as shown in Listing 3.1, so that we
can use that value from the XAML document. The resources are like a store for
objects that can be reused later. You’ll learn more about resources in Chapter 10
“Creating Resources, Styles, and Templates.” They must be added within the
UserControl tag, just before the Grid tag.

6. Finally, add a Button within the main Grid that uses the Double value from the
resources.

LISTING 3.1 Adding a Double value to Resources and Using It

<UserControl

x:Class=”DoubleInResources.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

xmlns:sys=”clr-namespace:System;assembly=mscorlib”

mc:Ignorable=”d”

d:DesignHeight=”300”

d:DesignWidth=”400”>

<UserControl.Resources>

<sys:Double x:Key=”ButtonsWidth”>200</sys:Double>

</UserControl.Resources>

<Grid x:Name=”LayoutRoot”

Background=”White”>

<Button Width=”{StaticResource ButtonsWidth}”

Content=”Click me” />

</Grid>

</UserControl>

Extending XAML 51

3

T I P

How to Find a .NET Type?

If you are not sure in which assembly and namespace a .NET type is defined, you will find
this information on MSDN. For the Double type, point your web browser to
http://www.galasoft.ch/sl4-typedoc. On top of this page, notice the lines pointing to the
namespace (System) and the assembly (mscorlib).

Double is actually a structure and not a class, but both can be imported in XAML.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-typedoc

ptg

Why Is a Prefix Not Always Needed?
Silverlight elements are defined into two namespaces. The first one is a Unique Resource
Identifier (URI) mapped to the default xmlns
(http://schemas.microsoft.com/winfx/2006/xaml/presentation).

In fact, multiple CLR namespaces (such as System.Windows.Controls,
System.Windows.Shapes, and so on) are mapped to this URI. This allows us to use all the
types within these namespaces without having to use a prefix. For example, we write
<Button Click=”Button_Click” /> and not <anyPrefix:Button Click=”Button_Click” />.
Note that this URI is not a website’s address, and entering it into a web browser will not
lead you anywhere. It is just a Unique Resource Identifier, a unique name.

The other namespace used by Silverlight by default is
http://schemas.microsoft.com/winfx/2006/xaml, another URI, which is mapped to the x
prefix. Inside this namespace are defined additional properties that can be applied to any
element. We already used the x:Name property in Chapter 2, “Setting Up and Discovering
Your Environment.”

Adding a Namespace to Any Element
In the example in Listing 3.1, we added the xmlns:sys mapping to the UserControl tag. In
fact, you can add such a mapping to any element in your XAML code. For example,
Listing 3.2 shows an xmlns mapping added to a Button tag.

LISTING 3.2 Adding an xmlns Mapping to a Local Element

<UserControl x:Class=”MyApplication.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<StackPanel x:Name=”LayoutRoot”>

<Button xmlns:controls=”clr-namespace:MyApplication.Controls”>

<controls:MyControl />

</Button>

</StackPanel>

</UserControl>

Defining Your Own URI and Mapping CLR Namespaces
You can, if you want, map your own URI to a group of namespaces. This is useful because
you can consolidate multiple CLR namespaces into one single URI, and also because it
hides the CLR namespaces that your code is using. If you decide to refactor your applica-
tion and move some classes to different CLR namespaces, you don’t need to change the
XAML code. Also, for companies, it brings your brand into the XAML code. To do this,
follow these steps:

CHAPTER 3 Extending Your Application with Controls52

 From the Library of Wow! eBook

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

ptg

1. Open the file AssemblyInfo.cs. This file stores global information about the project,
such as the title, copyright, version number, and so forth.

2. At the bottom of the file, add an XmlnsDefinition attribute mapping your URI to
one CLR namespace, as shown in Listing 3.3. If you want, you can add multiple
XmlnsDefinition attributes to map multiple namespaces to one or more URIs.

3. Build your application.

4. Then, in the XAML code, when you enter a new xmlns:prefix statement, you
should now see the URI in the list of possible choices, as shown on Figure 3.2.

LISTING 3.3 Mapping CLR Namespaces to a URI

[assembly: XmlnsDefinition(

“http://www.mycompany.com”,

“DoubleInResources”)]

[assembly: XmlnsDefinition(

“http://www.mycompany.com”,

“DoubleInResources.Controls”)]

[assembly: XmlnsDefinition(

“http://www.mycompany.com”,

“DoubleInResources.DataAccess”)]

Importing CLR namespaces into your
XAML document is very useful, and
we will do this often. In this chapter,
we use this feature to import new
controls in our user interface. Later,
we use it to create data objects and
make data binding easier.

What’s a Control?
A control is an element of software encapsulating some functionality related to user inter-
face. In Silverlight, there are two kinds of controls: user controls and custom controls.

User Controls
A user control is a logical group of other controls. It is typically used to separate a user
interface in smaller parts that are easier to code and design. In fact, in Silverlight, all the
pages of an application are user controls, as the following steps prove:

1. Create a new Silverlight 4 application in Visual Studio. For these simple examples,
you do not need to create a web project to host the application.

2. Open the file MainPage.xaml. The page starts with the XAML code shown in Listing
3.4. Notice that the tag used for this page is UserControl.

What’s a Control? 53

3

FIGURE 3.2 The new URI in IntelliSense.

 From the Library of Wow! eBook

ptg

3. Open the file MainPage.xaml.cs (the main page’s code behind). Notice that the class
MainPage derives from UserControl, as shown in Listing 3.5.

LISTING 3.4 UserControl Tag in MainPage.xaml

<UserControl x:Class=”SilverlightApplication1.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

mc:Ignorable=”d”

d:DesignHeight=”300” d:DesignWidth=”400”>

LISTING 3.5 MainPage Declaration in MainPage.xaml.cs

public partial class MainPage : UserControl

{

public MainPage()

{

InitializeComponent();

}

}

As mentioned earlier, the App class (defined in App.xaml and App.xaml.cs) is the main
point of entry for the Silverlight application. This is also where the MainPage control is
created and assigned, as you can see with the following steps:

4. In the Silverlight application we created in Step 1, open the file App.xaml.cs.

5. Check the event handler named Application_Startup. This method is executed
when the application is loaded and ready to start. The implementation (provided in
Listing 3.6) is very simple by default, and consists only of the creation of the
MainPage user control and its assignment to the application’s RootVisual property.

LISTING 3.6 Application_Startup Event Handler in App.xaml.cs

private void Application_Startup(object sender, StartupEventArgs e)

{

this.RootVisual = new MainPage();

}

CHAPTER 3 Extending Your Application with Controls54

 From the Library of Wow! eBook

ptg

Creating a New UserControl in Expression Blend
Apart from splitting a complex user interface into multiple parts, creating a logical separa-
tion and making maintenance easier, user controls can also be reused at multiple loca-
tions in your application. This is an encapsulation of functionality. Properties and methods
can be added to create additional functionality or to define variations between two
instances of the same user control.

If you have Expression Blend, creating a new user control is very easy with the following
steps:

1. Create a new Silverlight application in Expression Blend and name it
NewUserControl. Here, too, you do not need to create a website to host your appli-
cation.

2. With MainPage.xaml open, and LayoutRoot selected in the Objects and Timeline
panel, add a button to the design surface. The Button control can be added from the
toolbar at the far left of Blend’s window.

3. Add other controls to the design surface from the toolbar. Note that additional
controls can be revealed by pressing and holding some of the toolbar’s buttons.

4. If you are not finding the control that you are looking for in the toolbar, check the
Controls category in the Assets tab. Make sure to expand the Controls category to
see all the available controls.

5. On the design surface, select all the controls that you want to “pack” in a user
control. To select multiple controls, press the Ctrl key and click the controls on the
design surface or in the Objects and Timeline panel. Figure 3.3 shows a
PasswordBox, a ComboBox, and a RadioButton being selected. The TextBlock and the
Button in Figure 3.3 are not selected.

What’s a Control? 55

3

T I P

Renaming the MainPage

If you rename the MainPage control to a different name, you must also change the name in
the RootVisual assignment, or else your application will not compile anymore. Thankfully,
Visual Studio assists you in renaming objects with the Refactor menu.

WA R N I N G

Assign RootVisual Only Once!

The RootVisual property can be set only once during the lifetime of the application. If you
want to replace the scene with another one while the application is running, you must use
other techniques, as you will see in Chapter 15, “Developing Navigation Applications and
Silverlight for Windows Phone 7.”

 From the Library of Wow! eBook

ptg

6. Right-click one of the selected
controls and select Make Into
UserControl from the context
menu, or select Tools, Make Into
UserControl from Blend’s menu
bar.

7. In the next dialog box, enter a
name for your user control and
click OK.

Steps 1 through 7 create two new files
into your project: one XAML file (the
front end) and one code file (the code
behind). In addition, this process adds
one instance of the new UserControl
to the MainPage. If you open
MainPage.xaml in Blend again, you
will see that the controls you selected
are still there, although an orange
border and an exclamation mark warn
you that something is not correct (as
shown in Figure 3.4). Let’s correct that
and investigate some more with the following steps:

8. The orange border shown in Figure 3.4 indicates that the UserControl cannot be
found in the application. This is correct, because even though it has been created,
the application has not been built since then, and the control doesn’t exist in any
assembly. Build the application to correct this using Project, Build Project.

9. Pass your mouse over the group of controls. A blue border appears, marking the
limits of the new UserControl.

10. Drag the new UserControl to a different location on the design surface. Notice how
only the controls that we selected earlier in Step 5 move. They belong to the
UserControl. The other controls are not part of the UserControl, and they do not
move.

Adding a New UserControl in Expression Blend
As previously mentioned, the UserControl is not just grouping controls; it is also a way to
duplicate functionality. You can add multiple instances of a UserControl to your scene by
following these steps:

1. In the Assets tab, select the Project category. This contains all the assets that are
included into your own application.

CHAPTER 3 Extending Your Application with Controls56

FIGURE 3.3 Making a UserControl in Blend.

FIGURE 3.4 Uncompiled UserControl.

 From the Library of Wow! eBook

ptg

2. Select the UserControl you created in the previous section, and drag it onto the
design surface.

3. Notice how an additional instance of the same UserControl has been added in the
Objects and Timeline panel.

Of course, a UserControl created this way needs additional work: The layout is likely to
be messed up when the control is resized. The steps described here, however, are a conve-
nient way to create the new files and move the selected controls within.

Creating a New UserControl in Visual Studio
In Visual Studio, follow these steps to create a new UserControl:

1. Create a new Silverlight application named NewUserControlVS in Visual Studio.

2. Right-click the Silverlight project in the Solution Explorer.

3. Select Add, New Item from the context menu.

4. In the Add New Item dialog box, select the Silverlight category (under Installed
Templates).

5. Select a Silverlight UserControl, enter a name (for example,
MyNewUserControl.xaml), and click Add. This creates a new UserControl and its
code behind file.

6. Open the file MyNewUserControl.xaml (either in the XAML editor or in the visual
designer) and add a new button into the main grid. Set the button’s margin to 20
pixels and leave all the other properties at their default. This will cause the button
to be resized to occupy the whole grid’s space, minus 20 pixels on each side. You
can use the Properties editor to set the Margin property (as shown in Figure 3.5), or
set it directly in XAML.

What’s a Control? 57

3

T I P

The Thickness Type

The Margin property is of type Thickness. This type is used for other properties, too, such as
BorderThickness, Padding, and so forth. To enter a Thickness in XAML, define the left value
first, and then the top, right, and bottom values (for example, Margin=”10,20,10,40”). You
can also specify the same value for all four sides (for example, Margin=”10”) or the same
value for left and right, and another value for top and bottom (for example, Margin=”10,20”).

 From the Library of Wow! eBook

ptg

Now that the new UserControl is defined, you can use it in your main page, either in the
visual designer or in XAML, as you will see in the next two sections.

Adding a New UserControl in Visual Studio
After you have created your new UserControl, you
need to build your application by selecting Build,
Build Solution from the menu. If the build is
successful, the new UserControl will appear in the
Toolbox, as shown in Figure 3.6. You can then drag
it on the main grid (in the visual designer), which
will create all the XAML code that you need.

If you check the XAML code in the XAML editor
now (by opening the XAML tab shown in Figure
2.4), you will see that Visual Studio added a new
xmlns statement, named xmlns:my. This stands for
“my controls,” which might not be the best name ever. In the next section (“Adding a
new UserControl in XAML”), we will rather use the prefix local for local controls, but as
mentioned earlier, the prefix can be anything as long as it is valid in XML.

CHAPTER 3 Extending Your Application with Controls58

FIGURE 3.5 Setting the button’s Margin property.

FIGURE 3.6 New UserControl
in the Toolbox.

WA R N I N G

Changing an xmlns Prefix

If you decide to change the xmlns prefix (for example, from my to local), you must be careful
not to forget any place where this prefix is used. However, if you forget a location, your
project will not compile anymore, which makes errors rather easy to find.

 From the Library of Wow! eBook

ptg

Adding a new UserControl in XAML
You can also add the new UserControl directly in the XAML file with a few manual steps.
Of course, using the Toolbox is more straightforward, but typing XAML code is actually
well supported in Visual Studio, and this is a good way to better understand what is
happening under the hood. You should at least try it a few times before you decide which
environment you prefer (XAML editor, visual designer, Blend). Follow these steps:

1. With MainPage.xaml open, add a new xmlns statement into the root tag, as shown
in Listing 3.7. You must choose a unique prefix that will be mapped to the name-
space that you are importing in the XAML document. In Listing 3.7, we map the
prefix local to the CLR namespace NewUserControlVS.

LISTING 3.7 Adding a New xmlns Statement to the Root Tag

<UserControl

x:Class=”NewUserControlVS.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

xmlns:local=”clr-namespace:NewUserControlVS”

mc:Ignorable=”d” d:DesignHeight=”300” d:DesignWidth=”400”>

By adding this new xmlns state-
ment, we can use the mapped
.NET namespace in our XAML
document.

2. At the location in which you want
to add the UserControl, enter the
code shown in Listing 3.8. Again,
notice how IntelliSense helps you:
After you type the opening angle
bracket, a list of elements and of
prefixes is proposed. Select the local prefix and enter a colon. Visual Studio then
proposes a list of elements available in the .NET namespace mapped to the local
prefix.

LISTING 3.8 Adding the New UserControl in the Main Grid

<Grid x:Name=”LayoutRoot”

Background=”White”>

<local:MyNewUserControl />

</Grid>

What’s a Control? 59

3

T I P

Reopening IntelliSense

If the IntelliSense window is closed, you can
reopen it by pressing Ctrl+Space in Visual
Studio. Of course, the cursor must be
located in a place where IntelliSense is
active. This tip works in XAML and also in
code.

 From the Library of Wow! eBook

ptg

Setting Properties on the UserControl
The UserControl class (of which MyNewUserControl derives) defines a number of properties
that you can set to modify its appearance (for example, the Width and Height, the Margin).
All these properties can be set (either in XAML or with the Properties editor), and their
effect is visible immediately.

Some other properties, however, are only defined as a “gateway” between the outside of
the UserControl and the UI elements that compose it. The Background is such a property,
and the following steps experiment with it:

1. Open MainPage.xaml in the Visual Studio designer. You should see the white main
grid, and the instance of MyNewUserControl displayed as a button with a 20-pixel
margin.

2. Select the main Grid and set its Background brush to red in the Properties editor.

3. Notice how the 20-pixel wide area around the
button in MyNewUserControl displays the red back-
ground, too (as shown in Figure 3.7). The
UserControl’s background is transparent.

4. Select the instance of MyNewUserControl.

5. In the Properties editor, set its Background property
to yellow.

Even with its Background property set to a solid
color brush, MyNewUserControl displays the back-
ground below. The property is set, but does not
have any effect; it is just a gateway to the inner
elements of the UserControl.

6. Open MyNewUserControl.xaml.

7. In the XAML editor, add the x:Name attribute to the UserControl root tag and set its
value to RootControl.

8. In the main Grid tag, add a data binding on the Background property as shown in
Listing 3.9. This will bind the value of the Grid’s Background to whatever is set on
the UserControl’s Background. The Grid will be used to render the brush that has
been set externally.

9. Go back to MainPage.xaml and build the application. As a result, in the designer,
the 20-pixel wide area around the button into the instance of MyNewUserControl
will be rendered yellow.

10. Drag another MyNewUserControl from the Toolbox to the MainPage in the designer,
and this time set its Background property to blue. You should now see one yellow
instance and one blue instance, as in Figure 3.8. We used a property of the
UserControl to personalize each instance.

CHAPTER 3 Extending Your Application with Controls60

FIGURE 3.7 Main grid with
red background, transparent
UserControl.

 From the Library of Wow! eBook

ptg

LISTING 3.9 UserControl’s Inner Elements

<UserControl x:Class=”NewUserControlVS.MyNewUserControl”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

x:Name=”RootControl”

mc:Ignorable=”d”

d:DesignHeight=”300”

d:DesignWidth=”400”>

<Grid x:Name=”LayoutRoot”

Background=”{Binding ElementName=RootControl, Path=Background}”>

<Button Content=”Click me”

Margin=”20” />

</Grid>

</UserControl>

Note the following:

. We will talk a lot more about data
binding in Chapter 6, “Working
with Data: Binding, Grouping,
Sorting, and Filtering” and later.

. If you use the Properties editor to
add a name to MyNewUserControl’s
root tag, the property Name rather
than x:Name will be used. We
discussed this in Chapter 2 (see the
box titled “Name, x:Name, or No
Name”). Generally, it is better to
use x:Name rather than Name.

Adding Custom Properties
For further customization of the new UserControl, you can add custom properties to the
UserControl’s code behind. You can actually add any property to it, but if you want
special functionalities (such as data binding, animation, and so on) to work with the
properties, you should add a dependency property. We talk much more about this special
type of properties in Chapter 5, “Understanding Dependency Properties.” Follow these
steps to add a new dependency property to MyNewUserControl and bind it to the Button’s
Content property:

1. Open the file MyNewUserControl.xaml.cs. This is the UserControl’s code behind
file.

2. Add the code in Listing 3.10 below the MyNewUserControl constructor. This defines
the new dependency property named DisplayTest, of type string.

What’s a Control? 61

3

FIGURE 3.8 Two instances of
MyNewUserControl.

 From the Library of Wow! eBook

ptg

3. Open MyNewUserControl.xaml into the XAML editor and modify the Button tag as
shown in Listing 3.11. This binds the Content property to the control’s DisplayText
property.

4. Build the application.

5. Open MainPage.xaml in the visual designer and select the first instance of
MyNewUserControl. Observe how the DisplayText property is now visible into the
Properties editor.

6. Set the DisplayText property to “Hello world” and observe how the text is now
rendered into the button.

7. Select the second UserControl and set DisplayText to another value.

LISTING 3.10 Adding a Dependency Property in MyNewUserControl.xaml.cs

public const string DisplayTextPropertyName = “DisplayText”;

public string DisplayText

{

get

{

return (string)GetValue(DisplayTextProperty);

}

set

{

SetValue(DisplayTextProperty, value);

}

}

public static readonly DependencyProperty DisplayTextProperty

= DependencyProperty.Register(

DisplayTextPropertyName,

typeof(string),

typeof(MyNewUserControl),

new PropertyMetadata(string.Empty));

LISTING 3.11 Setting a Binding to the New Property in MyNewUserControl.xaml

<Button Content=”{Binding ElementName=RootControl, Path=DisplayText}”

Margin=”20” />

Using built-in properties and custom properties, you can extend a UserControl’s function-
ality and customize instances. However, as mentioned earlier, UserControls are mainly
used to encapsulate other controls. To create a control with brand new functionality, it is
often preferable to use a custom control, as you will see in the following section.

CHAPTER 3 Extending Your Application with Controls62

 From the Library of Wow! eBook

ptg

Custom Controls
In contrast to user controls, which have a XAML front end and a code behind file, custom
controls are made of only code, without any front end. We talk about lookless controls. In
fact, all built-in controls in Silverlight are lookless. The custom control file defines only
the control’s functionality: Properties and methods form the control’s interface, and its
behavior is defined by its states and parts. You will see in just a moment what this means.

For the controls to be visible, a XAML front end must be defined, though. An invisible
control is not very usable! One control can have multiple appearances, defined in as
many control templates. We talk about a separation of concerns: The control’s code defines
its functionality; the control’s template defines its appearance. Typically, a developer
implements the control, whereas a designer styles and templates it.

Implementing the Custom Control
You’ll learn more about templates in
Chapter 10. For now, let’s create a
simple custom control with a generic
template. The control we are building is
used to represent a value, according to
the following requirements:

. The user defines a threshold and a
value, both of type Double.

. If the value is higher than the
threshold, the control is in High
state.

. If the value is lower than the
threshold, the control is in Low state.

. If the value is equal to the thresh-
old, the control is in Equal state.

. Both the threshold and the value
can change dynamically, be data
bound, animated, and so forth.

. The user can click one part of the
control to increment the value by
one unit, and another part to
decrement by one unit.

. The control can be disabled, in
which case clicking does not
change the value.

What’s a Control? 63

3

T I P

Implementing a Control with Unit Tests

One big advantage of having a clear separa-
tion of concerns is that the control’s func-
tionality can be tested systematically with
unit tests, as you will see in Chapter 22,
“Advanced Development Techniques.” This
allows modifying the control (for example, by
adding features) but at the same time
making sure that the existing functionality is
not broken: Just run all the unit tests again
and make sure that none of them break.

T I P

Working with Designers

It is more and more common to have design-
ers work on rich applications such as the
ones we are building here. However, not
every firm can afford a professional designer.
When we talk about designers, we talk about
the designer role, and not necessarily a
professionally trained designer. That said,
having a professional designer work on an
application brings it to an unmatched level of
usability.

 From the Library of Wow! eBook

ptg

Notice how these requirements do not state anything about the appearance of the
control. They only define its functionality. The developer can start working, testing the
control, and does not have to worry about the design of the control. This will be the work
of a designer later.

Let’s start with the following steps:

1. In Visual Studio, select File, New, Project from the menu.

2. In the Add New Project dialog, in the Silverlight category, select Silverlight Class
Library.

3. Enter the name CustomControlsLibrary and click OK. Make sure that you select
Silverlight 4 in the next dialog. This creates an assembly, a library that can be refer-
enced in multiple applications but cannot be run on its own.

4. Delete the file Class1.cs in the Solution Explorer (because will not use it).

5. Right-click the CustomControlsLibrary project in the Solution Explorer, and select
Add, New Item from the context menu.

6. In the Add New Item dialog, select the Silverlight, and then select a Silverlight
Templated Control.

7. Enter the name ThresholdControl.cs and click Add.

Defining the Parts and States
These steps create a C# code file, a folder named Themes, and a XAML file named
Generic.xaml. We will investigate this last file later; for now let’s declare the parts and
states for this control:

8. Open the file ThresholdControl.cs.

9. According to the requirements, the control has two state groups. We will call these
the Common states (Normal, Disabled) and the Threshold states (High, Equal, Low).
Note that the states within a state group are mutually exclusive; that is, the control
cannot be simultaneously in Normal and in Disabled state. However, it can be
Normal and High, or Normal and Low, and so forth. Defining the states and states
groups is done with the TemplateVisualState attribute on the class, as shown in
Listing 3.12.

10. The requirements also state that the control has two parts with a special meaning:
Clicking them increments or decrements the value. Here too, we use an attribute to
define the parts on the class: the TemplatePart attribute that is shown in Listing
3.12.

The type of the parts is chosen accordingly to the functionality that they must fulfil. It is
a good practice to choose a type as generic as possible. In our case, we know that a part
must react to a click. However, we do not want to constrain the designer too much, so we
will choose the type defining the MouseLeftButtonDown event, which is more generic than

CHAPTER 3 Extending Your Application with Controls64

 From the Library of Wow! eBook

ptg

the Click event: All the elements deriving from UIElement have the MouseLeftButtonDown
event, while the Click event is only defined on the ButtonBase class and all the classes
deriving from it (Button, ToggleButton, CheckBox, and so forth).

LISTING 3.12 Parts and States for the Threshold Control.

[TemplatePart(Name = “IncrementPart”, Type = typeof(UIElement))]

[TemplatePart(Name = “DecrementPart”, Type = typeof(UIElement))]

[TemplateVisualState(GroupName = “Common”, Name = “Normal”)]

[TemplateVisualState(GroupName = “Common”, Name = “Disabled”)]

[TemplateVisualState(GroupName = “Threshold”, Name = “High”)]

[TemplateVisualState(GroupName = “Threshold”, Name = “Equal”)]

[TemplateVisualState(GroupName = “Threshold”, Name = “Low”)]

public class ThresholdControl : Control

Defining Properties
Per the requirements, the control has two properties of type Double that the user can
interface with: the Value and the Threshold. In addition, we know that these properties
can be data bound, animated, and so forth. This hints that dependency properties should
be used again.

At this point, it is important to remember that XAML is based on XML. When attributes
are set on a XAML element, there is no guarantee as to the order in which these attributes
are set. For example, the developer must accept that the Height property of a control can
be set before or after the Width property.

Also, the XAML parser (like all XML parsers) requires an empty constructor to work. It is
good practice to have only the default constructor for controls, and to set all the values
through public properties, without setting a constraint on their order.

The Value property is shown in Listing 3.13. We will dig much deeper into dependency
properties in Chapter 5, but notice an important addition: The method OnValueChanged
will be called each time that the property’s value changes. We will use this property
changed callback (shown in Listing 3.14) to calculate the control’s new state.

LISTING 3.13 The Value Dependency Property

public double Value

{

get

{

return (double)GetValue(ValueProperty);

}

set

{

SetValue(ValueProperty, value);

}

}

What’s a Control? 65

3

 From the Library of Wow! eBook

ptg

public static readonly DependencyProperty ValueProperty

= DependencyProperty.Register(

“Value”,

typeof(double),

typeof(ThresholdControl),

new PropertyMetadata(0.0, OnValueChanged));

The Threshold property is shown in Listing 3.14. Here, too, we use the same method
property changed callback OnValueChanged to calculate the control’s new state.

LISTING 3.14 The Threshold Dependency Property

public double Threshold

{

get

{

return (double)GetValue(ThresholdProperty);

}

set

{

SetValue(ThresholdProperty, value);

}

}

public static readonly DependencyProperty ThresholdProperty

= DependencyProperty.Register(

“Threshold”,

typeof(double),

typeof(ThresholdControl),

new PropertyMetadata(0.0, OnValueChanged));

The OnValueChanged method (shown in Listing 3.15) must be a static method, because of
the static nature of dependency properties. To access the control that triggered the prop-
erty changed event, we use the sender parameter after we cast it to a ThresholdControl.
This way is is a bit cumbersome and confusing at first; we discuss it in more detail in
Chapter 5. For now, simply remember that this method will be called each time that
either the Value or the Threshold properties change.

LISTING 3.15 The OnValueChanged Property Changed Callback

private static void OnValueChanged(

object s,

DependencyPropertyChangedEventArgs e)

{

var sender = s as ThresholdControl;

CHAPTER 3 Extending Your Application with Controls66

 From the Library of Wow! eBook

ptg

if (sender != null)

{

sender.GoToThresholdState(true);

}

}

The GoToThresholdState method is shown in Listing 3.16. To change the control’s state,
we use the VisualStateManager class, built in Silverlight 4. This class is a useful helper that
will take care of transitioning the control from one state to another. To do this, we use its
GoToState method, which accepts the control itself as first parameter, the name of the
destination state, and a bool indicating whether transitions (that is, animations) should
be used when changing the control’s state. We take a look at transitions when we cover
control templates in Chapter 10.

LISTING 3.16 The GoToThresholdState Method

private void GoToThresholdState(bool useTransitions)

{

if (Value > Threshold)

{

VisualStateManager.GoToState(this, “High”, useTransitions);

}

else

{

if (Value < Threshold)

{

VisualStateManager.GoToState(this, “Low”, useTransitions);

}

else

{

VisualStateManager.GoToState(this, “Equal”, useTransitions);

}

}

}

Wiring the Parts
It is important to understand that the parts are optional. It is well possible that the
designer chooses to omit one or all of them. The control’s functionality should take
missing parts into consideration, and react accordingly.

The wiring takes place in the OnApplyTemplate method, which is called by the custom
control’s base class, the Control class. We override this method and look for the named
parts by implementing the OnApplyTemplate method shown in Listing 3.17.

What’s a Control? 67

3

 From the Library of Wow! eBook

ptg

LISTING 3.17 Implementing OnApplyTemplate

public override void OnApplyTemplate()

{

base.OnApplyTemplate();

var incremementPart

= GetTemplateChild(“IncrementPart”) as UIElement;

if (incremementPart != null)

{

incremementPart.MouseLeftButtonDown

+= IncremementPartMouseLeftButtonDown;

}

var decremementPart

= GetTemplateChild(“DecrementPart”) as UIElement;

if (decremementPart != null)

{

decremementPart.MouseLeftButtonDown

+= DecremementPartMouseLeftButtonDown;

}

GoToThresholdState(false);

}

void IncremementPartMouseLeftButtonDown(

object sender,

MouseButtonEventArgs e)

{

Value++;

}

void DecremementPartMouseLeftButtonDown(

object sender,

MouseButtonEventArgs e)

{

Value—;

}

The OnApplyTemplate method in listing 3.17 performs the following operations:

. First we call the base class’s OnApplyTemplate method, to make sure that everything
is set up correctly.

. Then, we use the control’s GetTemplateChild method to check whether there is a
part named IncrementPart, of type UIElement. If we find it, we add an event handler

CHAPTER 3 Extending Your Application with Controls68

 From the Library of Wow! eBook

ptg

to its MouseLeftButtonDown event. Notice that if the part is not found, the applica-
tion does not crash (no exception is thrown), but the control will have less func-
tionality.

. We proceed to do the same with the part named DecrementPart.

. At the end of the OnApplyTemplate method, everything is wired correctly, and we let
the control go into the initial state. It is necessary, because otherwise the control
would have an undefined state. Notice, however, that we do not use transitions for
this initial state setting because we want it to happen as fast as possible.

. Finally we implement the MouseLeftButtonDown event handlers for the IncrementPart
and the DecrementPart. Because of the preliminary work we did in the Value prop-
erty (and its property changed callback), the event handlers are very simple: They
just increment or decrement the control’s Value.

At this point, our control is ready from a functionality point of view. We still need to
create a visual representation (the template). However, even without a visual, we could
already write unit tests for this control, and test whether the control switches to the
correct state when the Value is above or below the Threshold.

Creating a Default Template
Even though this section’s title starts with the word creating, what we really need to do is
tweak the already existing default template that was created when we chose the
Silverlight Templated Control in Visual Studio. The default template is available in the file
Generic.xaml. When Silverlight is told to create a new ThresholdControl, the following
operations take place:

. Silverlight checks whether a template for the TargetType
CustomControlsLibray.ThresholdControl is available in the application that uses this
control, or in a referenced assembly.

. If that is not the case, Silverlight looks for the file named Themes\Generic.xaml
within the same assembly as the ThresholdControl.

. If this file is found, and it contains a default template for the control’s type, this
template will be used. This is a fallback mechanism.

Default templates are often kept quite simple, but should provide a way to visualize and
test the control’s functionality. In our case, we want to display the Value and the
Threshold, visualize the state of the control (High, Low, or Equal), and provide two named
parts to increment and decrement the Value. For now, follow these steps:

1. Open the file Themes\Generic.xaml.

2. Locate the template for the type local:ThresholdControl. There might be multiple
templates in this file, if there are multiple controls in the assembly, but there should
be only one template per control type.

3. Modify the ControlTemplate to look like Listing 3.18.

What’s a Control? 69

3

 From the Library of Wow! eBook

ptg

LISTING 3.18 Default ControlTemplate for ThresholdControl

1 <ControlTemplate TargetType=”local:ThresholdControl”>

2 <Border Background=”{TemplateBinding Background}”

3 BorderBrush=”{TemplateBinding BorderBrush}”

4 BorderThickness=”{TemplateBinding BorderThickness}”>

5 <Grid>

6 <Grid.ColumnDefinitions>

7 <ColumnDefinition Width=”30” />

8 <ColumnDefinition Width=”*” />

9 <ColumnDefinition Width=”30” />

10 </Grid.ColumnDefinitions>

11

12 <Border Background=”Blue”

13 x:Name=”DecrementPart”

14 Cursor=”Hand”>

15 <TextBlock Text=”-” />

16 </Border>

17

18 <StackPanel Grid.Column=”1”

19 Orientation=”Vertical”

20 Margin=”10”>

21 <TextBlock Text=”{Binding

22 RelativeSource={RelativeSource TemplatedParent},

23 Path=Value}” />

24

25 <TextBlock

26 x:Name=”HighTextBlock”

27 Text=”>” />

28 <TextBlock

29 x:Name=”EqualTextBlock”

30 Text=”==” />

31 <TextBlock

32 x:Name=”LowTextBlock”

33 Text=”<” />

34

35 <TextBlock Text=”{Binding

36 RelativeSource={RelativeSource TemplatedParent},

37 Path=Threshold}” />

38 </StackPanel>

39

40 <Border Background=”Red”

41 x:Name=”IncrementPart”

42 Grid.Column=”2”

43 Cursor=”Hand”>

44 <TextBlock Text=”+” />

CHAPTER 3 Extending Your Application with Controls70

 From the Library of Wow! eBook

ptg

45 </Border>

46 </Grid>

47 </Border>

48 </ControlTemplate>

Let’s review this XAML code:

. The template is defined with a TargetType of local:ThresholdControl (where the
local prefix is mapped to the CLR namespace CustomControlsLibrary). It will be
automatically applied for all instances of ThresholdControl (unless you explicitly
overload the default template in your application, as you will see in Chapter 10.

. On line 2, 3, and 4, note the usage of the TemplateBinding keyword. This special
kind of binding links the target property (here, the Border’s Background) to the
source property (here, the control’s Background); the source property is looked for on
the control that this template represents. By setting the control’s background to a
brush, through the TemplateBinding, the Border’s Background will be set and
rendered.

. We use a Grid with three columns as the panel. For more information about grids
and the flexible layout that they allow, you can refer to Silverlight 2 Unleashed,
Chapter 15.

. A blue Border will be displayed in the first column (lines 12 to 16). Note that
Border’s name: It is set to DecrementPart. Remember that this name has a special
meaning for the Threshold control: It will be wired to decrement the Value when
the MouseLeftButtonDown event is triggered.

. In the middle column (set by Grid.Column=”1”) we have a vertical StackPanel.

. Its first child is a TextBlock that will be used to display the Value property. We get
this value through a Binding on the TemplatedParent (in other words, the
ThresholdControl).

. The three next TextBlock instances display the signs >, ==, and <. Note that since
XAML is XML, we had to encode the > and < signs to “>” and “<”, respec-
tively to avoid errors in the XML document.

. The last child is another TextBlock used to display the Threshold property, again
through a Binding on the TemplatedParent.

. Finally, in the third column (set by Grid.Column=”2”), we have a red Border named
IncrementPart, another meaningful name for the ThresholdControl.

Representing the Visual States
This control template does not take care of the control’s state. Ideally, we want the three
TextBlock instances with <, ==, > to be shown or hidden according to the state of the
control. To do this, we will modify the template according to the High, Equal, and Low
states. Add the XAML code in Listing 3.19 within the main Border tag (which is between
lines 4 and 5 of Listing 3.18).

What’s a Control? 71

3

 From the Library of Wow! eBook

ptg

LISTING 3.19 Setting the Control Template’s High State

1 <VisualStateManager.VisualStateGroups>

2 <VisualStateGroup x:Name=”Threshold”>

3 <VisualState x:Name=”High”>

4 <Storyboard>

5 <DoubleAnimationUsingKeyFrames

6 Storyboard.TargetProperty=”(UIElement.Opacity)”

7 Storyboard.TargetName=”EqualTextBlock”>

8 <EasingDoubleKeyFrame

9 KeyTime=”0” Value=”0” />

10 </DoubleAnimationUsingKeyFrames>

11 <DoubleAnimationUsingKeyFrames

12 Storyboard.TargetProperty=”(UIElement.Opacity)”

13 Storyboard.TargetName=”LowTextBlock”>

14 <EasingDoubleKeyFrame

15 KeyTime=”0” Value=”0” />

16 </DoubleAnimationUsingKeyFrames>

17 </Storyboard>

18 </VisualState>

19 <!--...-->

20 </VisualStateGroup>

21 </VisualStateManager.VisualStateGroups>

. The VisualStateGroup tag on line 3 groups all the states belonging to one group (in
this case, the Threshold state group).

. On lines 3 to 18, we define a transition (in the form of a Storyboard) from any state
to the High state. Two elements are targeted: The EqualTextBlock and the
LowTextBlock are hidden. For example, the EqualTextBlock’s Opacity is set to 0 on
lines 5 to 10, at a KeyTime of 0 seconds. This means that the transition is immediate.
You could specify a different KeyTime (for example, “0:0:0.2”, which is 200 millisec-
onds) to have a smoother transition.

. Only the High state is represented in Listing 3.19. The other states (Equal and Low)
are very similar and should appear instead of the XML comment at line 19. The
complete source code is available at http://galasoft.ch/SL4U/Code/Chapter03.

As you can see in this chapter, creating control templates in Visual Studio is not an easy
task, because of the amount of XAML code that is involved. Even a very simple template
like the ThresholdControl’s default template requires a lot of manual work. This is why
control templates are typically created in Expression Blend, which is a fantastic tool for
this kind of work.

CHAPTER 3 Extending Your Application with Controls72

 From the Library of Wow! eBook

http://galasoft.ch/SL4U/Code/Chapter03

ptg

Summary
In this chapter, we discussed the extensibility of XAML documents, which is very useful
to import all kind of objects into your user interface, from simple values to objects in
resources to controls.

Then we discussed user controls, and how they are used to group and encapsulate
other controls. With user controls, you can easily divide your user interface in smaller,
more manageable pieces. You can also reuse these pieces in multiple places in your appli-
cation. And of course, you can also add properties within to extend the user control’s
functionality.

Finally, we studied custom controls, what Silverlight coders call “lookless controls”.
These controls enforce a strict separation of functionality (in the code) and presentation
(in a control template). The code is typically developed and tested by a developer, while
someone in the role of a designer works on the template. In this Chapter we saw how to
create a default template, useful to test the control’s functionalities. In Chapter 10, we
will see how more elaborate and complex templates can be created for existing controls.

Summary 73

3

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Review some controls that
were discussed in Silverlight
2 Unleashed, and that are still
present and useful in
Silverlight 4.

. See what changes Silverlight
4 brought to existing
controls.

. Talk about new controls
added to the core Silverlight
framework.

. Explore the Silverlight Toolkit,
a collection of controls
provided by Microsoft indepen-
dently from the core
Silverlight framework.

. List some points that you
should check before purchas-
ing controls from third-party
vendors.

CHAPTER 4

Investigating Existing
Controls

In Chapter 3, “Extending Your Application with Controls,”
you saw how to create user controls and custom controls to
extend your application with functionality. However, in
many cases, you do not actually need to create controls
yourself. Instead, you will use existing controls, either
within the Silverlight framework itself or from external
providers. In this chapter, we cover these controls, includ-
ing what has changed since Silverlight 2 was released and
where to find new controls.

Reviewing the Basics
In Silverlight 2 Unleashed, we spent two chapters talking
about controls. First, we reviewed the Silverlight class hier-
archy in Chapter 15. Understanding how objects and
controls are composed is very important to master the
framework. Further in the same chapter, we talked about
panels (such as StackPanel, Canvas, and Grid), and when
you should be choosing which panel to layout your appli-
cation. We also spent some time talking about
ScrollViewer and Popup, and finished with a section about
the Shape class (such as Rectangle, Ellipse and Path).

Then, in Chapter 16 of Silverlight 2 Unleashed, we talked
about the properties of the Control class, before reviewing
some of the controls:

. The TextBlock, used to present and format text.

. The TextBox, used to let the user input and edit text.

. The Button, CheckBox, RadioButton, HyperlinkButton,
RepeatButton, and ToggleButton, all deriving from the
ButtonBase class used for all things that can be
clicked.

 From the Library of Wow! eBook

ptg

. Scrollbar and Slider, two controls similar in the way they are built, both with a
middle element that can be dragged along a track. The Scrollbar is used to scroll
big areas, while the Slider is used to set a value (in steps or continuously) by drag-
ging their middle part. We also talked about the Thumb control, very useful when
you need something you can drag.

. The GridSplitter that can be dragged to resize a grid’s cells.

. The Calendar and DatePicker controls, useful to input and edit dates in an applica-
tion.

. The InkPresenter, a control that is used to allow the user to draw or write on the
screen, ideally with a stylus or his fingers.

We then proceeded with an introduction to the ItemsControl (of which most data
controls derive, such as TabControl, ListBox, ComboBox, and so on).

The chapter ended with a section about DeepZoom, an impressive feature that allows
smooth zooming into high-definition pictures, allowing a fantastic experience such as
demonstrated in the Matterhorn demo we sampled earlier.

Another good chapter in Silverlight 2 Unleashed about controls is Chapter 18, specifically
the second half about data controls:

. That chapter covers how to use the ListBox, one of the most useful controls in the
whole Silverlight framework to represent collections of data.

. We worked with the ObservableCollection class, a class made to hold a list of items
and notify its users (for example, a data control) when items are added, removed, or
when the order of these items changes.

. We studied the DataGrid, a powerful element to display, sort, group, filter, and edit
data in business applications.

Few changes were made to all these controls since Silverlight 2 was released. It must be
noted that all the controls that were into the Silverlight 2 Toolkit are now included into
the code framework. In this chapter, we review changes that were made to existing
controls, and we will talk about some of the new controls that were included in
Silverlight 3 and 4.

Show Me Some Code!
To illustrate the features mentioned in this chapter, a sample browser can be downloaded
from http://www.galasoft.ch/SL4U/code/chapter04.

The application uses sample data created by Expression Blend (a feature that we discuss in
Chapter 11, “Mastering Expression Blend”). This is especially interesting when working
with data controls because Blend creates a list of random items without the developer
having to come up with complicated services or XML files. Another interesting feature of

CHAPTER 4 Investigating Existing Controls76

 From the Library of Wow! eBook

http://www.galasoft.ch/SL4U/code/chapter04

ptg

this Silverlight application is a navigation application, a special type of application that
we will review in Chapter 15, “Developing Navigation Applications and Silverlight for
Windows Phone 7.”

In this sample application, we use the Customers collection in multiple samples. This
collection (defined by Blend as a static resource in App.xaml) has a number of customers
defined, each with a Name (string), ContractNumber (integer), and IsActive (bool) proper-
ties. Expression Blend generated the values. For instance, the XAML code in Listing 4.1
binds a control’s CurrentItem property to the first customer in the collection. In Listing
4.2, we bind a data control’s ItemsSource property to the list of customers.

LISTING 4.1 Binding to the First Customer

CurrentItem=”{Binding Source={StaticResource Customers},

Path=Collection[0]}” />

LISTING 4.2 Binding to the List of Customers

ItemsSource=”{Binding Source={StaticResource Customers},

Path=Collection}”

Changes in Existing Controls
All the controls that were available in Silverlight 2 and 3 are still available in Silverlight 4.
There were a few changes to existing controls, though.

Mouse Wheel Support
The controls with a content that can be scrolled now automatically support the mouse
wheel action. The controls in question are as follows:

. ScrollViewer

. TextBox (only when the VerticalScrollBarVisibility property is set to Auto or
Visible)

. ComboBox (when the number of items is large enough)

. Calendar (to scroll the decades, years, months)

. DatePicker (to scroll the decades, years, months when the Calendar is open)

Localizing for Right-to-Left Languages
The story of localizing Silverlight applications is not perfect by a long shot, but a step in
the right direction was taken with the introduction of support for right-to-left languages
(for example, Hebraic or Arabic languages). Simply set the FlowDirection property on any
FrameworkElement to RightToLeft for such languages. The default is LeftToRight.

Changes in Existing Controls 77

4

 From the Library of Wow! eBook

ptg

Getting a Control Template’s Current State
A control’s template typically defines various state groups with states and transitions, as
you saw in Chapter 3, “Extending Your Application with Controls.” For example, a Button
has the states Normal, MouseOver, Pressed and Disabled (in the state group CommonStates),
and can transition from one to the other.

However, getting the control’s current state programmatically was difficult, because
neither the control nor the VisualStateManager class keeps track of which state the
control currently is in. It is possible to build a custom class deriving from
VisualStateManager and to assign it using
VisualStateManager.SetCustomVisualStateManager static method. However, for small
applications, this is too complex.

In Silverlight 4, this is corrected, with the addition of the VisualStateGroup.CurrentState
property. Getting a control’s current state to calculate the next transition in code is shown
in Listing 4.3. This makes calculating the transitions easier because keeping track of the
current state is not needed anymore.

LISTING 4.3 Getting a Control’s State

1 var groups

2 = VisualStateManager.GetVisualStateGroups(background);

3

4 if (groups == null

5 || groups.Count == 0)

6 {

7 return;

8 }

9

10 VisualStateGroup group

11 = groups[0] as VisualStateGroup;

12

13 if (group == null)

14 {

15 return;

16 }

17

18 VisualState currentState = group.CurrentState;

19

20 // Calculate transition based on current state

. On line 2, the variable background is a FrameworkElement that is part of the control
template, and on which the visual states are defined in XAML (as we did, for
example, in Listing 3.19).

CHAPTER 4 Investigating Existing Controls78

 From the Library of Wow! eBook

ptg

. Note that depending on how the control template is built, a given VisualStateGroup
or a given state within that group might not be available. The code should take this
fact into account, and be robust enough not to crash if that is the case, as in Listing
4.3 on lines 4 to 8.

Adding SelectedValue and SelectedValuePath
All controls deriving from the Selector class now have two new properties: SelectedValue
and SelectedValuePath. In the Silverlight core framework, two controls derive from
Selector: ComboBox and ListBox.

These properties work together to facilitate data binding in XAML. For instance, imagine
that a ListBox displays a list of customers. Each Customer item has a Name property and a
ContractNumber property. The ListBox is set to display the customer’s name. However, by
setting the property SelectedValuePath to “ContractNumber”, you can then bind to the
ListBox’s SelectedValue property, as shown in Listing 4.4.

Note that another way to reach the exact same result would be to bind to the ListBox’s
SelectedItem.ContractNumber, as shown in Listing 4.5. Both expressions work the same.
However, SelectedValuePath and SelectedValue are invaluable when all you have to iden-
tify the binding is a set of strings (for example, from a ComboBox, from a web service, or
from a database).

LISTING 4.4 Using SelectedValue and SelectedValuePath

<ListBox x:Name=”CustomersListBox”

ItemTemplate=”{StaticResource ItemTemplate}”

SelectedValuePath=”ContractNumber”

ItemsSource=”{Binding Collection}” />

<TextBlock Text=”{Binding SelectedValue,

ElementName=CustomersListBox}” />

LISTING 4.5 Using SelectedItem

<ListBox x:Name=”CustomersListBox2”

ItemTemplate=”{StaticResource ItemTemplate}”

ItemsSource=”{Binding Collection}” />

<TextBlock Text=”{Binding SelectedItem.ContractNumber,

ElementName=CustomersListBox2}” />

Adding Command and CommandParameter
Commands were introduced in Windows Presentation Foundation (WPF) from the first
version to implement a loosely coupled event-handling mechanism. When you imple-
ment an event handler for a Button control, for example, you create a very strong link
between the XAML and the code behind. This can cause unexpected side effects, such as

Changes in Existing Controls 79

4

 From the Library of Wow! eBook

ptg

memory leaks, especially if you forget to unregister the event handler when the Button is
disposed. You’ll learn more about this in Chapter 21, “Optimizing Performance.”

Another annoying effect with events is that the event handler must be located in the
code behind. That can be an issue, especially when you create a template: Generally, the
template is located in a resource dictionary that does not have any code behind (as you
will see in Chapter 10, “Creating Resources, Styles, and Templates”). Using events creates
a strong dependency between the XAML and the code behind that complicates the work
of the designers.

To solve this issue, instead of a Click event, you can use the Command property (and an
optional CommandParameter property) that will invoke a method on an object, not neces-
sarily in the page’s code behind. Note that the object must implement the ICommand inter-
face that was already available in Silverlight 2 and Silverlight 3.

Until Silverlight 4 was released, it was quite difficult to use commands in Silverlight
because most of the infrastructure was missing and a lot of manual work was involved. In
Silverlight 4, however, we get (almost) the same support as in WPF, with the addition of
the Command and CommandParameter properties on the ButtonBase class (of which Button,
RepeatButton, ToggleButton, CheckBox, RadioButton derive) and on the HyperlinkButton
control.

You’ll learn more about commands in Chapter 7, “Understanding the Model-View-
ViewModel Pattern.” A short example is provided in the sample browser available at
http://www.galasoft.ch/SL4U/code/chapter04. Listing 4.6 shows the C# code with the
ICommand implementation, and the object that holds a property of this type. In Listing 4.7,
you can see the XAML code that binds a Button’s Command property and its
CommandParameter on the corresponding objects.

The ICommand interface specifies three compulsory members:

. The Execute method is called when the command is invoked. For the controls that
have the Command property, clicking the control is the only way to actually invoke
the command. In Chapter 19, “Authentication, Event to Command Binding,
Random Animations, Multitouch, Local Communication, and Bing Maps Control,”
you will see other ways to invoke a command, without being limited to clicking the
control. Note that the Execute method has a parameter (of type object). This para-
meter holds the value of the CommandParameter property on the invoking control. If
CommandParameter is not set, then the parameter is null.

. The CanExecute method should return true if the command may be invoked, and
false otherwise, depending on the value of the CommandParameter or of any other
influencing factors. The control that the command is bound to will be
enabled/disabled automatically according to the value returned by this method.

. The CanExecuteChanged event must be raised when the value of the CanExecute
method changes. For example, imagine that the value of CanExecute depends on the
value of an object’s property. When this property changes, the CanExecuteChanged
event must be raised manually to notify the user interface that CanExecute must be
queried, and the controls enabled/disabled accordingly.

CHAPTER 4 Investigating Existing Controls80

 From the Library of Wow! eBook

http://www.galasoft.ch/SL4U/code/chapter04

ptg

LISTING 4.6 Implementing a Command and Using It as Property

1 public class ReceiveValueCommand : ICommand, INotifyPropertyChanged

2 {

3 public event EventHandler CanExecuteChanged;

4 public event PropertyChangedEventHandler PropertyChanged;

5

6 public string ReceivedValue

7 {

8 get;

9 private set;

10 }

11

12 public bool CanExecute(object parameter)

13 {

14 // Entering the words “Hello World” will disable the command!

15 return parameter != null

16 && parameter.ToString() != “Hello World”;

17 }

18

19 public void Execute(object parameter)

20 {

21 // Command was invoked

22 if (parameter == null)

23 {

24 ReceivedValue = “Null”;

25 }

26 else

27 {

28 ReceivedValue = parameter.ToString();

29 }

30

31 // Notify the bindings

32 if (PropertyChanged != null)

33 {

34 PropertyChanged(this,

35 new PropertyChangedEventArgs(“ReceivedValue”));

Changes in Existing Controls 81

4

WA R N I N G

Raising CanExecuteChanged Manually

Developers used to WPF will find puzzling that the CanExecuteChanged even must be raised
manually in Silverlight. In the richer WPF, a class named CommandManager takes care of query-
ing all the commands when something happens in the user interface (for example, when a
user enters text, clicks an item, and so on). In Silverlight, this support does not exist.

 From the Library of Wow! eBook

ptg

36 }

37 }

38 }

39

40 public class CommandSampleViewModel

41 {

42 public ICommand ReceiveCommand

43 {

44 get;

45 private set;

46 }

47

48 public CommandSampleViewModel()

49 {

50 ReceiveCommand = new ReceiveValueCommand();

51 }

52 }

. Line 3 declares the CanExecuteChanged event, as required by the ICommand interface.

. Note that the command also implements INotifyPropertyChanged. (Defined on line
1, and implemented on line 4, this interface defines only one event,
PropertyChanged. We will raise this event a little later.) This is useful because we
want to use data binding on the ReceivedValue property. However, having a
command implementing INotifyPropertyChanged is a little unusual. We discuss
better alternatives in Chapter 7.

. Lines 6 to 10 define a custom property that will store the value received when the
Execute method is invoked, depending on the CommandParameter property on the
Button control.

. Lines 12 to 17 define the CanExecute method that is executed when the command is
bound to a control, each time that the CanExecuteChanged event is raised, or every
time that the CommandParameter property’s value changes. For example, in Listing
4.7, CommandParameter is bound to the ValueTextBox.Text property, so CanExecute
will be executed when the user types something in the ValueTextBox.

. Lines 19 to 37 declare the Execute method, also required by the ICommand interface.
This method simply stores the string value of the parameter into the ReceivedValue
property.

. On lines 32 to 36, we raise the PropertyChanged event, thus notifying subscribers
(for example, data bindings) that the ReceivedValue property changed. First we
check whether the event is null (which would be the case if nobody subscribed to
the event).

CHAPTER 4 Investigating Existing Controls82

 From the Library of Wow! eBook

ptg

. From line 40, we declare a new class, called CommandSampleViewModel. This class is the
viewmodel for the CommandSample page (also called the view). This is a simple imple-
mentation of the Model-View-ViewModel pattern, which we cover in more detail in
Chapter 7.

. Lines 42 to 46 declare a property of type ICommand. The property is instantiated at
line 50, by creating a new ReceiveValueCommand. We will bind the Button’s Command
property to this ICommand in Listing 4.7.

LISTING 4.7 Using the Command in XAML

1 <UserControl.Resources>

2 <vm:CommandSampleViewModel x:Key=”CommandSampleViewModel” />

3 </UserControl.Resources>

4

5 <StackPanel x:Name=”LayoutRoot”

6 DataContext=”{Binding Source={StaticResource CommandSampleViewModel}}”>

7

8 <TextBlock

9 Text=”Enter the words Hello World to disable the command” />

10

11 <TextBox Text=”Enter a value...”

12 x:Name=”ValueTextBox” />

13

14 <Button Content=”Click me”

15 Command=”{Binding ReceiveCommand}”

16 CommandParameter=”{Binding Text, ElementName=ValueTextBox}” />

17

18 <TextBlock Text=”Received Value:” />

19 <TextBlock Text=”{Binding ReceiveCommand.ReceivedValue}” />

20

21 </StackPanel>

On line 2, we create a new instance of the CommandSampleViewModel class in the
UserControl’s resources. Remember that resources are a store where you can keep any kind
of object, not just styles and templates. In this case, the vm prefix is mapped to the CLR
namespace SilverlightToolkitSamples.ViewModel, where this class lives. Then on line 6,
we assign the instance of CommandSampleViewModel to the StackPanel’s DataContext. From
now on, the source for every Binding will implicitly be that instance, unless of course you
specify otherwise explicitly.

Lines 11 and 12 define a TextBox named ValueTextBox. We will use this as the source for
the CommandParameter. Further, line 15 assigns the ReceiveCommand property from the
CommandSampleViewModel instance to the Command property of the Button. Because we do not
define any source for this Binding, it automatically refers to the CommandSampleViewModel
instance that we set as DataContext.

Changes in Existing Controls 83

4

 From the Library of Wow! eBook

ptg

Line 16 assigns the Text property of ValueTextBox to the CommandParameter of the Button.
We explicitly set the Binding’s source (through the ElementName) to be the TextBox. In that
case, the Binding’s source is not the DataContext. Finally, line 19 displays ReceiveCommand’s
ReceivedValue property into a TextBlock.

Presenting and Editing Text with the RichTextBox
Until Silverlight 4 was released, the possibilities to present and edit rich text were quite
limited. For presentation, it was possible to combine together some TextBlock elements
with different formatting, but this was cumbersome. For rich text edition, nothing was
available out of the box.

In Silverlight 4, the RichTextBox control was introduced to provide such a support, with
the following features:

. The RichTextBox contains a collection of Block instances. These can be simple para-
graphs, or formatted blocks such as Bold, Italic, and Underline. These elements can
also be combined.

. You can add any element deriving from UIElement (such as shapes, images, panels,
controls, and so on), using an InlineUIContainer wrapping it.

. The RichTextBlock provides the possibility to include Hyperlinks for navigation to
web pages. However, the Hyperlinks are active only when the RichTextBlock is in
read-only mode.

. Static text is formatted using XAML, as shown in Listing 4.8. Of course, as always in
Silverlight, everything that can be done in XAML can also be done in code, which
allows for dynamic formatting of the RichTextBox’s content.

. The RichTextBox’s Xaml property gives access to the formatted rich content expressed
as XAML. This offers a convenient way to save the content of the box in a file, or to
set it later.

LISTING 4.8 RichTextBox with Rich Content

<RichTextBox FontSize=”14” Foreground=”#FF646464”

FontFamily=”Verdana” TextWrapping=”Wrap”

IsReadOnly=”{Binding IsChecked, ElementName=ReadOnlyCheck box}”

VerticalScrollBarVisibility=”Auto”>

<Paragraph FontSize=”24”>

<Run FontWeight=”Bold”

Text=”What Is Silverlight?”

Foreground=”#FF2400FF” />

</Paragraph>

<Paragraph>

CHAPTER 4 Investigating Existing Controls84

 From the Library of Wow! eBook

ptg

Silverlight is a <Bold>cross-browser, cross-platform and cross-device

browser plug-in</Bold> that helps companies design, develop and

deliver applications and experiences on the Web. Go to

<Hyperlink NavigateUri=”http://www.silverlight.net”

TargetName=”_blank”>Silverlight.net</Hyperlink>

to learn more!

</Paragraph>

<Paragraph>

<InlineUIContainer>

<Image Source=”/Assets/sl4bloglogo.png”

Width=”200” Margin=”10” />

</InlineUIContainer>

</Paragraph>

</RichTextBox>

Note the following:

. Setting properties on the RichTextBox itself will make these valid for the whole
content. You can overload these properties (for example, the FontSize property) on
an inner element.

. Notice the usage of the Run element to make a whole paragraph bold, and of the
Bold element to make parts of the paragraph bold. You can combine these elements
and others to achieve the desired formatting.

. As mentioned, the InlineUIContainer element can be used to add any UIElement to
the content. The sample available at http://www.galasoft.ch/SL4U/code/chapter04
also shows a MediaElement playing a video.

. By default, the RichTextBox does not display any scrollbars, even if it is resized
smaller than its content. Use the VerticalScrollBarVisibility and
HorizontalScrollBarVisibility properties to change this.

Using these features, and with some code involved, it is possible to provide rich editing
capabilities to your Silverlight application’s users. A common usage for the RichTextBox is
to combine it with a custom toolbar to format parts of the text and to add rich elements.

Zooming with the Viewbox
The Viewbox is a fantastic control when you need to zoom an area (or all) of your
Silverlight application, or when you need to scale an element that was not made for it
(for example a Path). For example, suppose that you want your application to fill the
entire HTML host, whatever the size of this host is. This can be quite tricky and involve a
lot of calculation and layout. However, in certain cases, it is much easier to design your
application for a given size, and then to scale it up or down to fill the whole space.

Zooming with the Viewbox 85

4

 From the Library of Wow! eBook

http://www.galasoft.ch/SL4U/code/chapter04

ptg

To scale your application and fill the
whole host, follow these steps:

1. Open your Silverlight applica-
tion in Visual Studio or in
Expression Blend.

2. Set a fixed size on the main
panel. For example, you may
want to design your application
for a standard monitor size,
such as 1024 x 768 pixels.

3. In XAML, wrap your main
panel into a Viewbox. You do
not need to set any property on
the Viewbox, it will automati-
cally fill the whole space.

(Or)

In Expression Blend, right-click the main panel in Objects and Timeline, and select
Group Into from the context menu. Select a Viewbox. This will wrap the main panel
into the Viewbox. Make sure that the Viewbox’s Width and Height are set to Auto.

4. Test your application and resize the browser window. You should see the applica-
tion’s content being scaled up or down to fill the whole space.

CHAPTER 4 Investigating Existing Controls86

T I P

Watching Netflix with Silverlight

Our readers in the United States have probably heard of Netflix, the well-known DVD rental
service. Netflix also has a streaming service over the Internet: Browse the list of available
movies, select the one you like, and watch it instantly. The movie is streamed online: It is
sent over the wire, buffered on the client computer, and as soon as enough of it is available,
it starts playing. The Netflix application in Windows Media Center (on Windows 7) is scaled
up or down depending on the size of the containing window. The application always looks
proportional, whatever the size of the container, as shown in Figure 4.1.

FIGURE 4.1 Scaled Netflix window.

 From the Library of Wow! eBook

ptg

As mentioned, another frequent usage for a Viewbox control is the resizing of Path
elements, for example when they compose a logo. Path elements cannot be resized easily,
so wrapping them in a Viewbox and resizing this box instead is a better approach.

Opening a ChildWindow
The ChildWindow class was actually already present in Silverlight 3. It is a very useful class
when you want to present additional information in a semi-modal way to the user. By
“semi-modal,” we mean that the user will not be able to access other controls on the
Silverlight application as long as he didn’t acknowledge the dialog; however, the applica-
tion itself is not blocked, and continues to process information, to run animations, and so
forth. The dialog is shown in an asynchronous way. To add a ChildWindow to your
Silverlight application, follow these steps:

1. Right-click the project in the Solution Explorer, and then select Add, New Item from
the context menu.

2. In the Add New Item dialog, select Silverlight Child Window; enter
MyChildWindow as window’s name, and click Add.

3. Customize the ChildWindow’s look and feel by modifying its XAML file. Note that
you can also design the XAML into Expression Blend.

4. Set the OverlayBrush. As shown in Figure 4.2, the ChildWindow, when open, is
appearing in front of your Silverlight application and prevents the user from click-
ing the controls below. The OverlayBrush is, as the name shows, a brush that can be
set as you want (SolidColorBrush, LinearGradientBrush, RadialGradientBrush, and so
forth). For more information about brushes, refer to Silverlight 2 Unleashed, Chapters
2 and 4.

Opening a ChildWindow 87

4

WA R N I N G

To Scale or Not to Scale

Choosing to scale or not an application depends a lot on the application’s design. You have
the following alternatives:

. Scale the application as demonstrated in this section. This can cause annoying
effects, especially if the window is resized to a very small size (readability problem) or
very large size (pixilation of images). Note that vector images, however, will not get pixi-
lated. (See Silverlight 2 Unleashed, Chapter 5, for more information about scaling
images.)

. Change the layout based on the application’s size. For example, if you use a grid-based
layout, you can let the columns be resized dynamically when the host’s size changes
(flow layout). Also, you can select different templates for your controls based on the
control’s size, in order, for example, to display fewer details when the application is
smaller.

 From the Library of Wow! eBook

ptg

5. If you want your user to
input information, you can,
for example, save the infor-
mation in a dependency
property, as shown in
Listing 4.9.

6. Note that closing the
ChildWindow is done by
setting its DialogResult
property, as you can see in
Listing 4.9. As soon as the
property is set, the window
is closed automatically. In
the default ChildWindow, the button OK sets DialogResult to true, and Cancel (as
well as the X button in the title bar) sets DialogResult to false.

7. To open the ChildWindow, from any page in your application, instantiate a new
MyChildWindow and call the Show method on the new instance, as shown in Listing
4.10.

8. To retrieve the information entered by the user after the window has been closed,
you can handle the Closed event as shown in Listing 4.10. Again, this is an asyn-
chronous pattern, and you need to handle the event to access the window’s proper-
ties after it has been closed.

LISTING 4.9 The ChildWindow’s Code Behind

public partial class MyChildWindow : ChildWindow

{

public const string InputPropertyName = “Input”;

public string Input

{

get

{

CHAPTER 4 Investigating Existing Controls88

WA R N I N G

Setting the OverlayBrush to Null

You can set the OverlayBrush to {x:Null}, which means that no brush will be applied. Note,
however, that all controls on the Silverlight page below the ChildWindow are disabled when it
is open. This is, as mentioned previously, a pseudo-modal dialog. A better idea is to set the
OverlayBrush to a light half-opaque gray (for example, #33999999).

FIGURE 4.2 ChildWindow and overlay.

 From the Library of Wow! eBook

ptg

return (string)GetValue(InputProperty);

}

set

{

SetValue(InputProperty, value);

}

}

public static readonly DependencyProperty InputProperty

= DependencyProperty.Register(

InputPropertyName,

typeof(string),

typeof(MyChildWindow),

new PropertyMetadata(“Enter text...”));

public MyChildWindow()

{

InitializeComponent();

}

private void OKButton_Click(object sender, RoutedEventArgs e)

{

this.DialogResult = true;

}

private void CancelButton_Click(object sender, RoutedEventArgs e)

{

this.DialogResult = false;

}

}

LISTING 4.10 Opening the Window and Handling Its Closed Event

private void OpenWindowButton_Click(object sender, RoutedEventArgs e)

{

var window = new MyChildWindow();

window.Closed += window_Closed;

window.Show();

}

void window_Closed(object sender, EventArgs e)

{

var window = sender as MyChildWindow;

if (window != null

&& window.DialogResult == true)

{

Opening a ChildWindow 89

4

 From the Library of Wow! eBook

ptg

InputTextBlock.Text = window.Input;

}

}

Like all the controls in Silverlight, the ChildWindow can be styled and templated to
change its appearance completely if needed.

Finding More Information
Because Silverlight 4 comes with such a large range of controls, it is materially impossible
to detail all of them. Thankfully, when you install the Silverlight tools, you get a
documentation file, too. You can download this file from
http://www.galasoft.ch/sl4-offlinedoc.

The documentation is also available online. The page specific to the built-in controls’
documentation is at http://www.galasoft.ch/sl4-onlinedoc.

Where to Find Additional Controls?
As soon as Silverlight 1.0 was released, third-party providers started creating controls to
cover what was missing from the core framework. As Silverlight became more and more
elaborate and powerful, many of the controls were made available to users of the core,
and it is possible to create a very rich application without resorting to external providers.

Do You Really Need a Control?
An interesting side effect of the templates system in Silverlight is that it is now possible to
change the functionality of an existing control in such a way that it fulfils your require-
ment even though it was not intended for this purpose at first.

For instance, the CheckBox and the RadioButton controls are essentially ToggleButton
instances: This special kind of button has three states (Checked, Unchecked, and
Indeterminate). Turning such a control into a CheckBox simply requires a different
template to change the control’s appearance, as shown in Figure 4.3. The functionality
remains, for the most part, unchanged. Note that the
default template for RadioButton and for ToggleButton
do not differentiate the Unchecked and Indeterminate
states. If you want a RadioButton that behaves differ-
ently, you will have to modify the template (as you
will see in Chapter 10).

Another example is the ListBox. This data control is
used to represent a list of items. Thanks to the possi-
bility to redesign an item’s template (called
DataTemplate) completely, as well as the ListBox ‘s
template itself, it is a really versatile control that can be adapted to many uses.

CHAPTER 4 Investigating Existing Controls90

FIGURE 4.3 CheckBox,
RadioButton, and ToggleButton
in three states (in Blend).

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-offlinedoc
http://www.galasoft.ch/sl4-onlinedoc

ptg

The Silverlight Toolkit
As previously mentioned in Chapter 1, “Three Years of Silverlight,” the Silverlight team
works in a very agile manner. One of the principles of this software development method-
ology is to release small incremental versions, and to release them often. However, when
you publish a framework as rich as Silverlight, there are limits to how often you can
release new versions. Some important firms have large projects, and converting them to a
new version of Silverlight takes time, costs money, and creates frustration. On the other
hand, having new controls as soon as possible is very important for other customers. For
this purpose, Microsoft is releasing new controls into a “staging area” called the
Silverlight Toolkit. This is a CodePlex project (available at http://silverlight.codeplex.com)
where a large number of controls are made available to the public, including the source
code and unit tests. The Toolkit is a probably the first place that developers should check
when they need a new Silverlight control.

An interesting aspect of the Silverlight Toolkit is that it defines four bands for the
included controls:

. The Experimental band, for controls in early development: This band is used
mostly to gather feedback. Controls in the Experimental band should not be used in
production applications. Also, these controls may disappear from future versions of
the Toolkit.

. The Preview band, for controls that are ready for basic scenarios (alpha version):
Some changes may affect the control’s interface, so you might have to edit your
code if you use these controls. Using controls from the Preview band in production
application is risky, but might be okay, for example, if the application is not due for
release before a certain time.

. The Stable band, for controls that are ready for most scenarios (beta version)
but might be subject to a few minor changes in the future: Using these controls
in a production application should not be critical, as long as you are aware of their
beta-like quality.

. The Mature band, for controls that are ready for production: These controls
might change in future versions (if security requires it, for example).

Where to Find Additional Controls? 91

4

T I P

Moving Controls to the Core Framework

When a new Silverlight framework is released, Microsoft includes some of the controls from
the Toolkit’s Mature band into the core framework. Readers of Silverlight 2 Unleashed may
remember that some of the controls we studied (such as the Calendar, DatePicker,
DataGrid) were in the Toolkit at that time, and are now included into the core Silverlight
framework. For the developer, converting a Silverlight 2 project to Silverlight 3 or 4 allows
removing some external dependencies to assemblies and reducing the size of the application
downloaded to the Silverlight plug-in.

 From the Library of Wow! eBook

http://silverlight.codeplex.com

ptg

Installing the Silverlight Toolkit
The Toolkit can be installed with an MSI installer, which you can download from the
CodePlex site. By default, all the files get installed into C:\Program Files\Microsoft
SDKs\Silverlight\v4.0\Toolkit\[DATE] (where [DATE] is the Toolkit’s date; for example,
Apr10). On Windows x64 machines, “Program Files” is replaced by “Program Files (x86)”.

Note that the Toolkit is distributed under the MS-PL license, which is Microsoft’s open
source license. This grants you the right to modify the Toolkit’s source code (included
when you install it).

Using the Silverlight Toolkit in Visual Studio
After the Toolkit has been installed, you should see all the controls in the Visual Studio
toolbox. Visual Studio assists you when adding controls to the page by referencing the
correct DLLs and adding the required XML namespaces, as you will see with the following
steps:

1. Create a new Silverlight 4 application.

2. Open MainPage.xaml in the Visual Studio designer.

3. Select the control that you want to add from the Toolbox and drag it onto the
designer surface.

4. Customize the control using the Properties panel.

CHAPTER 4 Investigating Existing Controls92

T I P

If You Don’t See the Controls in the Toolbox

Sometimes a control might be missing from the Toolbox. To set up what the Toolbox displays,
follow these steps:

1. Right-click anywhere on the Toolbox panel.

2. Select Choose Items from the context menu. Opening this dialog can take quite a long
time.

3. In the Choose Toolbox Items dialog, select the Silverlight Components tab. Then check
or uncheck the controls you want to display or hide.

4. Click OK. The Toolbox should now be updated.

Note that you can also add a reference to the correct DLL manually, using the Add
Reference context menu in the Solution Explorer. In that case, you must also add an
xmlns statement pointing a prefix to the CLR namespace in which the control is located.

For instance, the Accordion control that we detail further in this chapter is included in the
assembly System.Windows.Controls.Layout.Toolkit, in the namespace
System.Windows.Controls. Therefore, the XAML code to add an Accordion control to the

 From the Library of Wow! eBook

ptg

main grid looks like Listing 4.11. You can find the information about the control’s DLL
and its namespace in the Toolkit’s documentation (and throughout this chapter).

LISTING 4.11 Adding an Accordion Control in XAML

<UserControl

x:Class=”SilverlightApplication7.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:toolkit=”

http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit”>

<Grid x:Name=”LayoutRoot”

Background=”White”>

<toolkit:Accordion>

<toolkit:AccordionItem Content=”Item 1”

Header=”Header 1” />

<toolkit:AccordionItem Content=”Item 2”

Header=”Header 2” />

</layoutToolkit:Accordion>

</Grid>

</UserControl>

Using the Silverlight Toolkit in Expression Blend
In Blend, using a control from the toolkit is a quite easy, too, as the following steps show:

1. Create a new Silverlight 4 application in Blend.

2. In the Assets library, select the control or panel that you want to add to the scene,
and drag it on the designer surface.

3. Blend takes care of adding all the references needed for you.

Exploring the Controls
Together with the Toolkit, a sample browser (shown in Figure 4.4) gets installed, allowing
you to explore the controls included, understand how they can be used and get sample
XAML, C#, and VB.NET code. The Toolkit sample browser can be started from the
Microsoft Silverlight 4 Toolkit folder in your Start menu. The full source code is also
installed on your machine and a link is available in the Toolkit folder in the Start menu.

Where to Find Additional Controls? 93

4

 From the Library of Wow! eBook

ptg

FIGURE 4.4 Toolkit sample browser with a bubble chart sample.

In the version of the Silverlight Toolkit that is current at the time of this writing, you will
find the following controls:

. Chart, Rating, NumericUpDown, TimeUpDown, DomainUpDown, GlobalCalendar,
TimePicker, Expander, Accordion, LayoutTransformer,
TransitioningContentControl, DockPanel, WrapPanel, ContextMenu: These
controls and panels are reviewed further in this chapter.

. DescriptionViewer, Label, ValidationSummary, DataForm, BusyIndicator: These
controls are used in scenarios requiring data entry. You’ll learn more about these
controls in further chapters.

. A large number of themes: Themes can be applied to your application without you
having to create styles and templates for the controls. The implicit theme will be
picked up by all the controls in your application, unless of course you specify other-
wise. You will see how to apply a theme to your application in Chapter 10.

Chart
Namespace: System.Windows.Controls.DataVisualization.Charting

Assembly: System.Windows.Controls.DataVisualization.Toolkit.dll

Charting is traditionally an area where third-party providers have been active and
provide, in some cases, advanced solutions. However, for many smaller applications, the
cost of such a professional solution can be prohibitive. This is why the Silverlight Toolkit’s
chart controls are a very interesting alternative.

CHAPTER 4 Investigating Existing Controls94

 From the Library of Wow! eBook

ptg

At the time of writing, the following chart types are available in the Toolkit: Area, Bar,
Bubble, Columns, Line, Pie, Scatter, and Stacked. Some of these chart types are shown in
Figure 4.5.

The charts available allow a great level of flexibility, including the possibility to define
multiple series, custom axis, and even dynamic data with the chart being animated as the
data is changing.

Where to Find Additional Controls? 95

4

FIGURE 4.5 Three types of charts: Column, Line, Pie.

Rating
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Input.Toolkit.dll

The Rating control is interesting when you want to
allow your application’s user to rate an article, a picture,
and so forth. Like most of the controls in the Silverlight
Toolkit, this control can be used with a default style or
with a custom style/template, allowing an unlimited
range of changes, as shown in Figure 4.6. Note that the
number of items (stars, bullets, and so on) can be
customized through a property; also, the rated value is a
double, allowing for fractional values to be entered.

NumericUpDown, TimeUpDown, DomainUpDown

Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Input.Toolkit.dll

These three controls all derive from the same base class named UpDownBase<T>. This is a
generic control, and can be extended for additional types if needed. These controls have
an input area and a spinner buttons. The buttons are used to increment the value, while
the input area can be used to jump to a value by entering it using the keyboard. Because
the Silverlight Toolkit comes with the source code, you can check how the team created
these controls, and inspire yourself from that solution to create your own up-down
control:

. NumericUpDown is used to “spin” numeric values. This is the simplest of the three
controls.

FIGURE 4.6 Rating control
in default style, and with
customized template.

 From the Library of Wow! eBook

ptg

. TimeUpDown, like the name shows, is used to “spin” time values. Depending on the
location of the cursor in the control’s input area, either the hours, the minutes, or
(if available) the AM/PM indicator are spun. Note that you can change the time
representation by using the Culture property (for example, en-US or fr-CH).

. DomainUpDown is the most complex of the three up-down controls available in the
Toolkit. In fact, it is more of a data control: You can data bind its ItemsSource prop-
erty to a collection of items. You can also customize the items’ appearance by creat-
ing a data template and assigning it to the ItemTemplate property. Thus, the
DomainUpDown is quite similar in its usage to a ListBox.

The Silverlight Toolkit’s sample browser has many examples of up-down controls in the
Input section. Make sure to check them out and review the source code to understand
how they are configured.

GlobalCalendar

Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Toolkit.dll

A control very similar to the Calendar control that is available in the core framework, the
GlobalCalendar can display years, months, and dates for a given culture. To change the
culture of the GlobalCalendar to ja-JP (Japanese culture), use the code in Listing 4.12.

LISTING 4.12 Setting the GlobalCalendar’s Culture

MyCalendar.CalendarInfo

= new CultureCalendarInfo(new CultureInfo(“ja-JP”));

TimePicker

Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Input.Toolkit.dll

The TimePicker is complementary to the already well-known
DatePicker that was available in earlier versions of the Toolkit,
and as of Silverlight 3, inside the core Silverlight framework. It
is composed of a TimeUpDown control (which we discussed earlier
in this chapter) and a small button shaped as a clock. The clock
displays a pop-up allowing selecting a time. Note that the pop-
up can be customized to display a range control with sliders, as
shown in Figure 4.7. Also, the TimePicker can be customized
for a given culture (with the ActualCulture property) and for a
given format (using the ActualFormat property).

Expander
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Toolkit.dll

CHAPTER 4 Investigating Existing Controls96

FIGURE 4.7
TimePicker with
RangeTimePickerPopup.

 From the Library of Wow! eBook

ptg

Accordion
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Layout.Toolkit.dll

The Expander and Accordion controls are two controls used to hide/show their content to
create flexible layout.

The Expander has one Content prop-
erty that can be any object (as is
usual for ContentControls). The
Content will be expanded/collapsed
when the user clicks the header, you
we see in Figure 4.8:

. If the Content is a string, a
TextBlock will be used automat-
ically for the display.

. If the Content is a UIElement, it
will be rendered.

. For data items, you can set the ContentTemplate property to specify how the item
must be rendered.

The Accordion control works a little like the Expander, but with multiple AccordionItem
instances, each with a Content property and a Header as seen on Figure 4.8. You can either
set the AccordionItem instances manually, or bind the Accordion’s ItemsSource property to
a collection, like with other data controls.

Depending on the SelectionMode property, the Accordion may display one only of the
items (automatically closing the others), or just leave them open/closed as the user acti-
vates them. Other properties such as SelectionSequence (Simultaneous or
CollapseBeforeExpand) and ExpandDirection govern the way that the AccordionItem
instances are expanded/collapsed, as shown in Listing 4.13.

LISTING 4.13 Expander and Accordion Controls

<toolkit:Expander

ExpandDirection=”Right”

Header=”Expand to the right”

Content=”{Binding Collection[0], Source={StaticResource Customers}}”

ContentTemplate=”{StaticResource ExpanderContentTemplate}” />

<toolkit:Accordion

ContentTemplate=”{StaticResource ExpanderContentTemplate}”

SelectionMode=”ZeroOrMore”

SelectionSequence=”CollapseBeforeExpand”>

<toolkit:AccordionItem

Where to Find Additional Controls? 97

4

FIGURE 4.8 Expander and Accordion controls.

 From the Library of Wow! eBook

ptg

Content=”{Binding Collection[0],

Source={StaticResource Customers}}”

Header=”Customer 1” />

<toolkit:AccordionItem

Content=”{Binding Collection[1],

Source={StaticResource Customers}}”

Header=”Customer 2” />

<toolkit:AccordionItem

Content=”{Binding Collection[2],

Source={StaticResource Customers}}”

Header=”Customer 3” />

</toolkit:Accordion>

LayoutTransformer
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Layout.Toolkit.dll

This control is quite specialized. WPF developers are familiar
with the two types of transformations that this framework
offers: RenderTransform (available in Silverlight) and
LayoutTransform (not available in Silverlight). The main differ-
ence is that RenderTransform will modify the elements after
the layout pass is completed. Other controls are not affected
by a RenderTransform. This can create unwanted side effects.
For example, Figure 4.9 shows three Buttons in a StackPanel.
The middle button is transformed by a RenderTransform
(45-degree RotateTransform).

On the other hand, the LayoutTransform is applied before the
layout pass, which means that other controls’ placement (and
in some case their size) will be modified according to the
transformed element (as shown in Figure 4.10).

Because LayoutTransform is not available in the core
Silverlight framework, however, using the LayoutTransformer
instead solves the issue (see Listing 4.14). You can find more
information about this control on its developer’s blog, David
Anson: http://www.galasoft.ch/sl4-layouttransform.

CHAPTER 4 Investigating Existing Controls98

FIGURE 4.9
RenderTransform applied
to a button.

FIGURE 4.10
LayoutTransform
applied to a button (with
LayoutTransformer).

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-layouttransform

ptg

LISTING 4.14 LayoutTransform Applied to a Button (with LayoutTransformer)

<toolkit:LayoutTransformer>

<toolkit:LayoutTransformer.LayoutTransform>

<TransformGroup>

<ScaleTransform/>

<SkewTransform/>

<RotateTransform Angle=”45”/>

<TranslateTransform/>

</TransformGroup>

</toolkit:LayoutTransformer.LayoutTransform>

<Button Content=”Button” Height=”40” Width=”213” />

</toolkit:LayoutTransformer>

TransitioningContentControl
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Layout.Toolkit.dll

This control can be used in place of a standard ContentControl to create a smooth transi-
tion between two different contents. The transitions are specified using visual states. By
default, the control knows the “UpTransition” (the old content shifts up before being
replaced by the new content) and the “DownTransition” (the exact opposite). You can also
specify different transitions using the VisualStateManager. You can find more information
about the TransitioningContentControl on Jesse Liberty’s blog, at
http://www.galasoft.ch/sl4-transitioncontrol.

DockPanel
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Toolkit.dll

The DockPanel is well known from WPF. It is useful to lay out your application by anchor-
ing UI elements to various sides of the panel. To change which side of the panel an
element is docked to, use the DockPanel.Dock attached property. Its value can be Left,
Right, Top, or Bottom, as shown in Listing 4.15. For more information about attached
properties, see Chapter 5, “Understanding Dependency Properties.”

In addition,, you can specify whether
the last element added to the panel
must fill the rest of the space.
Depending on the value of the
LastChildFill property on the
DockPanel, the layout will vary, as shown
in Figure 4.11. The default for this prop-
erty is True.

Where to Find Additional Controls? 99

4

FIGURE 4.11 LastChildFill property set to
False or True.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-transitioncontrol

ptg

LISTING 4.15 Setting Elements in a DockPanel

<toolkit:DockPanel LastChildFill=”False”>

<Rectangle Fill=”Red” Width=”50”

toolkit:DockPanel.Dock=”Left” />

<Rectangle Fill=”Yellow” Width=”50”

toolkit:DockPanel.Dock=”Right” />

<Rectangle Fill=”Blue” Height=”50”

toolkit:DockPanel.Dock=”Top” />

<Button Content=”Button”

toolkit:DockPanel.Dock=”Bottom” />

</toolkit:DockPanel>

WrapPanel
Namespace: System.Windows.Controls

Assembly: System.Windows.Controls.Toolkit.dll

WrapPanels are useful to display multiple items
in a row, with the ability to wrap on the next
line when the panel is resized. This ability is
especially interesting when the WrapPanel is
used as the presenting panel for a data control,
such as a ListBox. To do this, just set the
ListBox’s ItemsPanel property to a WrapPanel, as
shown in Listing 4.16 and in Figure 4.12.

LISTING 4.16 Using a WrapPanel as ItemPanel
for a ListBox

<ListBox ItemsSource=”{Binding Source={StaticResource Customers},

Path=Collection}”

ItemTemplate=”{StaticResource MyItemTemplate}”

Grid.Column=”1”

ScrollViewer.HorizontalScrollBarVisibility=”Disabled”

ScrollViewer.VerticalScrollBarVisibility=”Disabled”>

<ListBox.ItemsPanel>

<ItemsPanelTemplate>

<toolkit:WrapPanel />

</ItemsPanelTemplate>

</ListBox.ItemsPanel>

</ListBox>

The ContextMenu
Until recently, the Silverlight developer did not have any control on what was displayed
when the user right-clicks on the Silverlight application: The MouseRightButtonDown was
unavailable for the developers, and reserved to display the Silverlight menu only.

CHAPTER 4 Investigating Existing Controls100

FIGURE 4.12 Using a WrapPanel as
ItemPanel for a ListBox.

 From the Library of Wow! eBook

ptg

In Silverlight 4, the MouseRightButtonDown event is now available and can be handled by
your application, as we will see in Chapter 17, “New Transforms, Right Click, HTML
Browser, WebBrowserBrush, and Isolated Storage.” In the Silverlight Toolkit, a ContextMenu
is even provided. It makes it very easy to build customizable context menus, for example
with the code in Listing 4.17. Note that each menu item can also display icons if desired.

LISTING 4.17 Using a ContextMenu

<Image Source=”../Assets/sl4bloglogo.png”>

<toolkit:ContextMenuService.ContextMenu>

<toolkit:ContextMenu>

<toolkit:MenuItem Header=”Menu 1”

Click=”Menu1Click” />

<toolkit:MenuItem Header=”Menu 2”

Click=”Menu2Click” />

</toolkit:ContextMenu>

</toolkit:ContextMenuService.ContextMenu>

</Image>

Third-Party Providers
It is hard to keep track of all the third-party providers of Silverlight controls. It is also very
difficult to recommend one or the other, because it really depends what problem you are
trying to solve in your project.

The following checklist can be useful when trying to choose a third party provider for
your controls:

. Check the provider’s reputation online. Thankfully, with modern means of commu-
nication such as online forums or Twitter, users are more vocal than they used to
be. It is fairly easy to find information online about a provider.

. However, remember that users are much more prone to voice negative comments
than positive ones. So, take each comment online with a grain of salt. If you are in
doubt about what really happened, do not hesitate to contact the person who wrote
the comment to ask for clarification.

. If you don’t find information about the provider you are interested in, post your
questions about them, either on Twitter or on independent forums such as
http://www.silverlight.net.

. Check what support plan the provider is offering. Will you get a guaranteed answer
if you have an issue, and in what time frame? Many providers offer help through
online forums on their website. Take some time to check the quality of the replies,
and who wrote them: Is it a member of the support team? Is it the developer
himself (in which case, it might mean that there is no dedicated support team)?

Where to Find Additional Controls? 101

4

 From the Library of Wow! eBook

http://www.silverlight.net

ptg

. Are the controls free or “cheap”? What does this imply in terms of quality?
Although some free controls have a really good quality, and might totally fulfill
your needs, do not underestimate the value of a good support team.

. What is your relationship with this provider? Did you have experience with other of
their products? Many professional controls providers have offerings in other tech-
nologies too (such as ASP.NET, WPF, Windows Forms, and so on). Did someone in
your firm work with them already?

. Is there a possibility to evaluate the controls? If yes, for how much time, and under
which conditions?

. How good is the documentation? Is it easy to find information about the controls’
interface? Can you find working samples?

In summary, plan enough time to evaluate carefully the different offerings. Remember
that controls providers cater to a large audience, and their controls are designed to cover
a large spectrum of uses. You are most probably going to have to customize the controls
for your specific application. This is going to take some time, and you want to take
precautions before you start coding.

Summary
Silverlight 4 is the most mature version of the framework. This maturity is clearly visible
in the number of controls available, and in the means provided by the framework to
build new controls.

In this chapter, we talked about various changes in the Silverlight framework to facilitate
the creation of controls and their use in Silverlight applications. With these changes, the
framework is becoming richer and more compatible with Windows Presentation
Foundation and more able to support your needs as a developer and a designer.

With this maturity, we see the appearance of a large number of controls, within the
framework and outside; so much so in fact that every developer intending to use controls
in his project should plan enough time to evaluate the various offerings. We talked about
the three main sources of Silverlight controls: the Silverlight framework itself, the
Silverlight Toolkit, and third-party providers. We also reviewed some of the controls avail-
able, and you worked through an application with a number of samples. Additional
samples for the Silverlight Toolkit are available in the toolkit sample browser that is
provided when the toolkit itself is installed on a development machine.

CHAPTER 4 Investigating Existing Controls102

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Discover the dependency
property system and the
DependencyObject class.

. See how dependency proper-
ties are registered.

. Talk about attached proper-
ties, another kind of depen-
dency properties.

. See how attached properties
can be used to become
attached behaviors.

. Understand how a depen-
dency property’s value is
calculated.

CHAPTER 5

Understanding
Dependency Properties

The dependency property system is probably one of the
most important fundaments of Silverlight (and Windows
Presentation Foundation, too). A lot of functionality is
based on dependency objects and their properties (most
important, data binding and the animation system).

In fact, many of the types used in the Silverlight framework
derive from the DependencyObject class, as the following
steps show:

1. Open the Silverlight 4 documentation
(available offline, CHM file, from
http://www.galasoft.ch/sl4-offlinedoc,
or online at http://www.galasoft.ch/sl4-onlinedoc).

2. Navigate to a class (for example, the ScrollViewer
control, in the namespace
System.Windows.Controls).

3. Scroll down until you see the class hierarchy, as
shown in Figure 5.1.

4. Notice how the second highest class in the hierarchy
(directly under the Object class) is DependencyObject.

You are likely to encounter DependencyObject very often in
Silverlight. For example, all the classes that derive from
UIElement (that is, all the elements that can be drawn on
the screen) are also DependencyObject instances. This shows
how deeply the dependency property system is rooted in
the Silverlight framework.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-offlinedoc
http://www.galasoft.ch/sl4-onlinedoc

ptg

In Silverlight 2 Unleashed, Chapter 15, we explored
the class hierarchy and explained what role the
object, DependencyObject, UIElement, and
FrameworkElement classes play. It is a good moment
to refresh your memory if needed before we dive
deeper.

Inheriting DependencyObject
The DependencyObject class serves two major purposes:

. Providing an interface to facilitate interaction between threads

. Hosting dependency properties

Threading
We will talk about threading in more detail in Chapter 22 “Advanced Development
Techniques.” What we need to remember for now is that most objects are owned by the
thread that created them. In most cases, this is the main thread of the application (called
the UI thread) that owns the objects (for instance, all the UIElement instances).

However, when long-running tasks are executed on the UI thread, all other activities are
blocked until that task is completed. It means that animations will not run anymore, and
the controls will not react to user input. This is a rather irritating effect that hinders the
user experience.

In such a case, the best practice is to spawn a background thread (as we will do in
Chapter 22). This way, the UI thread is not blocked and can process animations and user
input. However, every access from the background thread to the objects owned by the UI
thread (including all the UIElement instances, as mentioned previously) must be dispatched
to avoid a crash in the application. The DependencyObject has two members to help you
with that task:

. The Dispatcher property: Each thread has one instance of the Dispatcher class that
manages the queue of operations to be executed on that thread. This is the class you
use when you want to dispatch an operation from one thread to another. Do not let
the fact that the Dispatcher class and the DependencyObject.Dispatcher property
have the same name confuse you.

. The CheckAccess method: When an object calls this method on another object, the
method returns true if direct access is allowed. If that is not the case, the operation
must be dispatched.

In Chapter 22, we will work more with threading in Silverlight and spend more time with
the Dispatcher object.

CHAPTER 5 Understanding Dependency Properties104

FIGURE 5.1 ScrollViewer
control class hierarchy.

 From the Library of Wow! eBook

ptg

Accessing a Dependency Property’s Value
Dependency properties are registered in a static manner, as you will see in “Registering
Dependency Properties,” later in this chapter. It means that the value for each different
instance of a class is administrated by the dependency property system, and must be
accessed using methods that are defined on the DependencyObject class:

. The SetValue and GetValue methods are used to set and get the value of a given
dependency property.

. The ClearValue method is used to reset the property to its default value. (You will
see in a moment how to define a default value for a dependency property.)

. Two methods, ReadLocalValue and GetAnimationBaseValue are used to get the depen-
dency property’s value in some special cases, as covered later in this chapter.

Now that you understand better what a DependencyObject does, let’s talk about depen-
dency properties themselves, and how to define new ones.

Using a DependencyObject as Data Item
The DependencyObject class itself is abstract in Silverlight and therefore cannot be instanti-
ated. However, in Silverlight 4, it is possible to derive a class from DependencyObject to
host dependency properties. You can then use instances of this class as data objects, as
shown in Listing 5.1.

LISTING 5.1 Customer Class Inheriting DependencyObject

1 public class Customer : DependencyObject

2 {

3 public const string NamePropertyName = “Name”;

4

5 public string Name

6 {

7 get { return (string)GetValue(NameProperty); }

8 set { SetValue(NameProperty, value); }

9 }

10

11 public static readonly DependencyProperty NameProperty

12 = DependencyProperty.Register(

13 NamePropertyName,

14 typeof(string),

15 typeof(Customer),

16 new PropertyMetadata(string.Empty));

17

18 public Customer(string name)

19 {

Inheriting DependencyObject 105

5

 From the Library of Wow! eBook

ptg

20 Name = name;

21 }

22 }

See the “Registering Dependency Properties” section for more details about Listing 5.1.

Using a Better Implementation for Data Items
Using full-blown DependencyObject instances to host data might not be the best idea.
Using the dependency property system requires quite a lot of code, and if you do not
explicitly need it, it is better to avoid creating a DependencyObject for this kind of purpose.

A better solution is to use plain old CLR objects (also known as POCO) implementing an
interface called INotifyPropertyChanged. (You met this interface already in Chapter 4,
“Investigating Existing Controls,” in Listing 4.6.) This is very convenient because data
bindings will react when the PropertyChanged event that this interface defines is raised.
However, raising the event must be done explicitly in code when the value of the prop-
erty changes, while dependency properties do this automatically. Listing 5.2 shows an
alternative implementation of the Customer object, with exactly the same features.

LISTING 5.2 Customer Class with INotifyPropertyChanged

1 public class Customer : INotifyPropertyChanged

2 {

3 public event PropertyChangedEventHandler PropertyChanged;

4

5 public const string NamePropertyName

6 = “Name”;

7

8 private string _name = string.Empty;

9

10 public string Name

11 {

12 get

13 {

14 return _name;

15 }

16

17 set

18 {

19 if (_name == value)

20 {

21 return;

22 }

23

24 _name = value;

CHAPTER 5 Understanding Dependency Properties106

 From the Library of Wow! eBook

ptg

25 RaisePropertyChanged(NamePropertyName);

26 }

27 }

28

29 public Customer(string name)

30 {

31 Name = name;

32 }

33

34 private void RaisePropertyChanged(string propertyName)

35 {

36 if (PropertyChanged != null)

37 {

38 PropertyChanged(

39 this,

40 new PropertyChangedEventArgs(propertyName));

41 }

42 }

43 }

. Line 3 implements the INotifyPropertyChanged interface by declaring the
PropertyChanged event.

. Line 5 declares the name of the property as a constant. String-based identifiers
should be stored in constants to avoid errors when the identifier is used in another
part of the code.

. Line 8 declares an attribute for the Name property value and initializes it.

. Lines 12 to 15 are a simple getter for the Name property.

. Lines 19 to 22 verify whether the property is actually changed by the object calling
it. If it is unchanged, we simply return, to avoid raising the PropertyChanged event
unnecessarily.

. Line 25 calls a utility method declared a little further in the code, which raises the
PropertyChanged event.

. Lines 34 to 42 are declaring this utility method: First we check that the
PropertyChanged event is not null. In .NET, events are null if no other object regis-
tered for them. That would be the case if no data binding and no other object used
the Customer object. Raising the PropertyChanged event if it is null will crash the
application.

. Finally, on line 38 to 40, we raise the PropertyChanged event. By convention, the
first argument of this event (and all other events in .NET) is the event sender, which
we set to this. The second argument is an instance of PropertyChangedEventArgs,
which carries the name of the changed property as payload.

Inheriting DependencyObject 107

5

 From the Library of Wow! eBook

ptg

The implementations in Listing 5.1 and Listing 5.2 are equivalent from a data binding
point of view. However, Listing 5.2 does not rely on the dependency property system at
all. POCO objects like this one are easier to handle for other objects: They can be easily
tested (for example, in unit tests), passed to web services, serialized for safekeeping, and
so forth.

This is why it is usually better to rely on implementing INotifyPropertyChanged for data
objects, and reserve DependencyObject instances for user interface objects such as controls,
UI elements, and so forth.

Registering Dependency Properties
As you saw in Listing 5.1, a dependency property needs to be registered using the static
method DependencyProperty.Register. Let’s review Listing 5.1 and understand what we
implemented:

. Line 3 stores the name of the property in a constant. Like when we implemented
INotifyPropertyChanged in Listing 5.2, it is a good practice to store any string identi-
fier in a constant to avoid errors when using this identifier.

. Lines 5 to 9 declare a getter and a setter for the Name property. The getter uses the
method GetValue implemented by the DependencyObject base class. Similarly, the
setter uses the method SetValue. The value of the property is not stored locally, but
is instead stored within the dependency property system.

CHAPTER 5 Understanding Dependency Properties108

WA R N I N G

Using “Magic Strings”

Many areas in Silverlight rely on what programmers in the Silverlight community call “magic
strings.” For example, registering a dependency property requires the name of this property
to be passed as a string to the DependencyProperty.Register method. This is dangerous
because if you want to modify the name of one of these identifiers, you must look every-
where in your code (and XAML!) to make sure that you changed it correctly. Using constants
to store string identifiers (as on line 3) is a good step to avoid such errors. Unfortunately,
this is not possible in XAML.

WA R N I N G

Convenience Getter and Setter

In fact, the property getter and setter declared on lines 5 to 9 of Listing 5.1 are not used by
the data binding system or the animation system to modify the property’s value. They are
only here for convenience: It is easier to use the Name property directly instead of having to
call the methods GetValue and SetValue each time.

 From the Library of Wow! eBook

ptg

. Lines 11 to 16 are where the actual registration takes place. The static method
DependencyProperty.Register takes four parameters:

The name of the property that is registered. We use the constant we declared
on line 3

The type of the dependency property

The type of the object to which the dependency property belongs

An instance of the PropertyMetadata class, which we discuss in the “Defining
Metadata” section, next.

. Note that the object returned by the Register method is saved, and used as an
identifier for the dependency property. It is used in various occasions (for example,
when a binding is created in code, as you will see in Chapter 6, “Working with
Data: Binding, Grouping, Sorting, and Filtering.”

. Finally, we declare a constructor for the Customer class. Notice how we use the
convenience setter for the Name property on line 20.

Because the convenience getter and setter are public, other objects can use them to set
and get the dependency property’s value. Of course, depending on your implementation,
you might want to restrict the getter’s or the setter’s visibility. You can even delete the
Name getter and setter altogether and rely only on the methods GetValue and SetValue if
you prefer.

Defining Metadata
The dependency property system requires a little more information during the registra-
tion process. We provide this information using an instance of the PropertyMetadata class.

Registering Dependency Properties 109

5

T I P

Why Metadata?

The DependencyProperty.Register method was implemented first in Windows Presentation
Foundation (WPF, Silverlight’s richer counterpart for the Windows desktop). In fact, the
Register method and the metadata system available in WPF are more complex than the
ones in Silverlight, and allow for more functionality. The syntax available in Silverlight might
seem a little cumbersome at times, but it is in fact there for reason of compatibility with the
richer WPF framework.

Setting a Default Value
The PropertyMetadata constructor allows setting a default value for the property. Every
time that an instance of the Customer object is created, the Name dependency property is
set to string.Empty.

 From the Library of Wow! eBook

ptg

Handling a Property Change
As mentioned earlier, the data binding system as well as the animation system set a prop-
erty’s value through the base class’s SetValue method, and not through the convenience
setter. Because of this, the object you are implementing will not be notified if another
object sets one of its properties.

To solve this problem, you need to use a different overload of the PropertyMetadata
constructor and provide a PropertyChangedCallback delegate. To illustrate this, let’s add a
dependency property named NumberOfChanges to the Customer class. This property should
be incremented every time that the Name property is modified. The registration for the
Name dependency property becomes Listing 5.3.

LISTING 5.3 Modified Name Dependency Property with PropertyChangedCallback

1 public static readonly DependencyProperty NameProperty

2 = DependencyProperty.Register(

3 NamePropertyName,

4 typeof(string),

5 typeof(Customer),

6 new PropertyMetadata(string.Empty, UpdateNumberOfChanges));

7

8 private static void UpdateNumberOfChanges(

9 DependencyObject d,

10 DependencyPropertyChangedEventArgs e)

11 {

12 var sender = d as Customer;

13 sender.NumberOfChanges++;

14 }

. On line 6, notice that a different overload of the PropertyMetadata constructor is
used: We provide a PropertyChangedCallback delegate.

. The delegate is implemented on lines 8 to 14. Such a delegate has two parameters:

The DependencyObject instance that owns the property. This is needed because the
delegate is static (like the rest of the dependency property system). We use the first
parameter to set nonstatic properties or call nonstatic methods on the instance.

An instance of DependencyPropertyChangedEventArgs. This class contains information
about the property change: The OldValue, the NewValue, and the DependencyProperty
object that changed. Note that OldValue and NewValue are of type object, and must
be cast to the actual type of the property.

. On line 12, we cast the first parameter to a Customer object. It is not necessary to
check whether the parameter is actually of this type; it is always the case.

. On line 13, we update the property NumberOfChanges on the Customer instance. Note
that this property is not present on Listing 5.3 to keep things simpler. You can,
however, download a working sample from http://www.galasoft.ch/sl4-inheritdo.

CHAPTER 5 Understanding Dependency Properties110

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-inheritdo

ptg

Because the UpdateNumberOfChanges method is defined within the Customer object, it is
possible to call private methods and to set/get private attributes and properties on the
PropertyChangedCallback delegate’s first parameter, because it is also of type Customer.
This can be a little confusing at first.

There are altogether three overloads to construct a PropertyMetadata instance in
Silverlight 4. We saw the first one in Listing 5.1 and the second in Listing 5.3. The third
overload accepts only the PropertyChangedCallback delegate, but no default value for the
property. In that case, the property’s type’s default value will be used (for example, false
for bool, 0 for int, null for object, and so forth.)

Initializing Dependency Objects
Because of the specificities of dependency properties, and because of the fact that often
DependencyObject is used in XAML documents, some precautions must be taken when
initializing them.

Choosing a Good Default Value
The default value for the dependency property must be chosen wisely: The
PropertyChangedCallback delegate is only executed if the property’s new value is different
from the previous value. If your implementation of the delegate contains code that is crit-
ical for your object’s initialization, you must make sure that it is executed.

One way to guarantee that this code will be executed is to choose a default value that the
user will not use. It might also be a good idea to notify the user about this, to avoid
unwanted side effects. An example is shown in Listing 5.10: The InitialAngle property
can be set from 0 to 360 degrees. To guarantee that the PropertyChangedCallback is
executed, the default value for this property is set to 400 degrees.

Defining a Default Constructor
You saw in Chapter 3, “Extending Your Application with Controls,” that XAML (like all
XML-based languages) requires that the objects it hosts implement a default constructor
(that is, a constructor without any parameters). Because most dependency objects will be
used in XAML (as UI elements, or as data objects), it is good practice to always define an
empty constructor and rely on the properties for the dependency object’s initialization.

Registering Dependency Properties 111

5

T I P

Casting an Element Using the as Keyword

The as keyword is used to cast an element from a type to another type (for example, from
DependencyObject to Customer). However, the cast is only successful if the original type
(DependencyObject) is a super class of the destination type (Customer). Should that not be
the case, the as keyword returns null, but does not throw an exception. This provides a
convenient way to make sure that an instance is of a given type without having to try/catch
an exception.

Note that the as keyword cannot be used on value types (such as int, double, and so forth)
or on struct types. For these types, the casting operator () must be used.

 From the Library of Wow! eBook

ptg

Remember that in .NET you do not need
to explicitly define a default constructor
if there is no other constructor in the
class. If you define one or more
constructors with parameters, however,
you must explicitly implement a default
constructor (even if it does nothing) for
your dependency object to avoid excep-
tions in XAML.

CHAPTER 5 Understanding Dependency Properties112

WA R N I N G

Understanding the Silverlight Error

When you attempt to create an object in
XAML that does not have an empty construc-
tor, an error message is displayed (see
Figure 5.2).

FIGURE 5.2 Error message for an object in XAML without empty constructor (shown in Visual
Studio).

Protecting the Code When Properties Are Set
Similarly, remember that objects that are used in XAML can have their properties set in
any order. Your PropertyChangedCallback code must take this into account. Listing 5.4
shows a DependencyObject that we will initialize in XAML. This object has two depen-
dency properties, Test1 and Test2. When one of these properties change, an attribute
named _lowerCaseStrings is computed, by concatenating both dependency properties in
lowercase format.

LISTING 5.4 Initializing a DependencyObject

1 public class DataObject : DependencyObject

2 {

3 private string _lowerCaseStrings = string.Empty;

4

5 public const string Test1PropertyName = “Test1”;

6

7 public string Test1

8 {

9 get { return (string)GetValue(Test1Property); }

10 set { SetValue(Test1Property, value); }

11 }

12

13 public static readonly DependencyProperty Test1Property

 From the Library of Wow! eBook

ptg

14 = DependencyProperty.Register(

15 Test1PropertyName,

16 typeof(string),

17 typeof(DataObject),

18 new PropertyMetadata(null, UpdateLowerCase));

19

20 public const string Test2PropertyName = “Test2”;

21

22 public string Test2

23 {

24 get { return (string)GetValue(Test2Property); }

25 set { SetValue(Test2Property, value); }

26 }

27

28 public static readonly DependencyProperty Test2Property

29 = DependencyProperty.Register(

30 Test2PropertyName,

31 typeof(string),

32 typeof(DataObject),

33 new PropertyMetadata(null, UpdateLowerCase));

34

35 private static void UpdateLowerCase(

36 DependencyObject d,

37 DependencyPropertyChangedEventArgs e)

38 {

39 var sender = d as DataObject;

40

41 if (sender.Test1 == null

42 || sender.Test2 == null)

43 {

44 return;

45 }

46

47 sender._lowerCaseStrings

48 = sender.Test1.ToLower()

49 + sender.Test2.ToLower();

50 }

51 }

. Both Test1 and Test2 use the method UpdateLowerCase as their
PropertyChangedCallback delegate.

. This method (defined on lines 35 to 50) uses the value of both properties to build
the lowercase attribute. Lines 47 to 49 will throw a NullReferenceException if either
one of the properties is null.

Registering Dependency Properties 113

5

 From the Library of Wow! eBook

ptg

. To avoid the exception, we protect the method with lines 41 to 45 and simply exit
if the properties are not set yet.

. Note that we didn’t define any constructor for the DataObject class, which means
that the default constructor is implicit.

This allows us to create a DataObject instance in XAML (in the resources) without worry-
ing about the order of the properties, as shown in Listing 5.5.

LISTING 5.5 Creating Two DataObject Instances in XAML

<UserControl.Resources>

<data:DataObject Test1=”Hello”

Test2=”World”

x:Key=”TestDataObject1” />

<data:DataObject Test2=”Again”

Test1=”Another”

x:Key=”TestDataObject2” />

</UserControl.Resources>

Notice in Listing 5.5 how the order of the properties Test1 and Test2 differ. This is not a
problem because we protected our code in Listing 5.4. In this case, we created a data
object, but the same rules apply to controls and any other DependencyObject, such as
controls, shapes, and so on.

Understanding Attached Properties
Using dependency properties is very convenient and powerful, but creating a new
such property requires you to have access to the inner implementation of an object.
Most of the time, however, this is not possible because you didn’t implement the object
in question.

One way to modify an existing object’s behavior is to create a new class deriving from the
original one, and add methods and properties. However, another less-invasive way is also
possible: extending the existing class by attaching external properties to it. Such proper-
ties in Silverlight are called attached properties.

Using Attached Properties for Values
The most well-known usage for attached properties in Silverlight is to define a UI
element’s placement on a panel (for example, the Grid, the Canvas or the DockPanel). In
such a case, the attached property is used as a store for a value that has relevance in only
a certain context (when the element is placed onto a corresponding panel). The Grid
defines four attached properties:

CHAPTER 5 Understanding Dependency Properties114

 From the Library of Wow! eBook

ptg

. Grid.Row and Grid.Column define in which cell
of the Grid the element on which the proper-
ties are attached must be placed.

. Grid.RowSpan and Grid.ColumnSpan specify
over how many rows or columns, respectively,
the element must be placed. For instance, the
XAML code in Listing 5.6 produces the place-
ment in Figure 5.3 (seen in Expression Blend).

LISTING 5.6 Setting Attached Properties in XAML

<Rectangle Grid.ColumnSpan=”2”

Grid.Column=”1”

Grid.Row=”1”

Fill=”Red” />

<Ellipse Grid.Column=”1”

Grid.Row=”1”

Grid.RowSpan=”3”

Fill=”Blue” />

Because attached properties are handled by the dependency property systems, the same
interaction can be applied to them: data binding, animation, and so forth.

Registering an Attached Property
Attached properties can be defined on any DependencyObject, using the static method
DependencyProperty.RegisterAttached, as shown in Listing 5.7. In this code, we create a
special ChildWindow (which we examined in Chapter 4) to present a UIElement. We use
attached properties to define additional presentation information directly on the element,
which we will pass to our PresentationWindow class. When the method
Present(UIElement) is called, the attached properties will be retrieved and used to config-
ure the PresentationWindow.

LISTING 5.7 PresentationWindow Implementation

1 public partial class PresentationWindow : ChildWindow

2 {

3 public const string CaptionPropertyName = “Caption”;

4

5 public static string GetCaption(DependencyObject obj)

6 {

7 return (string)obj.GetValue(CaptionProperty);

8 }

9

10 public static void SetCaption(DependencyObject obj, string value)

11 {

Understanding Attached Properties 115

5

FIGURE 5.3 Setting elements
on a Grid with attached properties.

 From the Library of Wow! eBook

ptg

12 obj.SetValue(CaptionProperty, value);

13 }

14

15 public static readonly DependencyProperty CaptionProperty

16 = DependencyProperty.RegisterAttached(

17 CaptionPropertyName,

18 typeof(string),

19 typeof(PresentationWindow),

20 new PropertyMetadata(string.Empty));

21

22 public void Present(UIElement element)

23 {

24 PresentationGrid.Children.Add(element);

25

26 // Use attached property (if available)

27 var caption = GetCaption(element);

28 if (!string.IsNullOrEmpty(caption))

29 {

30 Title = caption;

31 }

32

33 Show();

34 }

35

36 public PresentationWindow()

37 {

38 InitializeComponent();

39 }

40

41 private void OKButton_Click(object sender, RoutedEventArgs e)

42 {

43 DialogResult = true;

44 PresentationGrid.Children.Clear();

45 Title = string.Empty;

45 }

46 }

. On line 3, we define the property’s name in a constant. Here, too, we need a string
identifier to register the property, and it is a good practice to use a constant for this.

. On line 5 to 8, we implement a method to get the value of the attached property.
Note that this method is static. Also, in the contrary to the convenience properties
used to access dependency properties, the Get and Set methods for attached proper-
ties are actually used by the system to set and get the value.

CHAPTER 5 Understanding Dependency Properties116

 From the Library of Wow! eBook

ptg

. Similarly, we define a static method to set the value of the property on lines 10 to
13. Note that these methods call the GetValue and SetValue methods defined on
the DependencyObject class, just like we did in the getter/setter for a dependency
property.

. Lines 15 to 20 show the registration itself using the static method
DependencyProperty.RegisterAttached. It is very similar to registering a “standard”
dependency property, and the parameters are the same:

The attached property’s name, which we retrieve from the constant on line 3

The type of the attached property

The type of the object to which the attached property belongs

An instance of the PropertyMetadata class, used to define additional information (in
this case, the default value)

. On lines 22 to 34, the Present method is defined. It accepts a UIElement.

. On line 24, we add the UIElement parameter to a Grid named PresentationGrid. This
Grid is defined in the PresentationWindow.xaml, and simply occupies the whole
content area. Note that PresentationGrid is cleared when the child window is
closed, to avoid keeping references to unused elements.

. On lines 27, we use the GetCaption method to retrieve the value of the attached
property Caption on the UIElement in question. Note that it is possible that this
property has not been set, in which case GetCaption returns null.

. If the Caption attached property has been set on the UIElement, we set this value as
the PresentationWindow’s title on line 30.

. Finally, we open the window on line 33.

. On lines 44 and 45, we clean up the window when it is closed: The
PresentationGrid is cleared of elements, and the Title is reset.

Of course, we could use additional attached properties to define other properties of the
ChildWindow; for example, the OverlayBrush, the number of buttons to be displayed (OK,
Cancel, and so on), and so forth.

Note that the convenience methods are public, and can be used to access an attached
property’s value outside of the class defining this property. For example, Listing 5.8 shows
a method incrementing the Top and Left properties on a UIElement placed into a Canvas.

Understanding Attached Properties 117

5

 From the Library of Wow! eBook

ptg

LISTING 5.8 Getting and Setting Attached Properties in Code

public void Move(UIElement element)

{

var x = Canvas.GetLeft(element);

Canvas.SetLeft(element, x + 1);

var y = Canvas.GetTop(element);

Canvas.SetTop(element, y + 1);

}

Using Custom Attached Properties in XAML
You already saw in Listing 5.6 how attached properties are set in XAML. For attached
properties on a custom class, the syntax is the same, but you need to prefix the reference
to the class with the xmlns prefix as usual (exactly as you would do for custom controls,
user controls, and data objects) For example, Listing 5.9 shows how the
PresentationWindow.Caption attached property can be set on an Ellipse in XAML.

LISTING 5.9 Setting Custom Attached Properties in XAML

<Ellipse xmlns:local=”clr-namespace:AttachedProperties”

local:PresentationWindow.Caption=”This is an ellipse”

Fill=”Red” Width=”100” Height=”100” />

Implementing an Attached Behavior
In the previous sections, you saw how attached properties can be used to attach a value to
an object, even though the object does not implement the property. Another usage for
attached property started to be popular not long ago in Silverlight and WPF: using
attached properties to create an attached behavior.

When you create an attached behavior, you use the PropertyChangedCallback delegate to
attach one or more events to the element on which the attached property is set. When
the events are raised, the class hosting the attached behavior handles them. We did not
just attach data to the element, but we attached actions, a behavior.

The following example demonstrates this. We implement an attached behavior that
rotates any UIElement by 45 degrees every time that the mouse is pressed on the element.
The attached behavior and the class hosting it are shown in Listing 5.10.

LISTING 5.10 ElementRotator Class and Attached Behavior

public class ElementRotator : DependencyObject

{

public const string InitialAnglePropertyName = “InitialAngle”;

public static double GetInitialAngle(DependencyObject obj)

{

CHAPTER 5 Understanding Dependency Properties118

 From the Library of Wow! eBook

ptg

return (double)obj.GetValue(InitialAngleProperty);

}

public static void SetInitialAngle(DependencyObject obj, double value)

{

obj.SetValue(InitialAngleProperty, value);

}

public static readonly DependencyProperty InitialAngleProperty

= DependencyProperty.RegisterAttached(

InitialAnglePropertyName,

typeof(double),

typeof(ElementRotator),

new PropertyMetadata(400.0, AttachToElement));

private static void AttachToElement(

DependencyObject d,

DependencyPropertyChangedEventArgs e)

{

// See Listing 5.11

}

}

The code in Listing 5.10 shows a standard registration of an attached property, as we did
before. Notice, however, that the PropertyMetadata defines a PropertyChangedCallback
delegate. The method is called AttachToElement, as shown in Listing 5.11.

LISTING 5.11 Attaching a Behavior to an Element

1 private static void AttachToElement(

2 DependencyObject d,

3 DependencyPropertyChangedEventArgs e)

4 {

5 var element = d as UIElement;

6 if (element == null)

7 {

8 return;

9 }

10

11 if (e.NewValue == null)

12 {

13 Detach(element);

14 }

15

16 double initialAngle = (double)e.OldValue;

17

18 if (initialAngle >= 360.0)

Understanding Attached Properties 119

5

 From the Library of Wow! eBook

ptg

19 {

20 // The element was not initialized yet.

21 // Attach the event handler.

22 element.MouseLeftButtonDown += RotateElement;

23 element.RenderTransformOrigin = new Point(0.5, 0.5);

24 }

25

26 element.RenderTransform = new RotateTransform

27 {

28 Angle = (double)e.NewValue

29 };

30 }

31

32 private static void RotateElement(object s, MouseButtonEventArgs e)

33 {

34 // See Listing 5.12

35 }

. On line 5, we cast the DependencyObject d to a UIElement: When you implement the
PropertyChangedCallback delegate for an attached property, the first parameter is the
element to which the property is attached. This provides a convenient way to attach
event handlers or set properties on that element. Note that if the result of the cast is
null, we just exit the method on line 8. That is the case if the object was null to
start with, or if it cannot be cast to UIElement.

. On lines 11 to 14, we call a method named Detach that will clean up, as you will see
in a moment.

. On line 16, we get the previous value of the property. As discussed earlier in this
chapter, the DependencyPropertyChangedEventArgs class contains this information as
well as the property’s new value.

. On lines 18 to 24, we initialize the element. Detecting whether the element has
been initialized already can be tricky, especially if you don’t want to keep a list of
subscribed elements. In this implementation, we initialize with a convention: The
value of InitialAngle can be set between 0 and 360 degrees (not inclusive). But
when we register the property, we set the default value to 400 degrees. This way,
when the value is set for the first time, this is an indication that the
MouseLeftButtonDown event should be registered, which we do on line 22. The event
handler will be implemented in Listing 5.12.

. Notice that we also set the RenderTransformOrigin point on line 23. Even though
this property’s type is a Point, the values entered (0.5, 0.5) are relative to the
element’s size. In our case, the point is in the center of the element, 50% of the
width and 50% of the height.

. On lines 26 to 29, we create a new RotateTransform with an Angle retrieved from the
attached property’s new value. The element is rotated according to the initial value
of the attached property, as set by the user in XAML.

CHAPTER 5 Understanding Dependency Properties120

 From the Library of Wow! eBook

ptg

The next step is to implement what happens when the mouse is pressed on the element,
as shown in Listing 5.12.

LISTING 5.12 Rotating the Element

1 private static void RotateElement(

2 object s,

3 MouseButtonEventArgs e)

4 {

5 var sender = s as UIElement;

6

7 if (sender == null)

8 {

9 return;

10 }

11

12 var transform = sender.RenderTransform

13 as RotateTransform;

14 if (transform == null)

15 {

16 return;

17 }

18

19 transform.Angle += 45;

20 }

. This method is a MouseLeftButtonDown event handler that takes two parameters: the
event’s sender (the element on which the attached property is set) and the
MouseButtonEventArgs parameter, with information about the event and the mouse.
We will not use this second parameter in the sample.

. On line 5, we cast the first parameter, of type object, to a UIElement. We exit the
method on line 9 if the cast is null.

. On lines 12 and 13, we get the element’s RenderTransform property, and cast it to a
RotateTransform. Note that if the element has not been initialized correctly, the cast
may not be successful. For example, the RenderTransform might not have been set at
all, or it might be another type of transform (TranslateTransform, ScaleTransform,
and so on) or even a TransformGroup containing multiple transforms. In that case,
the cast will be null, and we exit the method on line 16.

. Finally, if all went well, we increase the RotateTransform’s Angle property by 45
degrees.

Cleaning Up to Avoid Memory Leaks
The last step we should take care of is giving the user a possibility to detach the element
to avoid keeping it in memory. Even if, in this case, the event handler is static and thus

Understanding Attached Properties 121

5

 From the Library of Wow! eBook

ptg

does not cause a memory leak, detaching the event handlers when the attached behavior
is removed is a good practice. In some cases (for example if the element to which the
behavior is attached is stored in a collection for some reason), memory leaks can be
created if the cleanup is not correctly executed.

Unfortunately, there is no way to automatically detect whether an object is disposed. We
can, however, provide a way to unregister the event handler, as shown in Listing 5.13.
The developer using the attached behavior should call the Detach method. This also resets
the attached property to 400 degrees, to guarantee the element initialization if the prop-
erty is reattached. The Detach method is also invoked if the attached property is set to
null, as you saw in Listing 5.11, line 13.

Another way to solve this problem is to use the weak event pattern, which does not create
a strong reference. For more information about this pattern, see
http://www.galasoft.ch/sl4-weakevent.

LISTING 5.13 Detaching the Event Handler

public static void Detach(UIElement element)

{

SetInitialAngle(element, 400.0);

element.MouseLeftButtonDown -= RotateElement;

}

Using the Attached Behavior in XAML
Attaching this behavior on a Rectangle is as simple as shown in Listing 5.14.

LISTING 5.14 Attaching the Behavior in XAML

<Rectangle xmlns:ext=”clr-namespace:AttachedBehaviour.Extensions”

ext:ElementRotator.InitialAngle=”15”

Width=”100” Height=”100” Fill=”Red” />

Attaching the ElementRotator behavior to an element is done by mapping a namespace
and setting a property. From this moment onward, the element is rotated by 15 degrees,
without us having to explicitly set a RotateTransform. Then, every time that the user
presses the mouse’s left button on the element, it is rotated by an additional 45 degrees.

Building on Attached Behaviors with Blend Behaviors
The Expression Blend team provided a library with a few classes that enable you to lever-
age the power of the attached behaviors that you saw here, but taking care of some of their
inconveniences. Blend behaviors are one of the most innovative and exciting features that
were added to Expression Blend 3: They provide developers with a way to cleanly encapsu-
late their code and to deploy it, making it reusable. At the same time, they allow designers
to add interactive features to their XAML without having to type the code.

We will spend more time with Blend behaviors in Chapter 11, “Mastering Expression
Blend.”

CHAPTER 5 Understanding Dependency Properties122

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-weakevent

ptg

Adding a New Property with Snippets
As you could see in the previous sections, adding a new dependency property or attached
property involves a lot of repetitive code. Typing everything by hand is not the nicest
task one can imagine, and is prone to errors.

Thankfully, Visual Studio provides an automated way to add chunks of code to a class,
using so called code snippets. There are quite a few preinstalled code snippets, including a
dependency property and an attached property for Windows Presentation Foundation.
Unfortunately, the code created by these snippets will not compile in Silverlight without a
few modifications.

Installing the Snippets for Silverlight
To make things easier, you can download two new snippets that do the same job for
Silverlight, and install them with the following steps:

1. Download the snippets zip file from http://www.galasoft.ch/sl4-snippets.

2. Open Visual Studio 2010.

3. Select Tools, Code Snippets Manager from the menu.

4. In the Code Snippets Manager dialog, select Visual C# in the Language combo box.

5. Select the folder named My Code Snippets and copy the path shown in Figure 5.4.

6. Extract the zip file that you downloaded on step 1 to the path that you copied in
Step 5.

Adding a New Property with Snippets 123

5

FIGURE 5.4 Getting the snippets’ path.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-snippets

ptg

Using the Snippets
With the snippets installed, you can now follow these steps to create a new dependency
property:

1. Open a class deriving from DependencyObject in Visual Studio (for example,
MainPage.xaml.cs, any UserControl, and so on).

2. At the location where you want to add the dependency property, type slpropd. You
should see the item appear in the IntelliSense window. If it is not present, the
snippet is not correctly installed. Close Visual Studio and repeat the steps to install
the snippets correctly.

3. With slpropd selected in IntelliSense, press the Enter key, and then the Tab key. This
expands the snippet and type most of the code for you.

4. You need to customize the snippet by entering a few identifiers. These are marked in
the editor with a light green highlight, as shown on Figure 5.5. You can pass from
one marker to the next by pressing the Tab key. When you reach the last marker,
you can go back to the first one by pressing Tab again. The identifiers are as follows:

. The name of the depen-
dency property (default:
MyProperty).

. The type of the dependency
property (default: int).

. The owner class of the
property. This is generally
the class in which you are
implementing it (default:
ownerclass).

. The default value (default: 0).

5. Press the Escape key to finish editing the identifiers.

Code snippets are very convenient to create boilerplate code faster. There is also a snippet
for attached properties, named slpropa.

Calculating a Dependency Property’s Value
A dependency property’s value can be set from various sources. We already talked about
the default value. You can also set the value in XAML or in code. Also, other mechanisms
take advantage of the dependency property system (for example, data binding or
animations).

Because of this, the value of the dependency property depends on multiple factors, and a
system of priority, or precedence, must be established.

CHAPTER 5 Understanding Dependency Properties124

FIGURE 5.5 Expanded snippet with marked
identifiers.

 From the Library of Wow! eBook

ptg

In Silverlight, the value can be set from the following sources (listed in order of
precedence).

. (Highest) If an animation is setting the value, this has the highest priority. It is
necessary because an animation must be able to change the value even if it has been
set locally.

Note that an animation may hold the value it was changing even if the storyboard
is completed. To change this, the property FillBehavior can be set on the Timeline
class (either the Storyboard or each separate animation). This property can be set to
HoldEnd (the animated property’s value will be kept by the animation) or to Stop
(the animated property’s value will be released by the animation when it is
completed). Also, if multiple animations act on the same property, the property’s
value is a composite of all the animations’ effect.

. Local value. The dependency property’s value is set through a call to the SetValue
method. You also saw earlier that the convenience setter for a dependency property
is using SetValue in its implementation, so this is also a local value. The local value
can be set in XAML or in code.

. If a control template or a data template is used to render an element (control, data
item, and so on), certain properties can be set from within the template.

. If a style is applied to the element, certain properties can be set from within the
style.

. Base style. As you will see in Chapter 10, “Creating Resources, Styles, and
Templates,” a style can be based on another style. If the base style sets a value, and
the derived style sets another value for the same property, the derived style wins.

. Implicit styles. This is a new concept in Silverlight 4. These styles can be defined for
a given type of control. For example, a style can be defined for all Button controls. If
a value seems to be coming from nowhere, you should search the application and
check whether an implicit style is defined for the control you are debugging. See
Chapter 10 for more information about implicit styles.

. (Lowest) The default value defined when the dependency property is registered is
the fallback value and will be applied if nothing else with a higher precedence
occurs. Remember that if no default value was passed to the PropertyMetadata, the
property’s type’s default value will be used.

This list is good to keep in mind when debugging a dependency object and trying to
understand why a value is not corresponding to what was expected. The first step in such
a search is to determine whether one or more animations are applied to the object, even
if some of them are already completed.

Calculating a Dependency Property’s Value 125

5

 From the Library of Wow! eBook

ptg

Getting the Property’s Base Value
It might be necessary to find out what the value of a dependency property would be if no
animation were applied to it. For example, if an animation is running, and you need to
prepare the application for the value that will be applied when the animation stops (if the
FillBehavior is not set to HoldEnd), you can use the method GetAnimationBaseValue avail-
able on any DependencyObject.

The method takes a DependencyProperty as parameter, as shown in Listing 5.15. Note that
the method returns an object, so it must be cast to the desired type.

The HeightProperty is defined on the FrameworkElement class. However, if you are execut-
ing this within a UserControl or another class deriving from FrameworkElement, you can
omit the class name. Listing 5.15 shows multiple ways to get the base value for the Height
property.

LISTING 5.15 Getting a Property’s Base Value

double baseValue

= (double)MyRectangle.GetAnimationBaseValue(

FrameworkElement.HeightProperty);

baseValue

= (double)MyRectangle.GetAnimationBaseValue(

HeightProperty);

baseValue

= (double)MyRectangle.GetAnimationBaseValue(

Rectangle.HeightProperty);

Reading the Local Value
As mentioned earlier, the dependency property’s value depends on a number of factors
and their precedence. In the previous section, you saw how to get the base value, which is
the value that would be applied to the property if it were neither animated nor held by a
completed animation.

The base value is equal to the local value if the local value is set. However, this is not
always the case. For instance, if you instantiate a Button and do not set its Height, the
value of the HeightProperty is equal to DependencyProperty.UnsetValue. In that case, the
base value depends on the priority setters with lower precedence (template, styles, default
value).

In some scenarios, it is necessary to read the local value. To do this, use the method
ReadLocalValue on objects deriving from DependencyObject. This method returns a value
of type object, which can be either DependencyProperty.UnsetValue or can be cast to the
desired type, as shown in Listing 5.16.

CHAPTER 5 Understanding Dependency Properties126

 From the Library of Wow! eBook

ptg

LISTING 5.16 Getting a Property’s Local Value

double? rectangleHeight = null;

var localValue

= MyRectangle.ReadLocalValue(HeightProperty);

if (localValue != DependencyProperty.UnsetValue)

{

rectangleHeight = (double)localValue;

}

Summary
Dependency properties and attached properties are one very important pillar of the
Silverlight framework. In this chapter, we talked about the purpose of the
DependencyObject class, the base class for many of the Silverlight framework’s types. Then
we talked in depth of what is involved in registering a new dependency property.

Later, we created attached properties, allowing attaching data to another object without
modifying it. We also talked about a very powerful way to attach functionality to an
element with attached behaviors. Understanding how they work is important before we
study Expression Blend behaviors in Chapter 11, to understand their mechanics.

This chapter also covered a convenient tool to create new dependency properties and
attached properties with Visual Studio code snippets, which we installed to speed up the
creation of such properties.

Finally, we talked about the precedence system and which factors influence the value of a
dependency property, from animations to local values, templates, styles, and as a fallback,
the default value.

In the next chapter, we examine one of the main reasons why dependency properties
were introduced (data binding) and other data-related topics.

Summary 127

5

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Dive deep into data bindings
and explore all their proper-
ties.

. Talk about various ways to
validate data.

. Use Visual Studio and Blend’s
dialogs to create bindings.

. Debug data bindings and talk
about ways to find errors.

. Group and sort data by using
a CollectionViewSource.

CHAPTER 6

Working with Data:
Binding, Grouping,

Sorting, and Filtering

An application would be nothing without data. In the
early days of Silverlight, displaying and collecting data was
not the major focus of the framework. Very soon, though,
we saw the emergence of new controls, libraries, and
services to make it easier to build a new kind of applica-
tions, the so called line-of-business (LOB) applications.
These applications make it possible to handle large
amounts of data in an efficient way, providing various
advantages:

. The computational power of Silverlight makes it
possible to treat larger amounts of data than with
traditional web applications.

. Complex operations can be executed directly on the
client computer (for example, for a first-stage valida-
tion of input). This reduces the traffic to the server
because invalid data doesn’t need to be sent back and
forth. Of course, there should be additional validation
on the server!

. It is possible to save data on the client computer and
provide an offline mode for your application.

. Silverlight offers new graphics abilities allowing you
to present data in innovative ways (charting, 3D,
interactions, multitouch).

 From the Library of Wow! eBook

ptg

All these advantages and more open new possibilities for the information architects, the
designers, and the developers to bring advanced user experience and increased productiv-
ity (and pleasure) in business applications.

Data is, of course, at the center of these applications, and therefore at the core of
Silverlight, too. This chapter covers various low-level data-oriented topics, starting with a
core fundament of Silverlight: data binding. We will end the chapter with a way to filter,
group, or sort data from a collection with the CollectionViewSource.

Diving into Data Bindings
Data binding is not new in Silverlight or in client applications in general. In fact, other
.NET-based technologies such as ASP.NET and Windows Forms already had some sort of
data binding, although it was mostly limited to data controls (such as data grids).

The real innovation came into Windows Presentation Foundation (WPF), the rich desktop
framework for client applications that is at the origin of Silverlight (and still used to build
Windows desktop applications). With the dependency property system that we studied in
Chapter 5, “Understanding Dependency Properties,” and the introduction of the data
binding framework, it became possible to bind the value of a property to the value of
another property, on the same object or a different one, and to keep these properties
synchronized.

Data binding was introduced in Silverlight, too, although with a slightly reduced scope.
In Silverlight 4, we saw many improvements helping to make the data binding framework
better and closer to the WPF framework.

We talked about the basics of data binding in Silverlight 2 Unleashed, Chapter 18. The
concepts we studied there are still valid in Silverlight 4. In this section, we refresh these
basic concepts and expand on them to explain the changes brought to the data binding
framework since then.

Understanding a Binding’s Elements
Before we dive deeper, it is interesting to understand what the elements of a binding are.
For each binding, there is always a source (where the data comes from) and a target
(where the data is sent).

Applying a binding to a Target
A binding is always applied to a target. In fact, data bindings can be applied only on a
dependency property of a DependencyObject instance (or classes deriving from
DependencyObject). Now you understand why so many classes in the Silverlight framework
derive from this base class, as you saw in Chapter 5.

A binding can be applied in XAML or in code. The syntax is easier in XAML thanks to the
use of a markup extension, expressed by an opening and a closing curly bracket as shown
below. There are various markup extensions in Silverlight 4, such as {Binding} and
{RelativeSource}, {StaticResource}, and so forth. In this example, the Text property of
the TextBlock object is the target of the binding.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering130

 From the Library of Wow! eBook

ptg

<TextBlock Text=”{Binding ElementName=LayoutRoot,

Path=ActualWidth}” />

In code, the syntax is more complicated, and requires the use of the BindingOperations
helper class, as shown in Listing 6.1.

LISTING 6.1 Setting a Binding on a Target in Code

var textBlock = new TextBlock();

var binding = new Binding

{

ElementName = “LayoutRoot”,

Path = new PropertyPath(“ActualWidth”)

};

BindingOperations.SetBinding(

textBlock,

TextBlock.TextProperty,

binding);

. The first parameter of the SetBinding method is the DependencyObject to which the
binding must be applied (the target).

. The second parameter is the identifier for the dependency property to which the
binding must be applied.

. The last parameter is the binding that will be applied.

Getting the Binding’s Data from a Source
The source of a binding can be set by different means. Note that for each of these possi-
bilities, the binding’s source can be either the element itself, or a property within the
element. Finally, remember that using a special syntax (that we will study further in this
chapter), it is possible to dive into complex properties and access sub-properties, and so
on. The source of the binding can be:

. A reference to a named element within the XAML document (with the ElementName
property).

. A reference to an element stored in the resources (with the Source property).

. A reference to an element relative to the current element (with the RelativeSource
property).

. Finally, if nothing else is specified, the source of the binding will be the data context
in which the element is placed.

This last source is very important, because the data context is inherited from an element to
all of its children. If the child’s DataContext property is not set explicitly, then the

Diving into Data Bindings 131

6

 From the Library of Wow! eBook

ptg

parent’s data context is used. This provides a very convenient way to define a common
source for all the bindings within an element (such as a user control or a panel).

Understanding the Namescope
Silverlight relies on names for certain operations, such as identifying the source of a
binding using the ElementName property (we will talk about this property a little later in
this chapter). As usual when working with names, certain rules need to be enforced. Most
important, names should not conflict with each other: A name must be unique within its
scope.

However, conflicts are unavoidable when using control templates or data templates:
Because the same template can be used on multiple elements in the UserControl, any
named element within the template will appear multiple times. To solve this problem,
Silverlight defines the concept of namescope. The following elements all have their own
namescope:

. Data templates and control templates

. UserControl

. ContentControl and ItemsControl

This explains why the code in Listing 6.2 does not work: The binding attempts to access a
TextBox defined within a ControlTemplate. The template’s namescope is not the same as
the Button’s namescope, and therefore the binding fails. It is important to remember
where namescopes start and end when working with names, and to find workarounds
when an element cannot be reached.

LISTING 6.2 Failed Attempt to Bind to an Element in Another Namescope

<Button Content=”{Binding ElementName=InnerTextBox,

Path=Text}”>

<Button.Template>

<ControlTemplate TargetType=”Button”>

<StackPanel>

<ContentPresenter Height=”200” />

<TextBox Text=”Hello again”

x:Name=”InnerTextBox” />

</StackPanel>

</ControlTemplate>

</Button.Template>

</Button>

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering132

 From the Library of Wow! eBook

ptg

Setting the Source
When a binding is established, the data flows from a source to a target as you saw in the
introduction. Note that any object and any property can be the source of a binding in
Silverlight, not just dependency objects and dependency properties. However, a binding
on “standard properties” (that is, properties that are not registered with the dependency
property system) is not updated automatically unless you explicitly raise an event, as you
saw in Listing 5.2.

Diving into Data Bindings 133

6

WA R N I N G

Finding Binding Errors

Binding errors (for example, setting a binding in XAML on a nonexistent source) are silent
and do not crash the application. For that reason, they can be hard to detect: There are no
symptoms other than your application not working the way it should. You will learn how to
debug these errors in the “Debugging Data Bindings” section, later in this chapter.

The ElementName Property
Probably the most direct way to set the source of a binding is through the ElementName
property, which was introduced in Silverlight 3. This property enables the so-called
element-to-element binding.

Here, the Text property of a TextBlock is set to a binding to the Value property of a
Slider. Note that, thanks to the dynamic nature of data bindings, the text will be
updated every time that the slider’s cursor is moved. Of course, this element must be
available in the target’s namescope; otherwise, a data error will occur.

<TextBlock Text=”{Binding ElementName=MySlider, Path=Value}” />

The Source Property
In Silverlight 2, the Source property was the only property you could use to set the source
of the binding.

In XAML, the Source property is normally set to a resource available from the current
position in the XAML document. Such a resource is defined in a resource dictionary. We
will spend more time talking about the way that resources are resolved in a Silverlight
application in Chapter 10, “Creating Resources, Styles, and Templates.” For now, we will
assume that the resource exists, and resolve it through a StaticResource extension, as
shown here:

<TextBlock Text=”{Binding Source={StaticResource MyDataObject}}” />

The RelativeSource Property
RelativeSource is a new property introduced in Silverlight 4. It provides a way to set the
source of a binding relatively to the target element. Developers familiar with WPF already
know the RelativeSource property, but there are only two modes in Silverlight:

 From the Library of Wow! eBook

ptg

. Self refers to the target element itself. You can use this if you need to pass the
current UI element to the binding.

. TemplatedParent is used in control templates and data templates. It allows setting
the source of a binding to the element (control or data item) that is represented by
the template. For example, in a control template that will be applied to a Button,
the TemplatedParent is the Button control itself. In a data template (for example, in a
ListBox), the TemplateParent is the data item that is rendered by the data template.

The syntax in XAML (as shown below) is a bit confusing, due to the repetition of the
word RelativeSource. The first (in red) is a property of the Binding class. The second (in
brown) is the name of the markup extension that is used to set the RelativeSource prop-
erty. The sample here displays the FontFamily property of a TextBlock in the TextBlock
itself.

<TextBlock Text=”{Binding RelativeSource={RelativeSource Self},

Path=FontFamily}” />

Listing 6.3 shows a control template for a Button control where in addition to the
content, the Button’s name is shown using the TemplatedParent mode.

LISTING 6.3 Accessing the TemplatedParent

<Button x:Name=”TestButton”

Content=”My content”

Width=”200” Height=”100”>

<Button.Template>

<ControlTemplate TargetType=”Button”>

<StackPanel Background=”#FFCCCCCC”>

<ContentPresenter />

<TextBlock

Text=”{Binding RelativeSource={RelativeSource TemplatedParent},

Path=Name}” />

</StackPanel>

</ControlTemplate>

</Button.Template>

</Button>

Binding to Implicit Data Context
The last way to set the source of a binding is to not set it! In that case, the source will be
set to the data context of the target element’s parent. Should that data context be empty
on the parent, the parent’s parent’s context is used, and so forth. We talk about the inher-
ited data context, also known as the implicit data context.

For example, the markup in Listing 6.4 sets a grid’s DataContext to a Customer object
contained in the resources. Further, a TextBlock is used to display the first name of the
Customer.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering134

 From the Library of Wow! eBook

ptg

LISTING 6.4 Binding to the implicit data context

<Grid x:Name=”LayoutRoot”

DataContext=”{Binding Source={StaticResource MyCustomer}}”>

<TextBlock Text=”{Binding Path=FirstName}” />

</Grid>

The implicit data context is extensively used in the Model-View-ViewModel pattern,
which we discuss in Chapter 7, “Understanding the Model-View-ViewModel Pattern.” In
this pattern, an object (the view-model) is set as the DataContext property of a UserControl
or any other UI element (the view). Because the DataContext is set on the root, it will be
inherited by all the children elements in the tree, and bindings do not need their source
to be set explicitly.

Because the source of a data binding may be empty, this even allows for “empty” bind-
ings, where the binding is set to the current element’s DataContext. An example shown in
Listing 6.5 is used to send an element’s DataContext to a command (we talked about
commands in Chapter 4, “Investigating Existing Controls”). The full sample is available at
http://www.galasoft.ch/SL4U/code/chapter06.

LISTING 6.5 Binding to the Implicit Data Context

1 <DataTemplate x:Key=”MyDataTemplate”>

2 <Border>

3 <Button Content=”{Binding Path=Name}”

4 Command=”{Binding Source={StaticResource MainVM},

5 Path=DisplayItemCommand}”

6 CommandParameter=”{Binding}” />

7 </Border>

8 </DataTemplate>

. The data template in Listing 6.5 is used to render a data item. This data item (a stan-
dard CLR object) has a property named Name. Thanks to the Silverlight data frame-
work, the data context of this DataTemplate is automatically set to be the data item
in question. Because this DataTemplate is used in a ListBox, each row has a different
data context, a different data item.

. On line 3, we bind the Content of the Button to the item’s Name property. Notice that
we do not specify the source of the binding, but only the Path. The implicit data
context will be used.

. On lines 4 and 5, we bind a command named DisplayItemCommand to the Command
property of the Button. Note that this command is not located on the implicit data
context: The Source property is set explicitly! The DisplayItemCommand is set on an
object named MainVM, available in the page’s resources.

. The CommandParameter property is set to an “empty” binding. We pass the implicit
data context itself to this property. The data item that this DataTemplate represents
will arrive directly in the command for processing.

Diving into Data Bindings 135

6

 From the Library of Wow! eBook

http://www.galasoft.ch/SL4U/code/chapter06

ptg

Refining the Path
Now that we figured the source of the binding, we can refine it by choosing a property on
the source object. To do this, the Path property of the Binding object is used. Note,
however, that you can create a binding without the Path property.

The Path property is of type PropertyPath. It is constructed in XAML or in code with a
string following a special syntax.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering136

T I P

Using the Right PropertyPath Constructor

To construct a PropertyPath in source code, use the constructor PropertyPath(object), and
pass a string as the parameter. Do not pass a dependency property identifier because this
doesn’t work when used in a binding. (It works only when working with animations). Do not
use the constructor PropertyPath(string, object[]) either. This constructor is only here
for compatibility with WPF, but the object[] parameter will be ignored in Silverlight.

The following scenarios are possible:

. If the source is a simple property, use “MyProperty”.

. If the source is a property nested inside the MyProperty object, use a dot syntax just
like with objects: “MyProperty.MyNestedProperty”.

. If the source is an ICollectionView, you can use the dot syntax to access the data
collection’s current item. We talk about ICollectionView further in this chapter. For
example: “MyCollectionView.MyProperty” will bind to MyProperty on the item
currently selected in MyCollectionView. This is a shortcut equivalent to
“MyCollectionView.CurrentItem.MyProperty”.

. If the source is an attached property, use “(MyObject.MyAttachedProperty)” where
MyObject is the class that the attached property is declared on. Note that in XAML,
you might have to use the xmlns prefix that you declared for the corresponding CLR
namespace (for example, “(myprefix:MyObject.MyAttachedProperty)”).

. The parenthesis syntax can also be used within a template, when this template
doesn’t have a TargetType. This is a special case where you bind to a property which
cannot be verified at compile time, but will be available when the template is
applied to a control or to an item, for example, “(TextBlock.FontSize)”.

. If the source is an item within a collection, use square brackets to specify the index
within the collection. Note that the index can be an integer (for example,
“MyArray[0]”) or a string identifier (key). In that latter case, the key must be entered
without quotes even if it has spaces within (for example, “MyDictionary[My Key]”,
where “My Key” is the key of the wanted item in the dictionary).

. Finally, all these elements can be combined together to create a complex path.

 From the Library of Wow! eBook

ptg

Listings 6.6 shows the way to set the Path of a Binding in code. Listing 6.7 shows various
samples in XAML. Note that when used in XAML, you can omit “Path=” if the Path iden-
tifier is the first element in the Binding expression, as shown in Listing 6.7, examples 2
and 3.

LISTING 6.6 Setting the Path in Code

var binding = new Binding

{

Source = this,

Path = new PropertyPath(“Background.Color”)

};

LISTING 6.7 Setting the Path in XAML

<!--(1) Binding to simple property-->

<TextBlock Text=”{Binding ElementName=LayoutRoot,

Path=ActualWidth}” />

<!--(2) If the Path comes first, the qualifier can be omitted-->

<TextBlock Text=”{Binding ActualWidth,

ElementName=LayoutRoot}” />

<!--(3) Binding to a property within a property-->

<TextBlock Text=”{Binding Background.Color,

ElementName=LayoutRoot}” />

<!--(4) Binding to an attached property-->

<TextBlock Text=”{Binding ElementName=MyRectangle,

Path=(Grid.Column)}” />

<!--(5) Binding to an item in a collection-->

<TextBlock Text=”{Binding MyCollection[1].Property1}” />

Diving into Data Bindings 137

6

WA R N I N G

Using an Indexer in a PropertyPath

When the source of the binding is an item in a collection, an indexer can be used as you saw
here, but with the following restrictions:

. The collection may only be one-dimensional.

. The collection must be of a type implementing the IList interface.

. When using an integer indexer, the indexer is always 0-based. “MyCollection[0]”
represents the first element.

 From the Library of Wow! eBook

ptg

<!--(6) Binding to an item in a dictionary

using a key with a space within-->

<TextBlock TextWrapping=”Wrap”

Text=”{Binding MyDictionary[Index 1].Name}” />

Flowing in Two Directions
As mentioned earlier in this chapter, the data flows through a binding from the source to
the target. However, it can sometimes be interesting to have it flow from the target to the
source. For example, if the target is a TextBox displaying the value of a Slider, moving the
Slider’s cursor will update the value in the TextBox (source ➞ target). But if the user types
a valid double value in the TextBox, the Slider should also be updated to reflect the new
value (target ➞ source).

To achieve this, you need to set the Mode property of the Binding. There are currently
three possible values in the BindingMode enum in Silverlight 4:

. OneTime: This is the default when the source property is not a dependency property,
but a normal CLR property. This value can also be set explicitly to the Mode property
if desired.

When a binding is in OneTime mode, it will be updated only once, when the XAML
code is parsed. Any subsequent change on the source property will be ignored.

. OneWay: This is the default when the source property is a dependency property. In
that mode, the changes will always flow from the source to the target, but never in
the opposite direction.

. TwoWay: In that mode, the changes flow in two directions. This is the mode you need
to use when the target may change and you want to keep the target and the source
in sync. However, it is slightly less efficient than OneWay, so use it with care.

As with the other properties, the Mode can be set in code, or in XAML as shown below:

<TextBox Text=”{Binding ElementName=MySlider,

Path=Value, Mode=TwoWay}” />

Converting the Values
Value converters are useful when you need to convert a value into another value through
a binding. You can build your converters as you saw in Silverlight 2 Unleashed (Chapter 24,
Listing 24.6): Simply create a new class implementing the IValueConverter interface, and
implement the two methods:

. Convert for forward conversion.

. ConvertBack for backward conversion. This method is needed only if the value can
be applied through a TwoWay binding. In many cases, the ConvertBack value is
declared, but throws a NotImplementedException.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering138

 From the Library of Wow! eBook

ptg

You can set a different culture for the converter through the ConverterCulture parameter,
which should be set to the culture’s code (for example, en-US, it-IT, and so on).

Finally, you can pass a ConverterParameter to the Convert and ConvertBack methods. This
parameter cannot be set through a binding.

To use your own converters, remember to map an XML namespace to the CLR namespace
in which the converter lives, as shown in Listing 6.8.

LISTING 6.8 Adding a Converter in the Resources and Using It

<Grid x:Name=”LayoutRoot”>

<Grid.Resources>

<conv:DoubleToGridWidthConverter x:Key=”DoubleToGridWidthConverter” />

</Grid.Resources>

<Grid.ColumnDefinitions>

<ColumnDefinition

Width=”{Binding ElementName=RootControl,

Path=ActualWidth,

Converter={StaticResource DoubleToGridWidthConverter},

ConverterParameter=100}” />

<ColumnDefinition Width=”*” />

</Grid.ColumnDefinitions>

<!--...-->

</Grid>

Diving into Data Bindings 139

6

T I P

Naming the Converters with a Convention

It is good practice to name the converters according to a simple guideline: Use the name
[OriginType]To[DestinationType]Converter (for example
BooleanToVisibilityConverter, DoubleToGridWidthConverter).

Also, to make things easier, it is a good idea to use the converter’s type name as its key in
the resources, as we did in Listing 6.8.

Changing the Format
When you want to display a numeric value as a string in .NET, you typically want to
format it according to the type of value it represents (monetary, time/date, number of
decimals, and so forth.) and according to the culture of the user; for example, en-US
(English in the United States) or fr-CH (French in Switzerland).

In Silverlight 3 and earlier, there was no way to change the format of a string set through
a binding other than to build a converter for the binding. However, this is quite a lot of
work, and a better solution was needed. In Silverlight 4, you can change the format of a
string by using the StringFormat property of the binding. Note that if the binding also

 From the Library of Wow! eBook

ptg

has a converter, the converter is executed first, and the StringFormat is applied to the
output of the converter.

StringFormat’s syntax is the usual formatting syntax familiar to .NET programmers.
Examples can be found in Listing 6.9, and a complete reference is at
http://www.galasoft.ch/sl4-format.

LISTING 6.9 Various Formatting

<!--123.45678-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDouble}” />

<!--123.46-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDouble,

StringFormat=N2}” />

<!--$123.46-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDouble,

StringFormat=C}” />

<!--This percentage 12,345.68 % in a string-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDouble,

StringFormat=This percentage \{0:P2\} in a string}” />

<!--12.35E1-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDouble,

StringFormat=0#.##E0}” />

<!--0123-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyInteger,

StringFormat=D4}” />

<!--1/16/2010 3:14 PM-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDateTime,

StringFormat=g}” />

<!--Saturday, January 16, 2010-->

<TextBlock Text=”{Binding ElementName=RootControl,

Path=MyDateTime,

StringFormat=D}” />

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering140

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-format

ptg

Adding Some Text
As shown in Listing 6.9, the formatted parameter can be placed within a string. However,
be careful because such text embedded in XAML is impossible to localize. If localization is
needed, you need to set the StringFormat in code.

To embed the formatting information within a text, you need to add an index and
enclose everything in curly brackets. However, in XAML, you need to escape the curly
brackets to avoid confusing the XAML parser, because you are already in a Binding
markup extension. The StringFormat property for a percentage becomes \{0:P2\} in
a string.

Localizing the StringFormat
Even if the application’s CurrentCulture and CurrentUICulture are set to a culture other
than en-US, this will not be applied to the StringFormat. This annoying fact can be
worked around by setting the Language property on the UserControl in which the
binding is applied. The Language property can be applied in XAML or in code, as shown
in Listing 6.10.

LISTING 6.10 Setting the UserControl’s Language

<!--In XAML-->

<UserControl

x:Class=”StringFormatSample.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

Language=”it-IT”>

<!--...-->

</UserControl>

// In code

Language = XmlLanguage.GetLanguage(“it-IT”);

Diving into Data Bindings 141

6

T I P

Using Visual Studio to Format Binding Strings

The Visual Studio Silverlight designer can help you to create a string formatted like you want.
In the “Using the Visual Studio Binding Dialog” section, later in this chapter, you will see how
to set a binding and format it using this convenient tool.

Handling Special Cases
In some cases, the binding does not return a valid value. For example, the source prop-
erty’s name might be misspelled, in which case the application does not crash, but the
bound value will be left blank. In other cases, the binding is valid, but the value returned
is null.

 From the Library of Wow! eBook

ptg

In Silverlight 4, the Binding class has two properties taking care of these special cases:

. TargetNullValue is used in case the value returned by the binding expression is null.

. FallbackValue is used in case the binding is invalid.

Note that TargetNullValue is used only if the value of the binding is actually null. If the
Path is complex, and one of the elements within the path (except the last one) is null,
this is actually an invalid value, and FallbackValue is used instead.

Property Trigger
In TwoWay bindings, by default, the value of the source property is updated as soon as the
target of the binding changes. In some cases, however, you might need to perform addi-
tional operations before notifying the source that it is changed, for instance if you need
to perform multiple validation operations before you can confirm that the value is valid.

This can be done by setting the UpdateSourceTrigger property to Explicit. In that case,
you must trigger the update in code with the help of the BindingExpression helper class,
as shown below. This property is applicable only in TwoWay bindings, where the flow of
data does not only go from the source to the target but also in the opposite direction.

BindingExpression expression

= MyTextBox.GetBindingExpression(TextBox.TextProperty);

expression.UpdateSource();

Validating Input
Validation is used to verify that data is correct according to a set of rules. In Silverlight 2
and 3, the validation mechanism was basic and not very satisfying. In Silverlight 4, two
new ways to handle validation errors were added, as you will see here.

In this section, we talk about the way that bindings handle validation errors. In
Chapter 8, “Using Data Controls,” we talk more about validation in relation to data
controls.

NotifyOnValidationError

This property must be set to True on the Binding expression to trigger the validation
mechanism. This property was already found in Silverlight 2 and 3. Listing 6.12 shows an
example using this property.

After NotifyOnValidationError has been set to True, the developer of data objects can
choose between three different ways to handle validation errors.

Using Exceptions with ValidatesOnExceptions
In Silverlight 2 and 3, the only way to notify a binding that data is invalid was to throw
an exception. This is still available in Silverlight 4, so existing code will continue to work.
Exception-based validation is also useful for the so-called DataAnnotations, which are
covered in Chapter 8.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering142

 From the Library of Wow! eBook

ptg

Listing 6.11 shows a view-model’s property throwing an exception when the value
entered by the user is either null or empty. Because this property is raising the
INotifyPropertyChanged interface’s PropertyChanged event, we can set a binding on this
property in TwoWay mode.

LISTING 6.11 View-model’s Property Throwing an Exception

1 public const string NamePropertyName = “Name”;

2 private string _name = string.Empty;

3

4 public string Name

5 {

6 get { return _name; }

7

8 set

9 {

10 if (_name == value)

11 {

12 return;

13 }

14

15 if (string.IsNullOrEmpty(value))

16 {

17 throw new Exception(“Name should not be empty”);

18 }

19

20 _name = value;

21

22 if (PropertyChanged != null)

23 {

24 PropertyChanged(this,

25 new PropertyChangedEventArgs(NamePropertyName));

26 }

27 }

28 }

Listing 6.12 shows how a TextBox control is bound to the Name property. When the user
starts the application, the TextBox is empty and ready for input. If the user enters a name
in the box, everything is fine. However, if the user then deletes the content of the
TextBox, the exception will be thrown in the Name property’s setter. This causes the
TextBox control to react by displaying a red border with a small red corner, as shown in
Figure 6.1. When the mouse is over the red corner, the exception’s message is displayed in
a ToolTip. Every Silverlight control
that allows input is templated to
display the error message when the
state is invalid. You will learn more
about this in Chapter 8.

Diving into Data Bindings 143

6

FIGURE 6.1 TextBox in invalid state.

 From the Library of Wow! eBook

ptg

LISTING 6.12 Binding a TextBox with Validation

<TextBox Margin=”10,10,200,10”

Text=”{Binding Path=Name,

Source={StaticResource ValidationViewModel},

Mode=TwoWay,

NotifyOnValidationError=True,

ValidatesOnExceptions=True}” />

Working with exceptions for validation is simple, but is not following best practices.
Exceptions should be reserved for exceptional cases, not just when a user makes a mistake
when entering information. Also, the property on which the binding is applied is respon-
sible for throwing the exception, which complicates the implementation of such proper-
ties.

Implementing IDataErrorInfo
A cleaner way to handle validation is to let the data objects implement the
IDataErrorInfo interface that was introduced in Silverlight 4. This interface already exists
in the full .NET framework for quite some time, and developers are used to this way of
handling validation. Also, existing code using this interface can now be used in
Silverlight.

This interface defines two members, but only one is used in Silverlight. The Error prop-
erty is only here for compatibility with WPF; in Silverlight, we perform only property-
based validation, with the help of the member this[string columnName] defined by
IDataErrorInfo.

Listing 6.13 shows an implementation of the members defined by IDataErrorInfo within
the viewmodel. Notice how the validation rules are neatly grouped within the this[]
operator, instead of being mixed within the properties. For this to work, the binding
pointing to the Name property must have its NotifyOnValidationError and
ValidatesOnDataErrors properties set to True, while the ValidatesOnExceptions property
may be removed.

With this implementation, the Name property defined in Listing 6.11 remains the same,
except for lines 15 to 18, which are removed.

LISTING 6.13 IDataErrorInfo Members in the Viewmodel

public string this[string columnName]

{

get

{

if (columnName == NamePropertyName)

{

if (string.IsNullOrEmpty(_name))

{

return “Name should not be empty”;

}

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering144

 From the Library of Wow! eBook

ptg

}

return null;

}

}

public string Error

{

get { return null; }

}

As mentioned before, the Error property is not used, and always returns null.

One difference between IDataErrorInfo and the exception-based validation we saw in the
previous section is that the bindings will trigger the validation when the application
starts. On the other hand, the exceptions are not queried by the bindings (that wouldn’t
work), but thrown by the property setters, which makes it much harder to set the
Silverlight application in a validated state when it starts. This is yet another argument in
favor of the IDataErrorInfo-based validation: Your user will know from the start which
fields are compulsory.

Implementing INotifyDataErrorInfo
The INotifyDataErrorInfo interface was also introduced in Silverlight 4. It provides an
additional way to handle validation for more complex scenarios than IDataErrorInfo
allows. Note that this interface is specific to Silverlight for the moment, and does not
exist in the full .NET framework.

INotifyDataErrorInfo defines three members:

. HasErrors is a bool property that should return true if the object has at least one
error.

. GetErrors is a method returning a collection (of type IEnumerable). All the errors for
a given property name should be placed in that collection and returned to the
calling object.

. ErrorsChanged is an event that should be raised when new errors are detected on
one property.

The ErrorChanged event takes an instance of DataErrorsChangedEventArgs. This class
carries the name of the property for which the errors collection changed.

The main advantage of INotifyDataErrorInfo over IDataErrorInfo is the asynchronicity:
The developer chooses when the consumer (in our case, the binding expression) should
be notified that there are one or more errors. This makes complex validation scenarios
easier to handle. Also, errors must not be strings anymore; they can be any object, in fact.
This again enables more complex validation and notification scenarios than
IDataErrorInfo.

Diving into Data Bindings 145

6

 From the Library of Wow! eBook

ptg

Each property in an object can have
multiple errors. For example, a require-
ment for the Name property could be to
be longer than four characters and
include at least one space.

For more information about
INotifyDataErrorInfo, the Silverlight.net
site has a good whitepaper and a sample
application that you can download to
understand better what this interface
does. The whitepaper is available at http://www.galasoft.ch/sl4-indei.

Which Approach Is the Best?
Using exception-based validation is not recommended, for the reasons previously listed.
Silverlight 4 still supports it for backward-compatibility reasons, but choosing one of the
two validation interfaces is the better choice.

IDataErrorInfo is fairly simple to use, but has limitations, as mentioned earlier (notably,
the fact that each property may have only one error at a time, and that validation must
be synchronous can be an issue for complex validation scenarios). However, this interface
is well known, is already used in other frameworks (such as Windows Forms, WPF,
ASP.NET, and so on), and is quite easy to implement.

On the other hand, using INotifyDataErrorInfo in your Silverlight applications is proba-
bly a good idea for more complex scenarios. This interface is very scalable and suitable for
larger applications. It is, however, more complicated to implement.

Using the Visual Studio Binding Dialog
We talked about the Visual Studio Properties editor in Chapter 2, “Setting Up and
Discovering Your Environment.” There is, however, one more aspect of this great helper
that was not mentioned. It can be illustrated by following the steps:

1. Create a new Silverlight 4 application in Visual Studio.

2. Open MainPage.xaml in the Visual Studio designer.

3. From the Toolbox, add a TextBox and a Slider to the main Grid and arrange them
on the surface.

4. Select the Slider control, and in the Properties editor, enter the name MySlider for
it. (Reminder: The name can be entered by passing the mouse over the top of the
Properties editor, next to the Slider label.)

5. Select the TextBox and locate the Text property in the Properties editor.

Next to the property’s name, you will notice a small icon. This is a visualization of the
origin of the property’s value, and can take the shapes and colors illustrated in Figure 6.2.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering146

T I P

Returning Objects as Errors

Should you choose to returns objects rather
than strings when the GetErrors method is
called, the objects in question should over-
ride the ToString() method and use it to
return the error message that the user inter-
face will display.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-indei

ptg

. Inherited means that the value is set somewhere
on one of this element’s ancestors (for example,
the panel in which this element is placed, or the
panel’s parent, and so on).

. Default means that this property is not set and
takes the default value defined in the element’s implementation.

. Local means that the property is set on this property explicitly (for example,
Width=”100”).

. Resource means that this property is set through a StaticResource extension. You
will learn in Chapter 10 how to create and set resources.

. Style means that the property is set through a style applied to the element.

. Binding means that this property is set through a data binding.

With the TextBox selected, open the data binding editor with the following steps:

1. Click the icon indicating the property’s origin and select Apply Data Binding from
the context menu.

2. In the Source section of the editor shown in Figure 6.3, select ElementName, and
then the MySlider element.

3. In the Path section of the editor,
select the Value property of the
Slider.

4. If you need, use the next
section, Converter, to select a
value converter for the binding.
We do not need one in this
example.

5. Expand the Options section.
Here you can set the string
format in a friendly way, as well
as the other options that we
have discussed in this chapter.

6. Set the String format to {0:N2}, which is a numeric format with two decimal digits.

7. Make sure that the Mode is set to TwoWay.

8. Run the application and move the Slider’s thumb. Check that the value is updated
in the TextBox, in the correct format.

9. Then, enter a value between 0 and 10 in the TextBox, and check that the Slider’s
value is updated accordingly.

Using the Visual Studio Binding Dialog 147

6

FIGURE 6.2 Property origin:
Inherited, Default, Local,
Resource, Style, Binding.

FIGURE 6.3 Data binding editor in Visual
Studio.

 From the Library of Wow! eBook

ptg

Using the Expression Blend Binding Dialog
Expression Blend offers a similar functionality. To open the binding editor in Blend,
follow these steps:

1. In Expression Blend, open the application we created in the “Using the Visual
Studio Binding Dialog” section. The easiest way is to right-click MainPage.xaml in
the Visual Studio Solution Explorer and select Open in Expression Blend from the
context menu.

2. In Blend, select the TextBox and open the Properties panel.

3. Notice that the Text property’s value is surrounded by an orange border. Also, the
small peg next to the value is orange, too.

4. Click the peg and select Data
Binding from the context menu.
This opens the editor shown in
Figure 6.5.

In fact, similar to what you saw earlier
in Visual Studio, a visual indication
for the property value’s origin is coded
in Blend, as shown in Figure 6.4.

Note that unlike in Visual Studio,
Expression Blend does not differenti-
ate between a value being set through
inheritance, by default, or through a
style.

The three tabs on top of the Blend
binding editor allow selecting the
source of the binding. If a property
you want to select is missing from the
Properties box in the editor, you
should select All Properties from the
Show combo box. Also, the bottom
section can be expanded to display
advanced properties for the binding.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering148

FIGURE 6.4 Property origin:
Inherited/Default/Style, Local, Resource, Binding.

FIGURE 6.5 Data binding editor in Expression
Blend.

 From the Library of Wow! eBook

ptg

Debugging Data Bindings
One issue when you develop applications using data bindings is that they are evaluated at
runtime and sometimes fail silently. The application will not crash, but some features will
not work as expected. Finding the cause of the error might be a little difficult. This
section gives you a few tips that will help you when debugging.

Checking the Output Tab
Some information about the data error is shown in the Output tab. This can help you to
find the cause of the issue. To witness this, follow these steps:

1. Create a new Silverlight application in Visual Studio 2010. Name it
DebuggingBindings.

2. Replace the LayoutRoot grid in MainPage.xaml with the code in Listing 6.14.

LISTING 6.14 Scene with a Data Binding Error

<StackPanel x:Name=”LayoutRoot” Background=”White”>

<TextBlock Text=”{Binding ElementName=MySlider, Path=Valu}”

Margin=”10” />

<Slider x:Name=”MySlider”

Margin=”10” />

</StackPanel>

3. Run the application in debug mode by pressing the F5 key. Note that the informa-
tion about the binding error is shown only when the application runs in debug
mode!

4. Select the Output tab in Visual Studio. If it is not visible already, select View, Output
from the menu.

You should now see an error message similar to the one shown below. This message iden-
tifies the cause of the error precisely: The property name Value was misspelled as Valu.
The property is not found, and therefore a data error is thrown. Note that if you had set a
FallbackValue property on this binding, it would appear in the Silverlight application
when the application runs.

System.Windows.Data Error: BindingExpression path error: ‘Valu’ property not found

on ‘System.Windows.Controls.Slider Minimum:0 Maximum:10 Value:0’

‘System.Windows.Controls.Slider’ (HashCode=14993092). BindingExpression:

Path=’Valu’ DataItem=’System.Windows.Controls.Slider Minimum:0 Maximum:10 Value:0’

(HashCode=14993092); target element is ‘System.Windows.Controls.TextBlock’

(Name=’’); target property is ‘Text’ (type ‘System.String’)..

Debugging Data Bindings 149

6

 From the Library of Wow! eBook

ptg

Creating a Test Converter
The trick in the previous section works fine to solve simple issues. However sometimes it
is not that easy: It is possible that the binding is valid, but the value is not what was
expected.

Let’s imagine the following scenario: We want to set a binding to current item in a list.
However, the order of the items changes without notice. Suddenly the application
displays the wrong information. The bindings are not in error, but they point to the
wrong object.

To check which item is used for the binding, a temporary converter can be implemented,
as shown in Listing 6.15.

LISTING 6.15 Test Converter for Debug

1 public class TempoDebugConverter : IValueConverter

2 {

3 public object Convert(object value, Type targetType,

4 object parameter,CultureInfo culture)

5 {

6 MessageBox.Show(“We are in the debug converter”);

7 MessageBox.Show(“Current item name: “

8 + (value as DataItem).Name);

9

10 return value;

11 }

12

13 public object ConvertBack(object value, Type targetType,

14 object parameter, CultureInfo culture)

15 {

16 throw new NotImplementedException();

17 }

18 }

The test converter can be used in XAML, as shown in Listing 6.16.

LISTING 6.16 Using the Test Converter in XAML

<StackPanel x:Name=”LayoutRoot”

Background=”White”

xmlns:conv=”clr-namespace:DebuggingBindings.Converters”>

<StackPanel.Resources>

<conv:TempoDebugConverter x:Key=”TempoDebugConverter” />

</StackPanel.Resources>

<Border DataContext=”{Binding Source={StaticResource MyCvs},

Path=CurrentItem,

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering150

 From the Library of Wow! eBook

ptg

Converter={StaticResource TempoDebugConverter}}”>

<TextBlock Text=”{Binding Path=ContractNumber}”

Margin=”10” />

</Border>

</StackPanel>

You can set a breakpoint in the Convert method of the test converter (for example, in
Listing 6.15 on line 6), allowing you to inspect the source object. If the breakpoint is hit,
it means that the binding expression is correct, and that the issue has another cause. You
can also inspect some other parameters of the binding (for example, the current culture
used to resolve the binding, passed to the fourth parameter).

Setting up a debug converter takes some time, but in some complex cases, it can be a real
lifesaver.

Grouping, Filtering, and Sorting Data
Now that we talked in depth about data bindings, let’s review other features of Silverlight
4 that makes working with large sets of data easier. Silverlight 3 introduced the possibility
to modify the way data from a collection is presented without modifying the collection
itself. This feature relies on the ICollectionView interface that a collection can choose
to implement. This interface defines a number of events, methods, and properties that
the collection should implement to provide a view of the data according to the criteria
specified.

Built in the Silverlight core framework, there are two classes helping you to work with
collection views: CollectionViewSource and PagedCollectionView.

Working with the CollectionViewSource
CollectionViewSource is a proxy class that takes a collection in its Source property, and
exposes a View property of type ICollectionView. You can work in XAML with the
CollectionViewSource very much as you would work with an ICollectionView directly.
Note, however, that CollectionViewSource does not implement ICollectionView: It is not
a view, but it provides a view.

Grouping, Filtering, and Sorting Data 151

6

WA R N I N G

Omitting CollectionViewSource.View

Working with CollectionViewSource in XAML or in code can be confusing: The View property
must be omitted in XAML, but has to be used in code (as seen in Listing 6.17).

 From the Library of Wow! eBook

ptg

LISTING 6.17 Working with the CollectionViewSource in Code and in XAML

var cvs = Resources[“MyCvs”] as CollectionViewSource;

MyDetailsBorder.DataContext = cvs.View.CurrentItem;

DataContext=”{Binding Source={StaticResource MyCvs},

Path=CurrentItem}”>

Current Item
One interesting feature of ICollectionView is that it keeps track of the current item in the
collection. This can prove very useful when you have one data source used among multi-
ple views. Note that the current item is saved directly in the ICollectionView instance,
and not in the data control using it.

This scenario is often used in master/detail pages (that is, a page with a list of item on one
side and the selected item’s details on the other side). You can set the DataContext of the
details panel as shown in Listing 6.17.

As a shortcut, the CurrentItem property of an ICollectionView can also be replaced by a
dot, as shown here:

DataContext=”{Binding Source={StaticResource MyCvs},

Path=.}”>

The great advantage of using an ICollectionView to track the current item is that all your
data controls will be synchronized automatically. For example, if you set a DataGrid and a
ListBox to use the same CollectionViewSource, and the user selects an item in the
ListBox, the same item will also be automatically selected in the DataGrid.

Sorting Items
Using CollectionViewSource, you can sort items according to a list of SortDescription
instances. This structure can be built with a PropertyName (the property after which the
data will be sorted) and a Direction (Ascending or Descending), as shown in Listing 6.18.
You can define multiple SortDescription instances to allow multilevel sorting.

Note that the SortDescription structure is available in the namespace
System.ComponentModel in the assembly System.Windows. When used in XAML, you need to
map an xmlns prefix to this namespace.

Grouping Items
CollectionViewSource also allows grouping items according to a list of GroupDescription
instances. Because GroupDescription is an abstract class, you need to provide a subclass
that defines how the items should be grouped. In Silverlight, such a class is named
PropertyGroupDescription and allows grouping the items according to a property’s name.

Note that grouped items are rendered in a different way depending on the data control
used. Figure 6.6 shows a list of items with each a bool property (MyBool), an int property
(MyInt), and a string property (MyString). In the CollectionViewSource shown in Listing
6.18, the items are grouped according to the MyInt property and shown in a ListBox and

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering152

 From the Library of Wow! eBook

ptg

in a DataGrid. Notice how the groups can be collapsed in the DataGrid, while the ListBox
always shows all the items.

Grouping, Filtering, and Sorting Data 153

6

FIGURE 6.6 ListBox and DataGrid showing grouped items.

When Should You Use CollectionViewSource?
CollectionViewSource offers only limited interaction with the data, but it is more light-
weight than the alternative PagedCollectionView that we will mention in the next section.
Also, a CollectionViewSource can be constructed in XAML directly, whereas a
PagedCollectionView requires code.

CollectionViewSource is a good choice when you need to quickly sort/group items in a
data control. Listing 6.18 shows a CollectionViewSource in XAML with a
PropertyGroupDescription and a SortDescription. The result is displayed in Figure 6.6 in a
ListBox and in a DataGrid. Notice how the items are sorted alphabetically in descending
order within each group.

LISTING 6.18 Creating a CollectionViewSource in XAML

<CollectionViewSource

Source=”{Binding Source={StaticResource SampleDataSource},

Path=Collection}”

x:Key=”MyCvs”>

<CollectionViewSource.GroupDescriptions>

<PropertyGroupDescription PropertyName=”MyInt” />

</CollectionViewSource.GroupDescriptions>

<CollectionViewSource.SortDescriptions>

<scm:SortDescription PropertyName=”MyString”

Direction=”Descending” />

</CollectionViewSource.SortDescriptions>

</CollectionViewSource>

 From the Library of Wow! eBook

ptg

Listing 6.19 shows a way to change the sorting order in code. The sorting order cannot be
simply changed on an existing SortDescription, so instead we need to build a new one
and add it instead of the old one. Of course, we can also change the sorting criteria or add
multiple SortDescription instances to sort according to multiple criteria. We can also
extend the code to change the grouping according to different PropertyGroupDescription
instances.

LISTING 6.19 Changing the Sort Order of a CollectionViewSource

var cvs = this.Resources[“MyCvs”] as CollectionViewSource;

cvs.SortDescriptions.Clear();

var sort = new SortDescription

{

PropertyName = “MyString”,

Direction = (sortUp

? ListSortDirection.Ascending

: ListSortDirection.Descending)

};

cvs.SortDescriptions.Add(sort);

Using a PagedCollectionView
PagedCollectionView is an implementation of ICollectionView that allows more interac-
tion with the data than the CollectionViewSource does: grouping, sorting, filtering, and
paging.

The PagedCollectionView class is typically used together with data controls such as the
DataGrid and the DataPager. In Chapter 8. we will talk about data controls and see some
samples using this ICollectionView.

Binding Directly to the Source
In this section, you saw how to use the CollectionViewSource class to act as a data
provider and expose a property of type ICollectionView. You also learned that you
can use the CollectionViewSource as the source of the bindings rather than the view
itself because Silverlight will take a shortcut and get the data from the correct place
automatically.

However, sometimes you want to actually bind to the data provider itself, instead of the
ICollectionView it exposes, and the shortcut is actually a hindrance because it gets in the
way of the properties you try to reach. In this case, set the property
BindsDirectlyToSource to True. This value indicates to the binding that it should ignore
the shortcut and get the desired value from the data provider directly.

CHAPTER 6 Working with Data: Binding, Grouping, Sorting, and Filtering154

 From the Library of Wow! eBook

ptg

Note, however, that Silverlight does part of the work for you: If you try to set a binding
on a property that exists only on the data provider but not on the view that it exposes,
the provider’s property is used. Listing 6.20 shows an example where we use the shortcut
to access the ICollectionView’s CurrentItem property through the shortcut. If we set
BindsDirectlyToSource to True on this binding, a data error occurs, because the
CollectionViewSource class does not expose such a property: The shortcut is ignored
because of this property.

LISTING 6.20 Using BindsDirectlyToSource to Ignore the Shortcut

<!--Success through the shortcut to ICollectionView-->

<TextBlock Text=”{Binding Source={StaticResource MyCvs},

Path=CurrentItem.Property1}” />

<!--Shortcut is ignored, data error-->

<TextBlock Text=”{Binding Source={StaticResource MyCvs},

Path=CurrentItem.Property1,

BindsDirectlyToSource=True}” />

Summary
In this chapter, we examined the Binding class in great detail, including the many
improvements added to this class in Silverlight 4. The Binding class is not completely
compatible with its Windows Presentation Foundation counterpart, but it has come a
long way since the days of Silverlight 2.

Next, we covered the Visual Studio and the Expression Blend data binding editors. These
tools enable you to create your bindings in a more visual way, and avoid errors when
typing object and property names. Finally, we looked at some ways to debug data bind-
ings in Visual Studio. Errors in bindings are quite difficult to find because they fail
silently. However, with a few tricks and some practice, it is possible to detect and correct
these errors.

Finally, we talked about data at a low level, explaining the mechanics of multiple classes
involved in data processing: CollectionViewSource and ICollectionView for grouping,
filtering, sorting, and paging.

In the next chapter, we cover higher-level usage of data in Silverlight applications, with
the Model-View-ViewModel pattern. This pattern enables a clear separation between the
user interface and the data model and provides a convenient place to prepare data for the
user interface.

Summary 155

6

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Talk about design patterns
and their utility.

. Review a few separation
patterns and understand why
separation is important in an
application.

. Dive into the Model-View-
ViewModel (MVVM) pattern
and its usage in Silverlight.

. Study implementations of the
MVVM pattern and build a
sample application.

. Talk about helper components
that help you to build
decoupled and extensible
application.

CHAPTER 7

Understanding the
Model-View-ViewModel

Pattern

Ever since applications grew more complex than just a
few lines of code, software developers have discussed the
best way to organize them into components. More than
anything else, modern developers love separation, abstrac-
tion, and layers. By defining small components with clearly
defined responsibility, you make your application more
readable, manageable, testable, and maintainable.

Client application developers came up with a number of
design patterns to enhance their applications and to
improve the process of making them. In this chapter, we
briefly discuss design patterns, and then take a close look at
the Model-View-ViewModel pattern, which is often used to
structure Silverlight applications.

About Design Patterns
Design patterns are the software developer’s solution to
avoid reinventing the wheel. When a developer (or more
likely, a community of developers) has a given problem to
solve, he comes up with a solution to the issue. This can be
an architecture answering to the particular constraint, a set
of components, interfaces, and so on. When one solution is
particularly good, it is interesting to modify it in a way that
it can be reused in multiple places to solve similar prob-
lems. There is a process of abstraction (that is, taking the
problem out of the given context, simplifying it by remov-
ing unnecessary detail, and turning it in something
reusable in other places). These abstracted solutions are
named design patterns or software patterns.

 From the Library of Wow! eBook

ptg

More than 20 of the most well-known design patterns are gathered into a book titled
Design Patterns: Elements of Reusable Object-Oriented Software. Of course, 20 patterns are not
all that is needed to build applications, so there are more books on the topic. Also, the
book is a little outdated, and software development has evolved since it was released. It is,
however, a good start to understand what a pattern is and how it can be used.

It is important to understand that design patterns are not sample code, and should not,
in fact, propose an implementation. They should also not be tightly bound to a program-
ming language or to a platform. This is why some people are arguing about the best
implementation for a given pattern, and the discussions can get very passionate at times.

Separating the Concerns
Such discussions take place still now in the Silverlight and Windows Presentation
Foundation (WPF) community about the best way to separate the user interface (the view)
from the underlying layers of the application (the data, the services, and so on). These
lower-level layers are often referred to as the model. In most applications, the view is a
representation of the model.

Why Is Separation Good?
When a view is tightly bound to a model, some annoying issues can occur:

. It is hard to work on one part of the application without having the whole rest
already in place. The application’s components are tightly bound.

. It is difficult to modify one part of the application without impacting all the other
parts, too. The application is not easily maintainable.

. It is hard to isolate one part of the application and test it to ensure that it works
well in complex conditions. The application is not easily testable.

. It is very difficult or impossible to put the application in a given state without going
through a lot of difficult steps. This makes the work of the designers difficult,
because they need to see various parts of the view in various states to design the
components. The application is not easily designable.

A better solution is to have multiple small-sized components that are loosely coupled.
Each component should have a clear responsibility and should be able to reproduce this
functionality even if it is in a different context. This allows putting each component in
various states, testing these states with automated unit tests, and allowing designers to
work on each component separately, but with a meaningful content.

Classic Separation Patterns
In the past few years of client application development, several separation patterns have
been used in many applications.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern158

 From the Library of Wow! eBook

ptg

The Model-View-Controller (MVC) Pattern
In this pattern, the model and the view are clearly separated: The model is completely
view agnostic, and could even be used with multiple user interface technologies. The view
is responsible for querying changes in the model, redrawing its invalidated parts, and
notifying the controller when the user actuates
an input. The controller prepares the data and
updates the model. The interactions are shown
in Figure 7.1.

In the .NET world, the MVC pattern is often
used in Windows Forms application (a desktop
framework that was popular before WPF
offered a more modern alternative), and more
recently in ASP.NET, with the ASP.NET MVC
framework.

In this pattern, the view has an active role,
which makes writing automated tests a little more difficult than it could be. Some user
interface frameworks are not well suited for this kind of tests, and covering a large portion
of the application’s logic is difficult.

The Passive View Pattern
To make the application even more testable,
Martin Fowler proposed a pattern named the
Passive View, which is a variation of the MVC
pattern where the view is completely passive
and the controller is responsible for updating
the view when the model changes, as shown in
Figure 7.2. An application built according to
this pattern is more testable because there is
almost no intelligence in the view that must be
tested. The automated unit tests do not depend
on a user interface technology because the
controller is view agnostic: It is “just code.”

History of MVVM
Martin Fowler proposed yet another pattern named the Presentation Model pattern,
where the controller is replaced by a number of objects (the presentation models), each
having a state representing a view at all times. This is an intermediary object between the
view and the model. Whenever something happens in the view, a synchronization mech-
anism updates the presentation model, which in turn updates the model if needed. On
the other hand, when the model is updated, the presentation model is modified first, and
then the changes are synchronized to the view.

History of MVVM 159

7

FIGURE 7.1 The MVC pattern.

FIGURE 7.2 The Passive View pattern.

 From the Library of Wow! eBook

ptg

In this pattern, the view is a little more active than in the Passive View pattern, because it
must offer a synchronization mechanism, which can vary depending on the chosen user
interface technology. Because the synchronization mechanism must be tested, too, the
number of tests that must be written is greater.

Developing Expression Blend
At approximately the same time as the Presentation Model pattern was being developed, a
team at Microsoft was working on the tool that we know today as Expression Blend. This
tool was the first large application built entirely in WPF, which at the time was still a
work in progress. The architects of Blend were faced by a number of new challenges,
because the data bindings (discussed in Chapter 6, “Working with Data: Binding,
Grouping, Sorting, and Filtering,”) and the dependency property system (discussed in
Chapter 5, “Understanding Dependency Properties”) were changing the way that client
applications are developed.

Expression Blend is a tool for designers, and therefore it must be able to display various
components of the application in a given state, so that the designer can style and
template them. This is why it is very interesting to use a pattern where the view is as
disconnected from the model as possible, and where an intermediary object (the view-
model) can be accessed and set in the state that the designer needs.

Presentation Model for WPF and Silverlight
WPF has one natural advantage when a synchronization mechanism is needed: The
dependency property system and the binding framework are made exactly for this, and
are built in to the framework. The developer does not need to test the synchronization
mechanism; Microsoft did that work already. It was only natural to adapt the Presentation
Model pattern to WPF, which became the Model-View-ViewModel pattern.

Expression Blend is built according to this pattern. This explains why MVVM works great
with Blend. But there is more to MVVM than “Blendability”: Because of the separation
between the components, we also gain in testability, modularity, and maintainability.

Finally, when Silverlight was developed, many of the core concepts of WPF were ported
over, and the same mechanisms are available, as you saw in Chapters 5 and 6. This makes
MVVM the pattern of choice for Silverlight.

Architecture of MVVM
The MVVM pattern identifies three layers:

. The model is where the data comes from. It can be a gateway to web services, a data
layer to a database, a file system manager, and so forth. It is completely ignorant of
the view.

. The view-model is an intermediary layer, as shown in Figure 7.3, and is responsible
for preparing the data that will be displayed in the view. We will talk about the
implementation of this component later in this chapter.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern160

 From the Library of Wow! eBook

ptg

. Finally, the view is the visual part of the
application. In Silverlight, the view is
XAML based. Note that most of the time
the view also has some code (the code
behind) to handle special view-related
activities, such as starting or stopping
animations, displaying messages to the
user, and so forth.

Figure 7.3 shows the three layers and their
relationship. Note that the connection
between the view and the view-model relies
on data binding.

Translating to Silverlight
Now that we saw the theory of MVVM, we need to understand how to translate this to a
real Silverlight application. First, let’s review how these concepts are adapted in Silverlight
before a sample application is implemented.

Getting Data Through the Model
The model is wherever the data comes from. In a Silverlight application, it is often a web
service (through the WebClient class, a Windows Communication Foundation (WCF)
service, an RSS feed, and so on). Sometimes data comes from files (XML or otherwise) on
the local computer. For the client application, where the data comes from is not relevant,
because the model is abstracting and isolating the source.

The model is usually one or more classes exposing methods with names such as GetItems,
SaveItems, CreateNewItem, and so on. They should be developed in a way that protects the
consumer (the view-model) in case the data layer changes. For example, if a WCF service
gets converted into a Relational State Transfer (REST) service, the view-model and the
view should not be modified at all. For more information about REST services, see
http://www.galasoft.ch/sl4-rest.

Preparing the Data in the View-model
The raw data that is stored in the model is often not
directly suitable for a Silverlight application. At the very
least, changes in a property should raise the
PropertyChanged event that is defined by the
INotifyPropertyChanged interface, as you saw in Listing
5.2. This is why data items are often wrapped in their
own view-models, as illustrated in Figure 7.4: a collec-
tion of ItemVM instances, where each wraps an instance
of the Item class, which was retrieved from a service by
the model.

Architecture of MVVM 161

7

FIGURE 7.3 The Model-View-ViewModel
pattern.

FIGURE 7.4 Organization of
items, item view-models, and
data templates.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-rest

ptg

This collection is owned by another kind of view-model, called AllItemsVM in Figure 7.4.
This object will be bound to the AllItems user control later. In this class, we can also add
properties that are directly related to the user interface. One such example is a property
indicating that the application is busy with an asynchronous operation. Retrieving a list
of customers from a web service or a database can take some time, and it is good practice
to inform the user about what is happening. To do this, we can expose a property named
IsBusy (of type bool) and set it to true when such an operation is happening. The view-
model doesn’t know what the view will do with this property; it is just providing it.

Two Kinds of View-models
It is important to understand the difference between the two kinds of view-models: The
ItemVM class is used to represent data. It is typically stored in a collection and rendered by
a DataTemplate in a data control (ListBox, ItemsControl, ComboBox, DataGrid, and so on).

On the other hand, the AllItemsVM class is bound to a UserControl. There is only one
instance of this class per instance of the AllItems page. Its properties are rendered by
various controls, such as TextBlock, TextBox, RadioButton, and so on. The AllItemsVM class
owns the ItemsVM instances, typically in an ObservableCollection.

Rendering Items with a DataTemplate
As mentioned, items wrapped in a view-model and stored in collections are rendered
through a data template and then displayed in a data control. The Silverlight framework
automatically binds the implicit DataContext property of the data template to the item
that it renders.

Rendering the View as a User Control
In Silverlight, a view is typically a UserControl with its DataContext set to a view-model.
The granularity (that is, the size and complexity) of the view and of the view-model
depends on multiple factors.

. If the view and the view-model grow too
big, they become harder to maintain and
test. It is a good time to refactor your
application, and split the existing code
base in multiple classes.

. If the view and the view-model are too
small, you end up with a large number of
classes to maintain, and your application
code base can be confusing.

It is often best to split a complex view in
multiple user controls, each with its own view-
model, as shown in Figure 7.5.

In contrast to data templates, the DataContext on a user control must be set manually to
the corresponding view-model through a binding. There are multiple ways to do this, as
you will see later in this chapter.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern162

FIGURE 7.5 Splitting the application
into model, view-models, and views.

 From the Library of Wow! eBook

ptg

What About Custom Controls?
Custom controls can be seen as the smallest example of view/view-model pair in the
Silverlight framework. As discussed in Chapter 3, “Extending Your Application with
Controls,” a custom control is made of a class with dependency properties and of a
control template. The class is the view-model, and the template is the view, with data
bindings to keep it synchronized with the view-model.

Binding the View to the View-model 163

7

T I P

Binding the Data Template to the Model

If we follow Figure 7.4 strictly, a data template is completely disconnected from the item it
represents, and all communication goes through properties and methods on the view-model.
This is often not the best way because it implies duplicating most properties from the item.
This is why it is often better to bind some elements from the data template directly to the
corresponding properties on the item.

Note, however, that this is possible only if the items implement the INotifyPropertyChanged
interface and raise the PropertyChanged event when their properties are updated. Otherwise,
the bindings will not be notified when a property changes.

When the model is a WCF client, the proxy objects created by Visual Studio do implement
this interface, and therefore can be used as the source for bindings on the data template
directly.

Binding the View to the View-model
Once the view-model is implemented, it must be made available to the view, so that bind-
ings can be set on properties. There are several ways to do that. Remember that MVVM is
a pattern, and is subject to interpretation, depending on the goal that you want to
achieve, on external constraints, and so forth. In this chapter, we expose a few ways to
create view-models and to bind them to the view. However, it is possible to find other
implementations on the Web, so do not hesitate to investigate more before deciding to
use one or the other implementation.

Understanding the Data Context
The DataContext is a property defined on the FrameworkElement class. You saw in Listing
4.7 how it can be set to an object (in that case, a StaticResource defined in the view)
through a data binding. Once the DataContext is set, the implicit source of every data
binding on every child is automatically set to the DataContext object. Of course, you can
still set the source of selected bindings to a different object (using one of the properties
we saw in Chapter 6, in the “Setting the Source” section), but the DataContext offers a
convenient shortcut.

 From the Library of Wow! eBook

ptg

Inheriting the Data Context
A user control set up as a view usually contains controls (buttons, check boxes, text
blocks, and so on) and can also contain other user controls. All the elements within a
view automatically inherit the view’s data context.

The inherited context can be over-
written by setting a child element’s
DataContext property to something
different (another view-model,
another kind of object, or in the
case of data templates, the data item
that the template is rendering). This
hierarchy of contexts and the corre-
sponding user interface are repre-
sented in Figure 7.6.

. In Figure 7.6, the data context of MainPage is set to the view-model named VM1.

. The data context is inherited to Button 0. Any binding set to the implicit data
context will use properties within VM1.

. The same happens with User Control 1. This user control doesn’t have a data
context, so it inherits VM1.

. VM1 is also inherited to Button 1, which is within User Control 1.

. The data context of User Control 2 is set manually to VM2. This overwrites VM1.
Any binding set to the data context within User Control 2 will use properties within
VM2.

. VM2 is inherited to Button 2, which is within User Control 2.

Binding to the View
As mentioned a few times already, when the view is a DataTemplate used within a data
control, the DataContext property is set automatically to the corresponding data item. In
other cases, however, it must be defined manually.

There are multiple ways to do this, and as usual it depends what you are trying to
achieve. In this section, we look at three ways to do so, which should cover most scenar-
ios, and mention their advantages and inconveniencies. But this list is not exhaustive,
and you will find additional implementations on the Web.

Creating the View-model in Resources
With this method, the view-model is made available in the view’s resources. We
mentioned earlier that the resources are a store, where any type of object can be placed
for later usage. When an object is placed in the resources, it is created by the XAML parser
if needed. Multiple consumers can use the same resource (for example, as the source of
data bindings). Listing 7.1 shows a view-model in the view’s resources, and the way that
the DataContext is bound to this object.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern164

FIGURE 7.6 Logical tree and data context.

 From the Library of Wow! eBook

ptg

LISTING 7.1 Binding to a View-model in Resources

1 <UserControl x:Class=”SampleMvvm.MainPage”

2 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

3 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

4 xmlns:vm=”clr-namespace:SampleMvvm.ViewModel”>

5 <UserControl.Resources>

6 <vm:MainViewModel x:Key=”MainViewModel” />

7 </UserControl.Resources>

8

9 <Grid x:Name=”LayoutRoot”

10 DataContext=”{Binding Source={StaticResource MainViewModel}}”>

11 </Grid>

12 </UserControl>

. Line 4 defines an xmlns prefix pointing to our view-model’s namespace.

. Line 6 creates an instance of the view-model in the page’s resources.

. Line 10 sets the main Grid’s DataContext to the view-model in the resources through
a binding.

Advantages

The whole interaction happens in XAML. It is much more localized and easy to find and to
understand what happens. This way of doing works great with Expression Blend and the
Visual Studio designer (as discussed later this chapter).

Disadvantages

There is no control about when the view-model is created. The XAML parser decides when
the object is needed. There is also no way to pass parameters to the view-model con-
structor. The XAML parser uses the default constructor. Finally, there is no central location
from which to get the view-model, for other objects that need to communicate with it.

This way of doing is great for very simple applications (for example, for demos or tests).
In real-life applications, however, this is not convenient enough. A complete sample is
available at http://galasoft.ch/SL4U/Code/Chapter07.

Using a ViewModelLocator
Another alternative that works great is to use an intermediary object called the
ViewModelLocator. This object is in charge of creating, storing, and managing the view-
models in the applications.

The ViewModelLocator instance is made available in the application’s resources (into
App.xaml). This makes it global for the whole application. The view-models are exposed
through properties on this instance. Depending on the scenario, the view-model can be
stored as a static attribute of the ViewModelLocator, or there might be multiple instances
of a view-model (for example, for pop-ups). The ViewModelLocator is in charge of creating
and deleting these instances.

Binding the View to the View-model 165

7

 From the Library of Wow! eBook

http://galasoft.ch/SL4U/Code/Chapter07

ptg

Because the ViewModelLocator is stored in the global resources, it has to define an empty
constructor, but this is usually not a big limitation. The view-models, on the other hand,
can accept parameters (for example, services to handle data, settings).

Listing 7.2 shows a ViewModelLocator stored in App.xaml. A simple implementation is
shown in Listing 7.3. Finally, Listing 7.4 shows the DataContext of the view being bound
to the view-model through the ViewModelLocator’s Main property.

LISTING 7.2 ViewModelLocator in Global Resources

<Application.Resources>

<!--Global View Model Locator-->

<vm:ViewModelLocator x:Key=”Locator” />

</Application.Resources>

LISTING 7.3 ViewModelLocator Implementation

public class ViewModelLocator

{

private static MainViewModel _main;

public ViewModelLocator()

{

var service = new CustomerServiceProxy();

_main = new MainViewModel(service);

}

public MainViewModel Main

{

get

{

return _main;

}

}

}

LISTING 7.4 Binding the View’s DataContext Through the ViewModelLocator

<UserControl x:Class=”SampleMvvm.MainPage”

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

DataContext=”{Binding Source={StaticResource Locator},

Path=Main}”>

</UserControl>

CHAPTER 7 Understanding the Model-View-ViewModel Pattern166

 From the Library of Wow! eBook

ptg

Advantages

A central location is responsible for the creation, storage, and deletion of the view-
models. This is convenient, for example, when another object needs to get information
from a view-model. Also, because the view-models are created in code, special cases are
easy to handle. Finally, this solution works great with Expression Blend and the Visual
Studio designer.

Disadvantages

The ViewModelLocator is an additional class to implement and maintain.

An implementation demonstrating this way to bind the view-model is also available at
http://galasoft.ch/SL4U/Code/Chapter07.

Setting the Data Context in the Code Behind
Because the DataContext is a property of the view (it is available on every
FrameworkElement), it can of course also be set in the code behind, in the view’s construc-
tor, as shown in Listing 7.5. Note how the view-model is constructed with a parameter:
The service passed to the view-model is constructed in the view, and the view-model does
not have to know whether this is a real implementation or just a dummy object for test
purposes.

LISTING 7.5 Setting the DataContext in the View’s Constructor

public partial class MainPage : UserControl

{

public MainPage()

{

InitializeComponent();

var service = new CustomerServiceProxy();

var viewModel = new MainViewModel(service);

DataContext = viewModel;

}

}

Advantages

The view-models are created in code, so special cases are easy to handle, for example,
calling a view-model’s constructor with parameters for services, and so forth. There is no
additional locator class to manage.

Disadvantages

No central location to get the view-models from. The creation and lifetime management is
the responsibility of each view, which can cause certain confusion. Also, this doesn’t work
well in Expression Blend and the Visual Studio designer. The code behind is not executed
when a view is loaded in Blend. The view-model will not be created, the data context is
not set, and the view remains empty in Blend.

Binding the View to the View-model 167

7

 From the Library of Wow! eBook

http://galasoft.ch/SL4U/Code/Chapter07

ptg

These two disadvantages can, however, be mitigated. A central location for the creation of
view-models can be imported in the form of an inversion of control (IOC) container.
These helper classes are very popular in the .NET world. For example, libraries such as
Structure Map, Unity, NInject, the Managed Extensibility Framework (MEF), and others
help to manage the lifetime of objects and services.

As for the design-time experience, a design time data context can be set in Visual Studio
and Expression Blend, as you will see in Chapter 11, “Mastering Expression Blend.”

Building a Sample Application
In this section, we build a basic MVVM application to show some the advantages of this
pattern in Silverlight 4. The application will use a WCF service to obtain data (a list of
customers). Because the WCF service calls are made through the model, it is not relevant
for the view-model and the view where the data comes from. This is one of the many
advantages of a clean separation. In this section, we do not talk about the model, except
to mention the interfaces we use to read data and save changes.

The sample application can be downloaded from
http://galasoft.ch/SL4U/Code/Chapter07. You can download a “start” solution, containing
the service implementation as well as the draft of the Silverlight application. There is also
an “end” state, with the implementation as described in this chapter.

The Model’s Interface
The model exposes one interface named ICustomerServiceProxy, as shown in Listing 7.6.

LISTING 7.6 The ICustomerServiceProxy Interface

public interface ICustomerServiceProxy

{

void GetCustomers(

Action<IEnumerable<Customer>, Exception> callback);

void SaveCustomers(

IEnumerable <Customer> customers,

Action<bool> callback);

}

. All the methods use an asynchronous pattern to access the service. In Silverlight, all
web service calls are asynchronous (as you saw in Silverlight 2 Unleashed, Chapter
22). The consumer of the service passes an Action to the method. The Action class
acts like a method, in the sense that it can be executed by another object. But it can
be also passed as a parameter and saved for later. It is a reference to a method. This is
perfect for asynchronous method calls because the service does not need to keep
any reference to the consumer: When the web request is completed, simply execute
the callback to inform the consumer.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern168

 From the Library of Wow! eBook

http://galasoft.ch/SL4U/Code/Chapter07

ptg

. The method GetCustomers loads all the customers from the server. We use an
IEnumerable collection, which is a simple interface that most collections in .NET
implement. This gives the service a great freedom to change its implementation if
needed without affecting the view-model.

. In the method GetCustomer’s callback, the second parameter is an Exception. This
allows the service to notify the view-model if an error occurred when retrieving
data. This Exception might be null, if all went well.

. The method SaveCustomer takes a collection of Customer instances as parameter and
saves them to the server. It also uses a callback to indicate whether saving was
successful.

These are the only two methods we will use in this simple application; of course, a real-
life service will have additional methods (for example, to create a new customer or
execute queries on the database).

There are multiple advantages in exposing the service through the ICustomerServiceProxy
interface rather than a concrete class: The view-model does not depend at all on the
service implementation. The interface is used as a contract between the consumer (the
view-model) and the provider (the service implementation in the model). The class inter-
action from the view-model to the service can easily be unit tested: We can simulate the
actions of the methods without having to use a complex web service. For example, we
can implement a mock service (that is, a class implementing the ICustomerServiceProxy
interface only for test purposes). For more information about mocking, see
http://www.galasoft.ch/sl4-mock.

The service can easily be created by techniques known as inversion of control (IOC) and
dependency injection (DI), which help creating complex applications and reduce the
dependencies between the components. You can find more information about IOC and
DI at http://www.galasoft.ch/sl4-ioc.

About the Customer Class
In this sample application, the Customer class is created by Visual Studio when we connect
the Silverlight application to the WCF service. This is called a proxy (in other words, a
client-side representation of the server-side object used by the service). An even better
idea is to also use an interface ICustomer to completely decouple the view-model from the
WCF service. In this simple application, however, we will just rely on the proxy. You will
learn in Chapter 9, “Connecting to the Web,” how to connect to a WCF service and use
proxies.

The Customer class defined on the server is a pure data object with various properties,
such as FirstName, LastName, a URI to a picture file named PictureUri, Gender,
AccountNumber, and so forth. All these properties are also available on the client directly
because the proxy is a representation of this server-side object and all the properties are
populated when the WCF service call is made.

Building a Sample Application 169

7

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-mock
http://www.galasoft.ch/sl4-ioc

ptg

Building a CustomerViewModel
The Customer class is a WCF proxy object. Conveniently, the proxy generated by Visual
Studio implements the INotifyPropertyChanged interface; this means that its properties
can be used as the source for data bindings. This simplifies the development because we
do not need to duplicate every property when we wrap the Customer class within the
CustomerViewModel class. The Customer instance passed to the CustomerViewModel construc-
tor is exposed in a public property, as shown in Listing 7.7.

LISTING 7.7 The CustomerViewModel Constructor and the Model Property

1 public class CustomerViewModel : ViewModelBase

2 {

3 public Customer Model

4 {

5 get;

6 private set;

7 }

8

9 public CustomerViewModel(Customer model)

10 {

11 Model = model;

12 }

13 }

However, we need additional UI-specific properties. For instance, we want a property
named DirtyVisibility to be set to Visibility.Visible when modified information must
be saved to the server. Based on this property, we can modify the look and feel of the data
template, and also find out which items must be saved to the server when such an opera-
tion is initiated by the user.

There are two steps needed to implement the DirtyVisibility property: First, we need a
property that raises the PropertyChanged event, as shown in Listing 7.8. This event is
raised by a method stored in a class named ViewModelBase of which all the view-models
derive, and that we will reuse in other MVVM applications. The implementation of the
ViewModelBase is shown later in this chapter, in the “Implementing a ViewModelBase
Class” section.

LISTING 7.8 The DirtyVisibility Property

public const string DirtyVisibilityPropertyName

= “DirtyVisibility”;

private Visibility _dirty = Visibility.Collapsed;

public Visibility DirtyVisibility

{

get

CHAPTER 7 Understanding the Model-View-ViewModel Pattern170

 From the Library of Wow! eBook

ptg

{

return _dirty;

}

set

{

if (_dirty == value)

{

return;

}

_dirty = value;

RaisePropertyChanged(DirtyVisibilityPropertyName);

}

}

The second step is to set the DirtyVisibility property to Visibility.Visible when a
property changes in the Customer model. Because we know that this class raises the
PropertyChanged event when a property is modified (either in code or through a binding),
we can subscribe for this event. Whenever the event is raised, we can set DirtyVisibility
as shown in Listing 7.9. This listing replaces lines 9 to 12 in Listing 7.7.

LISTING 7.9 Subscribing to the PropertyChanged Event

public CustomerViewModel(Customer model)

{

Model = model;

Model.PropertyChanged += (s, e) =>

{

DirtyVisibility = Visibility.Visible;

};

}

Note that we use a lambda expression in Listing 7.9 to set the event handler. This is a
shortcut allowing us to define an anonymous method. The parentheses contain the para-
meters of the method. Because the compiler knows what signature is expected, it is not
necessary to set the parameters’ types. The first parameter of the event handler is the
sender s, and the second is the PropertyChangedEventArgs e. Then the arrow => indicates
that what is following is the body of the method.

Lambda expressions seems a bit confusing when you first encounter them, but they are
very convenient and, once you get used to them, very natural to write. You’ll learn more
about lambdas in Chapter 22, “Advanced Development Techniques.”

Building a Sample Application 171

7

 From the Library of Wow! eBook

ptg

Calling the Service in the MainViewModel
With the CustomerViewModel ready to be used, we can now implement the MainViewModel
and call the service to get data, as shown in Listing 7.10.

LISTING 7.10 The MainViewModel Implementation

1 public class MainViewModel : ViewModelBase

2 {

3 private ICustomerServiceProxy _service;

4

5 public ObservableCollection<CustomerViewModel> Customers

6 {

7 get;

8 private set;

9 }

10

11 public const string ErrorMessagePropertyName

12 = “ErrorMessage”;

13

14 private string _errorMessage = string.Empty;

15

16 public string ErrorMessage

17 {

18 get

19 {

20 return _errorMessage;

21 }

22

23 set

24 {

25 if (_errorMessage == value)

26 {

27 return;

28 }

29

30 _errorMessage = value;

31 RaisePropertyChanged(ErrorMessagePropertyName);

32 }

33 }

34

35 public MainViewModel(ICustomerServiceProxy service)

36 {

37 Customers

38 = new ObservableCollection<CustomerViewModel>();

39 _service = service;

40 _service.GetCustomers(HandleResult);

CHAPTER 7 Understanding the Model-View-ViewModel Pattern172

 From the Library of Wow! eBook

ptg

41 }

42

43 private void HandleResult(

44 IEnumerable<Customer> result, Exception ex)

45 {

46 // See Listing 7.11

47 }

48 }

. On lines 5 to 9, we use an ObservableCollection to store the CustomerViewModel
instances. This convenient collection class raises an event called CollectionChanged
when its content is modified (either items added, removed, or the sorting order
changed). When it is used as the source of a binding for a data control (for instance,
the ItemsSource property of a ListBox control), the control’s content will be auto-
matically updated whenever something happens in the collection.

. Note that the Customers property does not raise the PropertyChanged event: It is
created in the MainViewModel constructor, and then never changes. Only its content
changes, which causes CollectionChanged to be raised.

. Lines 11 to 33 define a string property for error messages. This property raises the
PropertyChanged event, so we can bind a TextBlock to it to show possible errors
when getting or saving the data.

. The constructor (in lines 35 to 41) accepts an instance of ICustomerServiceProxy as
parameter. Where this instance comes from is not relevant for the view-model. It
might be a mock service used for tests, a design-time service used to provide data
visualization in Blend, or a “real-life” service.

. On line 37, after creating the collection for the items and storing the service for
later, we retrieve the data. Note the use of the GetCustomers method specified by the
ICustomerServiceProxy interface (see Listing 7.6).

. The GetCustomers method accepts a callback method as parameter. This callback will
be called asynchronously by the service when the data is ready. The method
HandleResult is defined on lines 43 to 47 and accepts a list of Customer items
(defined as an IEnumerable) and an Exception (which might or might not be null).
This again corresponds to the contract that was shown in Listing 7.6

The HandleResult method’s implementation is shown in Listing 7.11.

LISTING 7.11 Handling the Result

1 private void HandleResult(

2 IEnumerable<Customer> result, Exception ex)

3 {

4 Customers.Clear();

5

6 if (ex != null)

Building a Sample Application 173

7

 From the Library of Wow! eBook

ptg

7 {

8 ErrorMessage = ex.Message;

9 return;

10 }

11

12 if (result == null)

13 {

14 return;

15 }

16

17 foreach (var customer in result)

18 {

19 var vm = new CustomerViewModel(customer);

20 Customers.Add(vm);

21 }

22 }

. On line 4, we clear the Customers collection. Because this property does not raise the
PropertyChanged event, we must be careful to clear the collection instead of creating
a new one. If we were to create a new one, the bindings would not be notified, and
the data would not be updated in the user interface!

. On lines 6 to 10, we check whether the Exception parameter is null. If that is not
the case, we set the ErrorMessage property and stop handling the data.

. On lines 12 to 15 we make sure that the result parameter is not null. This would
cause an error on line 17.

. Finally, on lines 17 to 21, we loop through the items. Because we know that the
result is an IEnumerable, we do not need to worry about the concrete type that this
collection is. We just know that we can enumerate the items. In case the underlying
implementation of the service changes, the view-model code would not be affected.

. Note how we create a new CustomerViewModel on line 19, wrapping the Customer
instance through the constructor.

Binding to Results
Our view-models are now ready to be used in the view. As you saw before, there are multi-
ple ways to create an instance of the MainViewModel and to assign it to the MainPage’s
DataContext. In this sample implementation, we choose to set the DataContext in the code
behind (in MainPage.xaml.cs), as shown in Listing 7.12.

LISTING 7.12 Setting the DataContext

1 public partial class MainPage : UserControl

2 {

3 public MainPage()

CHAPTER 7 Understanding the Model-View-ViewModel Pattern174

 From the Library of Wow! eBook

ptg

4 {

5 InitializeComponent();

6

7 var service = new CustomerLocalService();

8 var vm = new MainViewModel(service);

9 DataContext = vm;

10 }

11 }

. Setting the DataContext must be done after the call to InitializeComponent. This
method is defined in a file (called MainPage.g.cs) generated by Visual Studio. All the
elements defined in XAML (including the DataContext property) will be available
only after InitializeComponent has completed.

. Line 7 is where we create the concrete instance of the service. Because
CustomerServiceProxy implements the ICustomerServiceProxy interface, we can use
this instance to create the MainViewModel on line 8. Again, the MainViewModel does
not need to know where the instance comes from. All it knows is that the
GetCustomers and SaveCustomer methods are available.

. Finally, on line 9, we assign the newly created view-model to the page’s DataContext.

Building a Sample Application 175

7

T I P

Generating Code from XAML

When a XAML file has the x:Class attribute, Visual Studio generates a code file for it. For the
MainPage.xaml, this file is called MainPage.g.cs and is regenerated every time that the XAML
is modified. In this file, the properties corresponding to named controls are defined, as well
as the operations needed to parse the XAML code and create the corresponding objects. All
the g.cs files can be found in your project folder under obj\Debug. Do not attempt to modify
any of the generated files, because your changes will be overwritten immediately anyway.

From now on, the view is wired to the view-model, and we can set our bindings, as
shown in Listing 7.13.

LISTING 7.13 Setting the Bindings

1 <UserControl x:Class=”SampleMvvm.MainPage”

2 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

3 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

4 <UserControl.Resources>

5 <DataTemplate x:Key=”CustomerTemplate”>

6 <StackPanel Orientation=”Horizontal”>

7 <TextBlock Text=”*”

8 FontWeight=”Bold” Foreground=”Red”

9 Visibility=”{Binding DirtyVisibility}”/>

 From the Library of Wow! eBook

ptg

10 <TextBlock Text=”{Binding Model.FirstName}” />

11 <TextBlock Text=” “ />

12 <TextBlock Text=”{Binding Model.LastName}” />

13 </StackPanel>

14 </DataTemplate>

15 </UserControl.Resources>

16

17 <Grid x:Name=”LayoutRoot”>

18 <Grid.ColumnDefinitions>

19 <ColumnDefinition Width=”0.5*” />

20 <ColumnDefinition Width=”0.5*” />

21 </Grid.ColumnDefinitions>

22 <Grid.RowDefinitions>

23 <RowDefinition Height=”*” />

24 <RowDefinition Height=”40” />

25 </Grid.RowDefinitions>

26

27 <ListBox x:Name=”CustomersListBox”

28 ItemsSource=”{Binding Customers}”

29 ItemTemplate=”{StaticResource CustomerTemplate}” />

30

31 <StackPanel Grid.Column=”1”

32 DataContext=”{Binding ElementName=CustomersListBox,

33 Path=SelectedItem}”>

34 <TextBox Text=”{Binding Model.LastName, Mode=TwoWay}” />

35 </StackPanel>

36

37 <TextBlock Text=”{Binding ErrorMessage}”

38 FontWeight=”Bold” Foreground=”Red”

39 Grid.Row=”1” />

40 </Grid>

41 </UserControl>

. On lines 5 to 14, a DataTemplate is defined in the page’s resources. It will be used to
render the CustomerViewModel instances in the ListBox on line 29. Remember that
Silverlight sets the DataContext of each rendered DataTemplate to the corresponding
instance of a CustomerViewModel. Do not get confused: Everything that happens in
the DataTemplate (between lines 5 and 14) is related to CustomerViewModel, and not
to MainViewModel!

. On lines 7 to 9, we set a TextBlock displaying a red star. Its Visibility property is
bound to the DirtyVisibility property on the CustomerViewModel.

. Note how in the template, on lines 10 and 12, the first and third TextBlock’s Text
properties are bound on properties on the Customer class, through the
CustomerViewModel’s Model property. As mentioned earlier, the Customer class raises
PropertyChanged when its properties are updated, so the bindings will work.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern176

 From the Library of Wow! eBook

ptg

. On lines 27 to 29, we set a ListBox in the first cell of the Grid. The ItemsSource is
set through a binding to the Customers property on the MainViewModel. As seen in
Listing 7.10, this property is an ObservableCollection of CustomerViewModel
instances.

. On line 29, we assign the DataTemplate that we saw in the resources to the
ItemTemplate property of the ListBox.

. On lines 31 to 35, we place a StackPanel in the Grid’s second cell. Notice how the
DataContext of this panel is set to the SelectedItem of the ListBox on lines 32 and
33. When the user selects a different customer, the StackPanel’s data context
changes and all the controls within the panel are updated with the new informa-
tion.

. On line 34, we place a TextBox. Keep in mind that SelectedItem in the ListBox is a
CustomerViewModel. We can now bind the Text property of the TextBox to the
Model.LastName with a TwoWay binding: When the user edits the value in the TextBox,
the customer will automatically be updated in the collection.

. Finally, we create a TextBlock on lines 37 to 39 to display a possible error message if
there is one. The ErrorMessage property in the MainViewModel class was set in Listing
7.11, line 8.

Probably the most important fact to keep in mind when creating such a XAML user inter-
face is what the data context is in the current section of the markup. Switching from
CustomerViewModel to MainViewModel and back to CustomerViewModel can be confusing.
However, the Visual Studio designer and Expression Blend assist you in this task when
you use the data binding editors that were discussed in Chapter 6.

Testing the Application
The test application can be downloaded from http://galasoft.ch/SL4U/Code/Chapter07.
Follow the instructions on that page to install and run the WCF service to which the
Silverlight application will connect. The user interface is very crude, but the application
demonstrates the interaction between view, view-model, and model. Follow these steps to
test the sample:

1. With the application running, wait a moment until the data appears in the ListBox,
as shown in Figure 7.7. Note that the customer information is obtained from a WCF
service running locally. Loading the data can take a few seconds.

2. Select a customer in the list. Through the SelectedItem binding, the customer’s last
name will be displayed in the TextBox on the right side.

3. Edit the customer’s last name and then press the Tab key to exit from the TextBox.
Unlike in WPF, Silverlight bindings on a TextBox are updated only when the TextBox
loses the focus.

4. Notice how the name is also updated in the ListBox, through the data bindings.
Also, a red star indicates that the customer should be saved to the server.

Building a Sample Application 177

7

 From the Library of Wow! eBook

http://galasoft.ch/SL4U/Code/Chapter07

ptg

FIGURE 7.7 Sample MVVM application.

Bridging the Separation
Strictly speaking, the architecture that was exposed in the two previous sections is already
an implementation of the Model-View-ViewModel pattern. However, a few additional
components are needed to complete the picture.

Implementing a ViewModelBase Class
The ViewModelBase class stores code that is shared between all the view-model implemen-
tations. The most important method is the one raising the PropertyChanged event. If
needed, additional shared methods and properties can be implemented in this base class,
too. Creating a ViewModelBase class is often the first step in creating a MVVM framework!

A possible implementation for the ViewModelBase class is proposed in Listing 7.14.

LISTING 7.14 The ViewModelBase Class

1 public abstract class ViewModelBase : INotifyPropertyChanged

2 {

3 public event PropertyChangedEventHandler PropertyChanged;

4

5 protected virtual void RaisePropertyChanged(

6 string propertyName)

7 {

8 VerifyPropertyName(propertyName);

9

10 var handler = PropertyChanged;

11

12 if (handler != null)

13 {

14 handler(this,

15 new PropertyChangedEventArgs(propertyName));

16 }

17 }

CHAPTER 7 Understanding the Model-View-ViewModel Pattern178

 From the Library of Wow! eBook

ptg

18

19 [Conditional(“DEBUG”)]

20 [DebuggerStepThrough]

21 public void VerifyPropertyName(string propertyName)

22 {

23 var myType = this.GetType();

24 if (myType.GetProperty(propertyName) == null)

25 {

26 throw new ArgumentException(

27 “Property not found”,

28 propertyName);

29 }

30 }

31 }

Line 1 defines the class as being abstract and implementing INotifyPropertyChanged. The
class can be derived from, but not instantiated directly. Line 3 defines the
PropertyChanged event required by the INotifyPropertyChanged interface. Lines 5 to 17
implement a method named RaisePropertyChanged that each view-model deriving from
this class can use to raise the PropertyChanged event, and actualize data bindings set on
the corresponding property.

Because the PropertyChangedEventArgs class carries the property’s name as a string, it is
possible that errors happen (for example, typos in the property’s name or copy/paste
errors). To prevent these errors, the property’s name is verified on line 8. Note, however,
that the VerifyPropertyName method is executed only when the application runs in Debug
configuration, as you will see in just a moment.

On line 12, we check whether the PropertyChanged event handler is null. This might be
the case if no binding was set for this object and no other instance registered for the
event. To avoid a crash, we need to check this before raising the event on lines 14 and 15.

Lines 19 to 30 define the VerifyPropertyName method,
which is protecting the application from errors in the
property’s name. This method carries the Conditional
attribute and is executed only when the application
runs in Debug configuration. This can be changed in
Visual Studio by using the Configuration Manager
available in Visual Studio’s toolbar, as shown in
Figure 7.8. The VerifyPropertyName method throws an
exception on lines 26 to 28 in case the property does not exist on the calling view-model.
This gives the developer a clear sign that something is wrong, instead of having the
binding fail silently as you saw in Chapter 6.

Bridging the Separation 179

7

FIGURE 7.8 Configuration
Manager in Visual Studio toolbar.

 From the Library of Wow! eBook

ptg

Using Commands
Controls classically use events to execute a method when they are actuated. However, you
learned in Chapter 4, “Investigating Existing Controls” (in the “Adding Command and
CommandParameter” section) how having the event handler in the code behind causes
issues, especially when the view is defined in a resource dictionary (as is often the case for
data templates).

Having event handlers in the code behind also conflicts with one of the goals of the
MVVM pattern, which is to reduce the amount of code that cannot easily be tested.
Code behind is difficult to test automatically because it is very strongly tied to the user
interface.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern180

WA R N I N G

Debug or Release?

The Debug configuration is carrying additional information for the debugger. Normally, this
configuration is used during the development, but not for the final deployment of the applica-
tion. Applications built in Debug configuration are usually a little larger and slower than the
same application in Release configuration.

After you change the configuration to Release using the combo box shown in Figure 7.8, you
will find a new XAP file in your project folder, under bin\Release. Note that Expression Blend
always builds the application in Debug configuration.

T I P

Code Behind or No Code Behind?

Sometimes when the MVVM pattern is discussed, people say that the goal should be to have
no code behind at all, and all the code should be in view-models. However, such a goal is
very difficult to reach, and having a certain amount of code behind is okay, as long as it is
related to the user interface. For example, starting or stopping animations, or displaying
message boxes to the user, is not the responsibility of the view-model. Although reducing the
amount of code behind is a respectable goal, software development often implies compro-
mises if you want to ship your application in a reasonable time.

In Chapter 11, you will see how it is possible to use objects called behaviors to reduce
further the amount of code behind.

To execute methods on the view-model without resorting to event handlers, Silverlight
proposes the ICommand interface and, as covered in Chapter 4, the Command and
CommandParameter properties. This interface is very useful in the MVVM pattern because
the Command property can be bound to a property of type ICommand on the view-model, as
in Listing 4.7.

Note that Command and CommandParameter are available only on controls deriving from
ButtonBase (Button, ToggleButton, CheckBox, and so on) and on the Hyperlink control. For

 From the Library of Wow! eBook

ptg

all other controls and events, the core Silverlight does not have a corresponding property,
but you will see in Chapter 11, “Mastering Expression Blend,” how to use a Blend behav-
ior to bridge that gap.

Relaying a Command
In Listing 4.6, a sample implementation of the ICommand interface is proposed. As shown
in that listing, implementing such an interface requires quite a lot of code, and is not
convenient.

To solve this issue, many MVVM frameworks offer a way to relay a command to a method:
When the command is actuated, the method is executed directly in the view-model. The
command is only there to serve as a gateway, as shown in Listing 7.16. In the sample
MVVM application, the code for the RelayCommand class is included; however, in most
cases it will rather be included in an external DLL.

To add a RelayCommand to the application, follow these steps:

1. In MainViewModel.cs, add the SaveCommand property as shown in Listing 7.15.

LISTING 7.15 Declaring the RelayCommand

public RelayCommand SaveCommand

{

get;

private set;

}

2. In the MainViewModel constructor, create the RelayCommand as shown in Listing 7.16.
This replaces lines 35 to 41 in Listing 7.10.

LISTING 7.16 Creating the RelayCommand

1 public MainViewModel(ICustomerLocalService service)

2 {

3 Customers = new ObservableCollection<CustomerViewModel>();

4 _service = service;

5 _service.GetCustomers(HandleResult);

6

7 SaveCommand = new RelayCommand(SaveCustomers);

8 }

9

10 private void SaveCustomers()

11 {

12 var collection = new List<Customer>();

13

14 foreach (var customer in Customers)

15 {

Bridging the Separation 181

7

 From the Library of Wow! eBook

ptg

16 if (customer.DirtyVisibility == Visibility.Visible)

17 {

18 collection.Add(customer.Model);

19 }

20 }

21

22 if (collection.Count > 0)

23 {

24 _service.SaveCustomers(collection, AfterSave);

25 }

26 }

27

28 private void AfterSave(bool success)

29 {

30 if (success)

31 {

32 foreach (var customer in Customers)

33 {

34 customer.DirtyVisibility = Visibility.Collapsed;

35 }

36 }

37 }

. On line 7, the RelayCommand is created. The argument is a method, which is defined
further on lines 10 to 26.

. In the method SaveCustomers, we start by checking among all CustomerViewModel
instances which ones are dirty and must be saved. We store these dirty instances in
a list.

. On line 22, we check whether any instance was found dirty. If that is the case, we
call the SaveCustomers method on the service on line 24.

. The first parameter of the method is the list of CustomerViewModel instances. The
method requires an IEnumerable, which the List collection implements.

. The second parameter is a callback method, which is defined by the interface as
having one single parameter of type bool (see Listing 7.6).

. The callback method is defined on lines 28 to 37. If the operation was successful,
the DirtyVisibility property is reset to Collapsed on each CustomerViewModel
instances.

3. In MainPage.xaml, add the code in Listing 7.17 below the TextBlock showing the
error message (see Listing 7.13; the code should be added between lines 39 and 40).

CHAPTER 7 Understanding the Model-View-ViewModel Pattern182

 From the Library of Wow! eBook

ptg

LISTING 7.17 Using the RelayCommand

<Button Content=”Save customers”

Command=”{Binding SaveCommand}”

Margin=”10” Grid.Column=”1” Grid.Row=”1” />

Testing the Command
You can now run the application again, modify a customer’s name, and then press the
Save customers button. The method is invoked on the MainViewModel without any addi-
tion in the code behind. The resulting code is cleaner than if we had used an event
handler. Also, when the view-model is tested in a unit test, the SaveCustomers method can
be invoked and the results verified (for example, by using a mock service, as mentioned
earlier in this chapter).

Enhancing the Application
This small sample is not perfect by far. There are several issues that should be improved:
The user interface should display a message or an animation when an asynchronous oper-
ation is executed. This can be done by setting additional properties on the MainViewModel
and observing these properties to start animations in the MainPage. Also, the user inter-
face should be disabled while the application is saving the customers to the server. The
user should not be able to make additional changes while an operation is in progress.
Alternatively, a system of queues could be developed to allow parallel operations. Finally,
the design of the application is very crude at this stage and should definitely be
improved.

This is of course just the beginning of the MVVM journey, but this sample should give
you a better understanding of this important pattern in Silverlight.

Bridging the Separation 183

7

T I P

Using Lambda Expressions

Much of the code presented in this chapter could be expressed as lambda expressions. The
lambda syntax is a bit confusing at first, but simplifies the code greatly by allowing anony-
mous methods to be used as callbacks. To develop cleaner code, it is a good recommenda-
tion to study the lambda expression syntax, starting with http://www.galasoft.ch/sl4-lambda.

Sending Messages
With very loosely coupled components, it can be a challenge to send data from one view-
model to another, for instance, or from the view-model to its view. Sometimes, it is neces-
sary to handle special cases, as shown in the following two examples:

. A view-model might need some information from the user. However, displaying a
dialog is really something that should be handled by the view because it is a user
interface issue, something that a designer wants to optimize. In such a scenario,
using a messaging system between the view-model and view is beneficial.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-lambda

ptg

. In a complex application, the list of customers and the selected customer’s details
may be in different views. Binding to the ListBox’s SelectedItem as we did in Listing
7.13 is not possible in such a scenario. In that case, sending the selected item as a
message from one view-model to the other is a good alternative.

These are only two examples where a messaging system comes in very handy. Although
not directly related to the MVVM pattern, such a system is useful when developing
loosely coupled applications. In Chapter 20, “Building Extensible and Maintainable
Applications,” you will learn about such a messaging system and study samples.

Using an MVVM Framework
When working with MVVM a lot, it can be interesting to use a framework to avoid repeti-
tive tasks (whether you implement the framework yourself based on the recommenda-
tions and samples in this chapter or choose an existing framework developed by members
of the Silverlight community). Chapter 20 covers frameworks that can help you develop
faster in Silverlight.

What Could Be Better?
The MVVM pattern is very interesting because it helps separate the view from the data
and increases the modularity of the components. This makes the application more
testable and maintainable because each component is very loosely coupled to the others.
The pattern also helps designers to style and template the user interface in Expression
Blend, as you will see in Chapter 11.

However, not everything is perfect in this pattern. The major annoyance is the fact that
so much code is needed to implement bindable properties. In Listing 7.10, for instance,
we need about 20 lines of (formatted) code to declare a bindable property (in addition to
the ViewModelBase class). Some third-party frameworks propose code snippets that make the
task of writing such properties easier, but the code is still there and needs to be main-
tained.

In later versions of Silverlight, it is possible that raising properties will be much easier (for
example, by placing an [Observable] attribute on each bindable property). Another alter-
native is explained at http://www.galasoft.ch/sl4-weaving, but it is very advanced and
difficult to realize without a deep understanding of how a .NET application is compiled.

Summary
This chapter exposed where the Model-View-ViewModel pattern comes from, how it origi-
nates from other separation patterns such as the Model-View-Controller pattern, the
Passive View pattern, and the Presentation Model pattern. We talked about the theory
behind this pattern, what view-models are used for, and how the are rendered by views
(UserControl, DataTemplate, and so on). This chapter explained the importance of the
DataContext in this pattern and how it can be set and inherited by the children controls.

CHAPTER 7 Understanding the Model-View-ViewModel Pattern184

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-weaving

ptg

These concepts were illustrated by a sample application. Even though it is not all that
complex, this sample is a good start to build a real-life data application, with a connec-
tion to a WCF service, building and handling view-models, and creating the beginning of
a master-detail view in XAML.

The following chapter covers a series of data controls useful when an application has to
deal with data (which is the case most of the time).

Summary 185

7

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Dive deeper into
PagedCollectionView (which
we first saw in Chapter 6,
“Working with Data: Binding,
Grouping, Sorting, and
Fsiltering”).

. Page through data with the
DataPager control.

. Study data validation with
IDataErrorInfo and with data
annotations.

. Use the DataGrid control to
present data in a rich manner.

. Use the DataForm control to
build a master-detail view.

CHAPTER 8

Using Data Controls

Silverlight 4 has come a long way since the days when it
was used mostly to display videos and animate pictures to
enrich a web page. It can still do that, and does it well, but
with Silverlight 3 and especially Silverlight 4, the frame-
work is now able to deal with data, lots of it, and to facili-
tate the creation of data applications (often referred to as
line-of-business, LOB, applications).

Several parts of the Silverlight framework are built specifi-
cally to deal with data:

. Simple data controls such as the ComboBox, ListBox, or
ItemsControl, making it easy to display lists of object.
Thanks to dynamic collections (such as the
ObservableCollection class) and views that can be
applied on top of this data (such as the
CollectionViewSource that we discussed in Chapter 6,
and the PagedCollectionView that we will study in
this chapter), it is easy to shape data and display it to
the user.

. More complex controls (such as the DataPager,
DataGrid, DataForm, and so on), allowing complex
interaction with the data. We talk about these
controls in this chapter.

. An improved validation framework (as discussed in
Chapter 6) with which data controls can interact to
inform the user when input is not valid.

 From the Library of Wow! eBook

ptg

. A strong communication layer allowing access to simple services (such as Relational
State Transfer, REST, services) and to complex server-side applications based on
Windows Communication Foundation (WCF). In Chapter 9, “Connecting to the
Web,” we talk about the communication stack and various ways to communicate
with web servers and services.

. In addition, external frameworks facilitate the development of business applications.
Chapters 13, “Creating Line of Business Applications,” and Chapter 14, “Enhancing
Line of Business Applications and Running Out of the Browser,” cover the new WCF
RIA Services, which enable the building of LOB applications fast with advanced
support from Visual Studio.

Filtering and Paging with the
PagedCollectionView
In Chapter 6, we talked about the ICollectionView interface, which defines events,
methods, and properties enabling the following interactions with data. This interface (and
the classes implementing it) enables grouping according to a property. Data controls that
support this functionality (such as the DataGrid) can display the data in collapsed or
expanded mode to allow the user to find data faster. It also enables sorting according to a
property. The sorting can be modified in code during runtime, as shown in Chapter 6.
Another feature is filtering according to criteria. In contrast to grouping and sorting,
which can be done in XAML and in code, filtering can be done only in code. You will see
a sample in this chapter. Finally, it is also possible to page through data according to a
page size and page index. This allows you to display only parts of the data to the user, to
make the user interface more responsive (because fewer objects need to be created on the
screen).

To understand the PagedCollectionView better, we will build a sample application. The
application in the initial state can be downloaded from
http://www.galasoft.ch/SL4U/code/chapter08.

Preparing the Sample
The sample application is organized like the one in Chapter 6, with a server-side applica-
tion named Customers offering services such as getting a list of customers and saving a
list of customers back to the database; in this case, we do not use a real database, but a
simple XML file. Follow the indications at http://www.galasoft.ch/SL4U/code/chapter08 to
install and start the WCF service.

The application is organized according to the MVVM pattern that we studied in Chapter
7, “Understanding the Model-View-ViewModel Pattern.” It interacts with the following
objects:

. The CustomerServiceProxy (in the Model namespace), a high-level object that handles
all the calls to the WCF service.

CHAPTER 8 Using Data Controls188

 From the Library of Wow! eBook

http://www.galasoft.ch/SL4U/code/chapter08
http://www.galasoft.ch/SL4U/code/chapter08

ptg

. The Customer object (nested inside the CustomerViewModel class) generated by Visual
Studio as a proxy for the WCF data object; this class cannot be modified. The appli-
cation uses its properties FirstName (string), LastName (string), and PictureUri
(Uri).

. The MainViewModel class exposing an ObservableCollection of CustomerViewModel
instances, and bound to the main view’s DataContext in MainPage.xaml.cs.

In this sample, the data is shown in a DataGrid. Open the DataApplicationSample solu-
tion in Visual Studio and then follow these steps:

1. Open the file MainPage.xaml in the Visual Studio designer.

2. Open the Toolbox by selecting View, Toolbox from the menu.

3. Drag a DataGrid from the Toolbox to the design surface.

The DataGrid is located in an assembly (System.Windows.Controls.Data.dll) that is
not included in the Silverlight application by default. However, the Visual Studio
designer added the corresponding reference automatically, as you can see if you
expand the References folder in the Solution Explorer. It also added a new xmlns
statement in MainPage.xaml, mapping the prefix data to the CLR namespace
System.Windows.Controls in the assembly System.Windows.Controls.Data.

The DataGrid needs to be customized to display the properties of the Customer
object. When bound to the collection named Customers in the MainViewModel class
(which we will do in just a moment), each row of the grid shows a
CustomerViewModel instance. In this sample, the user interface should display the
Customer’s FirstName, LastName, and a picture. The first two properties are strings, so
they are easy to display. The last one, however, is a URI pointing to the picture file
on the server. To display the picture, an Image control is used.

4. Open MainPage.xaml in the XAML editor.

5. Modify the DataGrid according to Listing 8.1.

LISTING 8.1 Setting the DataGrid’s Columns

1 <data:DataGrid Height=”Auto”

2 HorizontalAlignment=”Stretch”

3 Margin=”10” Width=”Auto”

4 Name=”CustomersDataGrid”

5 VerticalAlignment=”Stretch”

6 ItemsSource=”{Binding}”

7 AutoGenerateColumns=”False”>

8

9 <data:DataGrid.Columns>

10 <data:DataGridTextColumn Header=”Last name”

11 Binding=”{Binding Model.LastName}” />

Filtering and Paging with the PagedCollectionView 189

8

 From the Library of Wow! eBook

ptg

12 <data:DataGridTextColumn Header=”First name”

13 Binding=”{Binding Model.FirstName}” />

14 <data:DataGridTemplateColumn Header=”Picture”>

15 <data:DataGridTemplateColumn.CellTemplate>

16 <DataTemplate>

17 <Image Source=”{Binding Model.PictureUri}”

18 Height=”100” />

19 </DataTemplate>

20 </data:DataGridTemplateColumn.CellTemplate>

21 </data:DataGridTemplateColumn>

22 </data:DataGrid.Columns>

23

24 </data:DataGrid>

In listing 8.1, lines 1 to 7 set the DataGrid’s properties. Note on line 7 the
AutoGenerateColumns property set to False. It means that the DataGrid control will not
attempt to inspect the items and create columns automatically. Lines 9 to 22 define the
DataGrid’s Columns collection.

Then, on lines 10 and 11, a DataGridTextColumn is added. The Header set to “Last name”
will be displayed on top of the column. The content of the cell is bound to the LastName
property of the Model. Because the implicit DataContext of the row is a CustomerViewModel,
this all falls into place. On lines 12 and 13, the same is done for the Customer’s FirstName
property.

On lines 14 to 21, a more complex column is defined: The DataGridTemplateColumn allows
creating a DataTemplate and displaying exactly what is needed. In our case, the
DataTemplate uses an Image control with its Source property set to Model.PictureUri.

Before the application can be tested, the DataGrid’s ItemsSource must be set. One option
would be to use the Customers collection directly. However, this class is limited and we
want to configure the data for filtering and paging. This is why a PagedCollectionView is
placed on top of the data.

Building the PagedCollectionView
The PagedCollectionView is located in yet another assembly. We need to add the reference
to this assembly manually with the following steps:

1. In the Solution Explorer, right-click the DataApplicationSample project and select
Add Reference from the context menu.

2. In the Add Reference dialog, choose the tab labeled Browse and navigate to
C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client. This path is
where all the Silverlight assemblies are located. On Win64 machines, the folder is in
Program Files (x86).

CHAPTER 8 Using Data Controls190

 From the Library of Wow! eBook

ptg

3. Select the assembly named System.Windows.Data.dll and click OK. This adds a refer-
ence to that assembly. Note that the assembly will also be added to your XAP file.
This increases the size of the file that needs to be downloaded to the web browser,
but at the same time it gives you access to the PagedCollectionView and its features.

4. In contrast to the CollectionViewSource, the PagedCollectionView class cannot be
defined in XAML directly because it does not have a default constructor. To create it,
open the file MainPage.xaml.cs in Visual Studio.

5. Modify the MainPage constructor as shown in Listing 8.2.

LISTING 8.2 Building a PagedCollectionView

public MainPage()

{

InitializeComponent();

var service = new CustomerServiceProxy();

var vm = new MainViewModel(service);

DataContext = vm;

var pcv = new PagedCollectionView(vm.Customers);

CustomersDataGrid.ItemsSource = pcv;

}

6. Make sure that the project
DataApplicationSample.Web is set as startup
project in the Solution Explorer. Its name
should appear in bold. If this is not the case,
the pictures won’t be displayed because of a
permission issue. We talked about this in
Silverlight 2 Unleashed, Chapter 5, Table 5.3. To
set the web application as startup, right-click
the DataApplicationSample.Web project and
select Set as StartUp Project from the context
menu.

7. Run the application by pressing Ctrl+F5. After a
small delay, the DataGrid shows a list of
customers in three columns: First name, Last
name, and a picture, as shown in Figure 8.1.

Filtering and Paging with the PagedCollectionView 191

8

FIGURE 8.1 DataGrid with list
of customers.

 From the Library of Wow! eBook

ptg

Filtering Data
In this section, the data should be filtered before display. After running the application
we built in the previous section, some rows appear without a picture because the corre-
sponding property is empty in the database. In this section, we are building a filter that
removes customers without a picture with the following steps:

1. Open MainPage.xaml in the Visual Studio designer.

2. With the Grid (LayoutRoot) selected, pass the mouse on
the side of the grid until the cursor turns into a cross,
as shown in Figure 8.2.

3. At about 40 pixels from the bottom, click to set a new
row in the grid.

4. The grid’s new row appears in the designer with its height in pixels indicated on the
side. Pass again the mouse near the edge of the row until some icons appear, as
shown in Figure 8.3. The first icon on top indicates a fixed height. Even when the
window is resized, the row’s height will not change. This is what you should click
now. The second icon indicates a star height. It means that the row will take the rest
of the height after all other rows have been
calculated. If you have two or more rows with a
star size, you can set for instance 0.4* and 0.6*
and the rows will be sized proportionally. As for
the last icon on the bottom, it indicates an
Auto size. The height of the row depends on
what the row contains. If the row is empty, its
height will be set to zero.

5. Set the row to a fixed height of 40 pixels. If needed you can also change the value
in XAML.

6. Select the DataGrid and change its Grid.RowSpan property to 1 in the Properties
editor. This property has been set to 2 automatically when the new row was added.
We need to free some space for the new UI elements.

7. Drag a check box from the Toolbox on the grid’s new row. Set its properties so that
it is aligned vertically in the center of the row.

8. Set the Content of the check box to “With pictures only”.

9. On top of the Properties editor, click the Events tab. Locate the Click event; double-
click in the field next to the event’s name. This adds a new event handler to the
code behind and opens the file MainPage.xaml.cs.

10. Change the event handler’s code to reflect Listing 8.3.

CHAPTER 8 Using Data Controls192

FIGURE 8.2 Setting a
new row.

FIGURE 8.3 Setting the row’s
height.

 From the Library of Wow! eBook

ptg

LISTING 8.3 Setting and Resetting the Filter

1 private void checkBox1_Click(

2 object sender,

3 System.Windows.RoutedEventArgs e)

4 {

5 var checkbox = sender as CheckBox;

6 var pcv = CustomersDataGrid.ItemsSource

7 as PagedCollectionView;

8

9 if (checkbox != null

10 && pcv != null)

11 {

12 if (checkbox.IsChecked == true)

13 {

14 pcv.Filter = c =>

15 {

16 var customer = c as CustomerViewModel;

17

18 return customer != null

19 && customer.Model != null

20 && customer.Model.PictureUri != null;

21 };

22 }

23 else

24 {

25 pcv.Filter = null;

26 }

27 }

28 }

. On line 5 we get the sender of the event and cast it to a CheckBox.

. On lines 6 and 7, we get the ItemsSource property of the DataGrid. It has been set to
the PagedCollectionView into the MainPage constructor before. We can cast this
property to a PagedCollectionView again.

. After making sure that the objects are not null and are casted correctly, we query
the state of the Check box on line 12.

. If the check box is checked, we set the Filter property of the PagedCollectionView.
The syntax used here is a lambda expression. You already saw a lambda in Chapter 7,
Listing 7.9. The syntax here is a little bit different: We have only one parameter c
(of type object), so we can omit the parenthesis around the parameter list.

Filtering and Paging with the PagedCollectionView 193

8

 From the Library of Wow! eBook

ptg

. The filter block is defined after the arrow =>. The parameter c is casted to a
CustomerViewModel on line 16. Then we check whether the parameter is null, if its
Model property is null, and finally whether the PictureUri property is null. We only
return true if all three conditions are false.

. Finally, if the check box is not checked, we reset the filter to null on line 25. This
will automatically display all the rows in the grid again.

The framework executes the filter method when needed to decide which rows must be
included in the result. The nice thing is that everything here is dynamic: Through the
ObservableCollection, the PagedCollectionView and the data binding to the DataGrid,
every change to the collection or to the filter will immediately be reflected in the user
interface.

To test the filter, run the application, and then check/uncheck the check box. The rows
without a picture disappear when the check box is unchecked.

Paging Through Data
As its name implies, the PagedCollectionView is also able to page through data. Paging is a
great way to break the data into smaller chunks. This has the advantage of making the
user interface more responsive (because less data has to be loaded before the user starts
using the current page), and also making it easier for the user to find the row that he
wants to handle.

Paging is done by setting the property PageSize. The PagedCollectionView will automati-
cally deliver a set of data corresponding to this property. Moving through data is done
with the methods MoveToFirstPage, MoveToLastPage, MoveToNextPage, MoveToPreviousPage,
and MoveToPage. The events PageChanging and PageChanged are raised before and after the
current page has changed, respectively, and the property IsPageChanging is set to true
while the next page is calculated. This allows a control to display a small animation, for
example. The PageIndex property indicates which page is currently displayed.

To test paging with the DataGrid, follow these steps:

1. Reopen the DataApplicationSample solution that we used earlier in this chapter.

2. In MainPage.xaml.cs, in the MainPage constructor, change the way that the
PagedCollectionView is created according to Listing 8.4.

3. Run the application. After the initial loading time, only two rows are displayed,
according to the page size.

LISTING 8.4 Setting the Page Size

var pcv = new PagedCollectionView(vm.Customers);

pcv.PageSize = 2;

CustomersDataGrid.ItemsSource = pcv;

CHAPTER 8 Using Data Controls194

 From the Library of Wow! eBook

ptg

Note the following:

. Even though only two rows are displayed, the initial loading time is the same as
when all the rows were shown. The paging occurs on the client after all the data has
been loaded from the server.

. There is currently no way to move to the next page. Additional user interface
elements are needed to move through the pages. This could be done by adding a
few buttons and text boxes, but there is also a convenient control that you will see a
little later in this chapter: the DataPager control.

Optimizing Data Handling
The PagedCollectionView is very useful with complex data controls, but it also comes with
a caveat: When you work with really large sets of data, it can be more efficient to imple-
ment paging on the server than on the client. Client-side paging implies that most of the
data will be loaded initially before the user interface is shown to the user. This initial
loading time can be very important and cause the application to take a long time to
appear. Also, having the whole data on the client requires a lot of memory, which can be
a problem on some limited platforms.

On the other hand, of course, having the whole data on the client makes the application
more responsive after it has been loaded (because there are fewer client-server interac-
tions).

Chapters 13 and 14 examine a way to build applications that get from the server only the
amount of data needed, already sorted. As usual in software development, the right tech-
nology to choose depends on what your scenario is.

Filtering and Paging with the PagedCollectionView 195

8

T I P

Using Endless Scrolling

Some data grids such as the one developed by XCeed offer endless scrolling: Once the user
reaches the bottom of the loaded set of data, the grid automatically fetches more data and
adds them to the display. This prevents the need to click on a “previous page” or “next
page” button. This also speeds up the action because only the amount of data that is
needed is kept in memory (data virtualization). Such a grid can be seen in action at
http://demo.xceed.com/DataGrid_Silverlight/Demo/.

Implementing Custom Sorting
The Customer class returned by the WCF service has a Gender property. The value is taken
from an enumeration with five possible values: Male, Female, Boy, Girl, and Unknown. It
would be nice to be able to sort according to the gender (for example, Female and Girl
first, then Male and Boy, and finally Unknown).

 From the Library of Wow! eBook

http://demo.xceed.com/DataGrid_Silverlight/Demo/

ptg

Unfortunately, custom sorting requires quite some manual work. You can find a good
description about how to build a collection allowing custom sorting can be found at
http://www.galasoft.ch/sl4-sorting.

Adding a DataPager Control
In the preceding section, you saw how to prepare a PagedCollectionView for paging, but
did you also notice that something was missing? The DataGrid alone cannot page through
the data. Additional UI elements are needed to display the data according to the user’s
needs.

One possibility is to create a custom user interface and to use the paging-related methods,
properties, and events in the PagedCollectionView class. However, an easier way exists,
with the DataPager control (available in the same assembly as the DataGrid:
System.Windows.Controls.Data.dll), shown in Figure 8.4. This control can be added to
our application with the following steps:

1. Open the SortingAndFitering application in VisualStudio.

2. Open the file MainPage.xaml in the XAML editor.

3. Modify the RowDefinitions of the Grid as shown in Listing 8.5.

LISTING 8.5 Creating a New Row

<Grid.RowDefinitions>

<RowDefinition Height=”*” />

<RowDefinition Height=”40” />

<RowDefinition Height=”40” />

</Grid.RowDefinitions>

4. After the CheckBox at the end of the Grid, add a DataPager control as shown in
Listing 8.6.

LISTING 8.6 Adding a DataPager Control

<data:DataPager Source=”{Binding ElementName=CustomersDataGrid,

Path=ItemsSource}”

Grid.Row=”2”

VerticalAlignment=”Center”

Margin=”10,0,10,0” />

As shown in Listing 8.6, adding the DataPager is really very easy. The only property that is
really needed is the Source property that must be set to the same IEnumerable as the
DataGrid’s ItemsSource property. Once this is done, run the application. You should see
the DataPager at the bottom of the page. Because we set the PageSize to 2 in Listing 8.4,
only two rows of data are displayed.

CHAPTER 8 Using Data Controls196

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-sorting

ptg

To navigate to a different page, the buttons can be used (from left to right): Go to the first
page, go to the previous page, go to any page according to an index, go to the next page,
and go to the last page.

Customizing the Display
The default display can be customized using some properties and styles. The DisplayMode
property can be set to various values, as shown in Figure 8.4 (copied from the Silverlight
documentation).

When used with numeric buttons, additional proper-
ties can be used to customize the look and feel of the
control:

. NumericButtonCount is used to set how many
numeric buttons are shown in the control.

. NumericButtonStyle can be set to a Style and
allows modifying the appearance of the numeric
buttons without having to change the style and
template of the whole DataPager control. The
numeric buttons are ToggleButton controls, so
the corresponding type must be used for the style
(and the template if so desired).

Finally, like for any control in Silverlight, the whole
appearance of the DataPager control can be modified
using its Style property and possibly a control
template. In Chapter 10, “Creating Resources, Styles,
and Templates,” we will go through the process of
retemplating controls.

Validating Data Input
Any data entered by a user should be validated. In the case of client/server applications, it
is critical that a safe validation be executed on the server because client-side validation
can always be hacked or worked around. However, this doesn’t mean that client-side vali-
dation is bad, on the contrary. By validating input in the client application, the amount
of invalid data that will fail validation on the server is greatly reduced. This puts less
strain on the server-side application because this bad data never reaches it (and this can
be very significant if you have one server and multiple Silverlight clients!). Also, less
bandwidth between the client and the server will be wasted. Finally, validating on the
client is faster than on the server, and creates a better user experience.

Validating Data Input 197

8

FIGURE 8.4 DisplayMode
values (from the Silverlight
documentation).

 From the Library of Wow! eBook

ptg

Using Interface-Based Validation
In Chapter 6, we talked about the two new interfaces added to Silverlight 4,
IDataErrorInfo and INotifyDataErrorInfo, and showed how to use interface-based valida-
tion in an object used as the source of a data binding. We also showed how a simple
TextBox control reacts when data entered is found to be invalid.

In the case of our sample application DataApplicationSample, the source of the data
binding is a generated proxy object, the Customer class. As mentioned earlier, this gener-
ated class cannot be modified because changes will be lost when it is regenerated by
Visual Studio. Because each Customer instance is wrapped into a corresponding
CustomerViewModel, it is possible to create a gateway property with information about the
validation. To demonstrate this, we will add a validation rule stating that the LastName
property should not be empty and should start with a capital letter:

1. Open the DataApplicationSample application in Visual Studio.

2. Open the file CustomerViewModel.cs in the code editor.

3. Change the class declaration to make it an IDataErrorInfo, as shown in Listing 8.7.
This interface requires a using statement to be added to the code file, pointing to
System.ComponentModel.

LISTING 8.7 Declaring IDataErrorInfo

public class CustomerViewModel : ViewModelBase, IDataErrorInfo

4. Declare a new property in the CustomerViewModel class named LastName. This prop-
erty is a gateway to the LastName property in the nested Customer model, as shown
in Listing 8.8.

LISTING 8.8 Making a Gateway to Model.Lastname

public string LastNamePropertyName = “LastName”;

public string LastName

{

get { return Model.LastName; }

set

{

if (Model.LastName == value)

{

return;

}

Model.LastName = value;

}

}

CHAPTER 8 Using Data Controls198

 From the Library of Wow! eBook

ptg

5. Because the LastName property implemented in Listing 8.8 is just a gateway, we need
to observe what happens in the proxy object and react when the Model.LastName is
modified. This can be done in the method handling the model’s PropertyChanged
event. Modify the CustomerViewModel constructor as shown in Listing 8.9.

LISTING 8.9 Subscribing to Changes for the Model’s LastName Property

1 public CustomerViewModel(Customer model)

2 {

3 Model = model;

4 model.PropertyChanged += (s, e) =>

5 {

6 DirtyVisibility = Visibility.Visible;

7

8 if (e.PropertyName == LastNamePropertyName)

9 {

10 RaisePropertyChanged(LastNamePropertyName);

11 return;

12 }

13 };

14 }

6. Lines 8 to 12 are new: If the model raises the PropertyChanged event for its LastName
property, the CustomerViewModel raises its own PropertyChanged event. This is needed
because to switch the validation on, the data binding will be redirected to the view-
model and not directly to the model like before.

7. In the body of the class, implement the IDataErrorInfo interface as shown in
Listing 8.10.

LISTING 8.10 Implementing IDataErrorInfo

1 public string Error

2 {

3 get { return null; }

4 }

5

6 public string this[string columnName]

7 {

8 get

9 {

10 if (columnName == LastNamePropertyName)

11 {

12 if (string.IsNullOrEmpty(LastName))

13 {

14 return “The Last Name cannot be empty”;

Validating Data Input 199

8

 From the Library of Wow! eBook

ptg

15 }

16

17 var firstChar = LastName[0];

18

19 if (firstChar < ‘A’

20 || firstChar > ‘Z’)

21 {

22 return “The first character of the first name must be a capital

➥letter”;

23 }

24 }

25

26 return null;

27 }

28 }

. Lines 1 to 4 declare the Error property required by the IDataErrorInfo interface.
However this property is not useful in property-based validation. (It is used only
when the whole object is being validated in scenarios not related to data binding).
Here the property simply returns null.

. Lines 6 to 28 are also required by the IDataErrorInfo interface. Depending on the
property’s name, the getter can return an error string if the property is not valid or
null if everything is okay.

. In this case, the first test (on lines 12 to 15) checks whether the LastName property is
empty, which is not valid.

. Then on lines 17 to 23, we make sure that the first character of this property occurs
between ‘A’ and ‘Z’. If this is not the case, an error string is also returned.

8. Finally, open MainPage.xaml in the XAML editor, and modify the DataGrid’s
column with the LastName property, as shown in Listing 8.11.

LISTING 8.11 Validation in the Data Binding

<data:DataGridTextColumn Header=”Last name”

Binding=”{Binding LastName,

NotifyOnValidationError=True,

ValidatesOnDataErrors=True}” />

CHAPTER 8 Using Data Controls200

 From the Library of Wow! eBook

ptg

The application can now be tested by pressing
Ctrl+F5. Edit the first customer’s last name and
change it to violate the validation rules, and
then press Tab to validate. As shown in Figure
8.5, the DataGrid should now display the valida-
tion summary with the error message that we
defined in Listing 8.10.

Validating with Data Annotations
Chapter 6 showed how data bindings react when the ValidatesOnException property is set
to True and an exception is thrown in the property setter. We also mentioned that having
to raise the exception in the property setter is not very convenient because each property
mixes concerns with the addition of code responsible for the validation.

One way to minimize the validation code is to rely on validation attributes rather than
code. In this scenario, each property that must be validated gets a set of attributes (from
the System.ComponentModel.DataAnnotations namespace) defining the validation rules.

The interesting point with data annotations is that it is a fairly well-known validation
mechanism in .NET. For example, data annotations can be used in ASP.NET MVC as
shown in http://www.galasoft.ch/sl4-mvcannotations. Our sample can be modified to use
validation attributes for the LastName property as follows:

1. Open the solution DataApplicationSample in Visual Studio.

2. Right-click the Silverlight project DataApplicationSample in the Solution Explorer,
and select Add Reference from the context menu.

3. In the Add Reference dialog, select the Browse tab and navigate to C:\Program
Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client.

4. Select the assembly System.ComponentModel.DataAnnotations.dll and click OK.

5. Open the file CustomerViewModel.cs.

6. Remove the IDataErrorInfo interface from the class declaration.

7. Remove the Error property and the operator this[string columnName]. Simply
delete the lines shown in Listing 8.10.

8. Add a method to validate an arbitrary property. This method (shown in Listing 8.12)
uses the Validator class to verify whether a property’s value complies with the
attributes that are defining the rules. You need to add a using statement for the
namespace System.ComponentModel.DataAnnotations for this to work. Note that
because the Validate method will be used in many properties and multiple objects,
it would make sense to define it in a base class. The ValidateProperty method on
the Validator object takes the value and an instance of the ValidationContext class.
We use this class in a fairly simplified manner, with the two last parameters on the
constructor set to null. The ValidateProperty method is used in multiple frame-
works and multiple scenarios, which explains why it is more complex than what we
really need here.

Validating Data Input 201

8

FIGURE 8.5 Validation summary in
the DataGrid.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-mvcannotations

ptg

LISTING 8.12 Validating an Arbitrary Property

private void Validate(object value, string propertyName)

{

Validator.ValidateProperty(value,

new ValidationContext(this, null, null)

{

MemberName = propertyName

});

}

9. Modify the LastName property as shown in Listing 8.13.

LISTING 8.13 Defining Attributes and Validating

1 [Required(

2 ErrorMessage=”The last name must be entered”)]

3 [RegularExpression(

4 “^[A-Z]+[a-zA-Z]*$”,

5 ErrorMessage=”Only letters allowed, must start with a capital”)]

6 public string LastName

7 {

8 get { return Model.LastName; }

9 set

10 {

11 if (Model.LastName == value)

12 {

13 return;

14 }

15

16 Validate(value, LastNamePropertyName);

17 Model.LastName = value;

18 }

19 }

Lines 1 and 2 of Listing 8.13 add the Required attribute to the property. For the validator,
it means that null values and empty strings will be rejected. Note that you can customize
the attribute to accept empty strings but reject null values for example. Lines 3 to 5 add
another attribute: RegularExpression. This attribute is very versatile for string-based prop-
erties, and allows defining a validation rule based on a regular expression. In our sample,
the regular expression “^[A-Z]+[a-zA-Z]*$” is a rather barbarian way to say “the string
value must start with a capital letter, and must contain only letters.”

Finally, the Validate method is called on line 16, before the value is saved into the proxy.
Should the value not comply with the attributes, the Validator object will throw an
exception and the validation fails before the value is even set.

CHAPTER 8 Using Data Controls202

 From the Library of Wow! eBook

ptg

Attributes in .NET can be customized with named parameters. For example, in Listing 8.13,
line 2, we pass a parameter named ErrorMessage to the Required attribute. There are other
named parameters for this attribute, but all named parameters are optional, so if they are
not defined, the default value is used. All display and error messages are localizable.

There is one last step needed before testing the application: The data binding in
MainPage.xaml must be modified with the ValidatesOnExceptions property, as shown in
Listing 8.14.

LISTING 8.14 Modifying the Binding

<data:DataGridTextColumn Header=”Last name”

Binding=”{Binding LastName,

NotifyOnValidationError=True,

ValidatesOnExceptions=True}” />

At this point, running the application and entering an invalid value in the Last Name
column produces a result similar to Figure 8.5. The data is validated, and the application
is protected.

Validating Before or After the Data Is Set
An interesting difference exists between interface-based validation and exception-based
validation: The exception is thrown before the data is saved in the proxy object. On the
other hand, if the application relies on IDataErrorInfo or INotifyDataErrorInfo for client-
side validation, the data is already saved in the proxy object when the error is raised.
Saving to the server must be explicitly disabled by the application so long as the state is
not valid.

Validating on the Client and on the Server
One annoying side effect of client-side validation is that the server-side rules must often
be repeated on the client. For example, a rule stating that the LastName property may not
be empty can be set on the client, and should be checked on the server, too. This creates
unnecessary work because the set of rules must be maintained in two different projects. If
a rule changes, you must make sure that the change is made on the server and on the
client, which increases the risk of errors.

Validating Data Input 203

8

T I P

Using Regular Expressions

Regular expressions are a very compact way to express a rule, but they are also using a
syntax that is difficult to memorize. Thankfully, most of the time this is not needed: There are
literally thousands of examples of regular expressions on the Web. For example, the one in
Listing 8.13, line 4, is taken from http://www.galasoft.ch/sl4-regex.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-regex

ptg

The WCF RIA Services framework that we will examine in Chapters 13 and 14 proposes a
solution: The validation attributes are defined on the server only, and are generated on
the client. Even though this involves some code generation in Visual Studio (which can
be cumbersome), having only one set of validation attributes to manage is an advantage.

Reviewing the DataGrid
We talked about the DataGrid control in Silverlight 2 Unleashed. The properties and
methods described in this chapter are still active in Silverlight 4, and in fact the DataGrid
control didn’t change much, apart from optimizations in performance. We also saw in the
sample earlier in this chapter how to add a DataGridTextColumn (to display a string) and a
DataGridTemplateColumn (to display a custom column with any UI elements desired). For
more information about the DataGrid and how to modify its appearance, refer to Chapter
18 of Silverlight 2 Unleashed. Another good place to find information about properties,
styles, and templates to modify the DataGrid’s appearance is
http://www.galasoft.ch/sl4-datagrid.

Using the DataGrid with Automatic Columns
So far, we have used the DataGrid with the AutoGenerateColumns property set to False, and
we added columns in XAML manually. This is probably the most frequent usage of the
DataGrid for larger applications, where custom columns need to be defined in XAML.
However, for smaller applications, it is possible to customize the DataGrid’s columns
directly in the data object. To illustrate this, get the sample named SimpleDataGrid avail-
able at http://www.galasoft.ch/SL4U/code/chapter08. Then, follow these steps:

1. Open the file MainPage.xaml and add the XAML markup in Listing 8.15 into the
main Grid.

LISTING 8.15 Adding a DataGrid

<data:DataGrid ItemsSource=”{Binding ElementName=MainRoot,

Path=Items}”

x:Name=”MyDataGrid”

AutoGenerateColumns=”True”

Margin=”10” />

. The ItemsSource property is bound to the MainRoot through an ElementName binding.
This name has been set on the main UserControl. This is a convenient way to data
bind a property of the UI to a property defined in the code behind.

. Notice how the AutoGenerateColumns property is set to True.

. Open the file MainPage.xaml.cs and notice the Items property of type
ObservableCollection<DataItem>. Also, note how the DataItem instances are created
in the constructor and added to the collection.

CHAPTER 8 Using Data Controls204

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-datagrid
http://www.galasoft.ch/SL4U/code/chapter08

ptg

. Open the file DataItem.cs located in the Data folder. This data object class has three
bindable properties (in the sense that they raise the PropertyChanged event): Name
(string), ContractNumber (int), IsDirty (bool).

2. Run the application. You should see the scene
shown in Figure 8.6. Each of the three properties is
automatically assigned to a column, and the prop-
erty’s name is used as the column header.

Multiple details should be changed, though: The
ContractNumber column should actually be named
Contract Number, with a space. Of course, spaces cannot
be used in property names, so we need a special value
for display. The contract number must be set between 10000 and 99999. Also, the IsDirty
column should not be displayed. It is a utility property only. In addition, it would be
great if the headers could be localizable.

Customizing with Attributes
All these requirements can be fulfilled with attributes similar to the ones we used earlier
in this chapter in the “Validating with Data Annotations” section. Note that adding these
attributes does not require changing the code itself; only metadata is added to the proper-
ties with the following steps:

1. In DataItem.cs, add the attributes shown in Listing 8.16 to the ContractNumber
property.

LISTING 8.16 Customizing the ContractNumber Property

[Display(Name = “Contract Number”)]

[Range(10000, 99999)]

public int ContractNumber

. The first attribute’s Name parameter will be used as the column’s header.

. The second attribute requires the input to fall between 10000 and 99999.

2. Add the attribute shown in Listing 8.17 to the IsDirty property.

LISTING 8.17 Customizing the IsDirty Property

[Display(AutoGenerateField = false)]

public bool IsDirty

Reviewing the DataGrid 205

8

FIGURE 8.6 Autogenerated
columns.

 From the Library of Wow! eBook

ptg

3. Run the application and notice how the column header for the ContractNumber
property changed. Also, the column for IsDirty is not displayed anymore. This is
the result of the AutoGenerateField parameter set to false in Listing 8.17.

4. Try to enter an invalid number in the column for ContractNumber (either lower than
10000 or higher than 99999). An error message will display.

Localizing the Attributes
One nice feature offered with the attributes in data annotations is that they are easy to
localize. Of course, localizing the attributes only makes sense if you are localizing the
whole application! This process is explained in Chapter 22, “Advanced Development
Techniques.” The SimpleDataGrid application has been prepared with resource files that
contain application texts in English and in French. These files can be found in the
Properties folder. In Chapter 22, you will learn more about the resource files, how to
create and use them.

It is now possible to modify the attributes to use the embedded resources rather than
plain strings. We will also see how to modify the culture of the application to display
localized texts with the following steps:

1. Open the file LocalizableTexts.resx in the Properties folder. This file has two values:
ContractNumberColumn and ContractNumberRangeError.

2. Open the file LocalizableTexts.fr-FR.resx. The same values can be found, but this
time translated in French.

3. Open DataItem.cs.

4. Modify the attributes as shown in Listing 8.18.

LISTING 8.18 Using Localized Values

1 [Display(

2 Name = “ContractNumberColumn”,

3 ResourceType = typeof(Properties.LocalizableTexts))]

4 [Range(10000, 99999,

5 ErrorMessageResourceName = “ContractNumberRangeError”,

6 ErrorMessageResourceType = typeof(Properties.LocalizableTexts))]

7 public int ContractNumber

. On line 2, instead of using a plain string as in Listing 8.16, we now use the
ContractNumberColumn name from the resources. It is a little confusing that the same
parameter (Name) is used as a plain string sometimes and other times as a resource
name.

CHAPTER 8 Using Data Controls206

 From the Library of Wow! eBook

ptg

. The parameter ResourceType is also set, pointing the application to the class in
which the resource can be found. This class is autogenerated when changes are done
to the .resx file. You’ll learn more about this in Chapter 22.

. The Range attribute can also be localized: Set the ErrorMessageResourceName and
ErrorMessageResourceType parameters.

. The ErrorMessageResourceName is set to “The value for {0} must be between {1}
and {2}” in the file LocalizableTexts.resx. The texts {0}, {1}, and {2} are placehold-
ers that will be automatically replaced by, respectively, the header of the column,
the lower-range value, and the upper-range value.

5. Run the application and enter an
invalid value in the Contract
Number column. The error
message is shown in Figure 8.7.

6. Open the file App.xaml.cs.

7. Modify the Application_Startup
event handler as shown in Listing
8.19. This sets the application to
use the French (France) culture
rather than the default English (United States).

LISTING 8.19 Setting the Application in French

private void Application_Startup(object sender, StartupEventArgs e)

{

Thread.CurrentThread.CurrentCulture = new CultureInfo(“fr-FR”);

Thread.CurrentThread.CurrentUICulture = new CultureInfo(“fr-FR”);

this.RootVisual = new MainPage();

}

8. Run the application again and
enter an invalid value in the
column reading “Numéro de
contrat”. The error message and
the column’s header are now
localized in French, as shown in
Figure 8.8.

Reviewing the DataGrid 207

8

FIGURE 8.7 Error message in English.

FIGURE 8.8 Error message in French.

 From the Library of Wow! eBook

ptg

Advantages and Disadvantages of Data Annotations
While very handy in certain cases, data annotations also have a few annoying side effects:

Advantages

Each data object is an enclosed entity and carries the information needed for its valida-
tion and its display. This can be very valuable when working on distributed applications
with loosely coupled components like a client/server application.

The display attributes are easily localized.

Disadvantages

Attributes are sometimes criticized because even though they are metadata and not
directly a part of the classes, methods, or properties that they decorate, they still require
a recompilation of the application when they are modified.

Mixing user interface information with the data object is not complying with the separation
of concerns that we mentioned a few times before.

Choosing Between DataGrid and ListBox
The DataGrid control is very powerful but does not offer a lot of creative freedom. Even
after all the properties and styles are set, the data is still presented in columns and rows.
For many purposes, using a ListBox instead with customized data templates can help
present the data in more innovative ways and give to the graphics designers the freedom
to invent a better user experience. If features such as sorting, grouping, moving, and resiz-
ing columns are not needed by the user requirements, looking at a ListBox first can be a
good move.

Editing Data in the DataForm
Working with data annotations as you saw in the previous section can also be done with
other controls than the DataGrid. The DataForm control (currently part of the Silverlight
toolkit) provides a way to easily generate a data entry form based on data objects and
their annotations. As before with the DataGrid and its AutoGenerateColumns property set to
True, there are pros and cons to autogenerating a data entry form based on the data
object. On one hand, it provides a very quick way to create data applications such as a
master-detail view; on the other hand, however, autogenerated fields are hard to
customize.

Note also that the DataForm is in the toolkit, in the Preview band. As you saw in Chapter
4, this band corresponds to an alpha stage of development, and the control may change
in a further release.

In this section, you will see how to set up a DataForm and use it to display a DataGrid’s
SelectedItem with the following steps:

1. Open in Visual Studio the SimpleDataGrid application that we created earlier in this
chapter.

CHAPTER 8 Using Data Controls208

 From the Library of Wow! eBook

ptg

2. Right-click the References folder in the Solution Explorer and select Add Reference
from the context menu.

3. Click the Browser tab, and navigate to the toolkit binaries’ location: C:\Program
Files\Microsoft SDKs\Silverlight\v4.0\Toolkit\[DATE] (where [DATE] is the toolkit’s
date, for example, Apr10). On Win64 machines, the folder is in Program Files (x86).

4. Select the assembly System.Windows.Controls.Data.DataForm.Toolkit.dll and click
OK.

5. Open the file MainPage.xaml in the XAML editor.

6. Split the main grid in two columns by adding the column definitions shown in
Listing 8.20.

LISTING 8.20 Splitting the Grid in Two Columns

<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

</Grid.ColumnDefinitions>

7. Add an xmlns statement to the UserControl tag, as shown in Listing 8.21. This is
mapping the DataForm’s namespace to the form prefix.

LISTING 8.21 Adding an xmlns Statement

xmlns:toolkit=” http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit”

8. Add a DataForm in the main Grid, below the DataGrid, as shown in Listing 8.22.

LISTING 8.22 Adding a DataForm

1 <toolkit:DataForm ItemsSource=”{Binding ElementName=MainRoot,

2 Path=Items}”

3 CurrentItem=”{Binding ElementName=MyDataGrid,

4 Path=SelectedItem,

5 Mode=TwoWay}”

6 Grid.Column=”1” />

. The DataForm’s ItemSource property takes a collection of items, just like the DataGrid.
Even though the DataForm displays only one item at the time, the form has a
DataPager control allowing moving through all the items of the collection. Setting
the ItemsSource property is optional, and the DataForm can be used only with the
CurrentItem property, as you will see in the section, “Making a Simple Property
Editor,” later in this chapter.

Editing Data in the DataForm 209

8

 From the Library of Wow! eBook

ptg

. To keep the DataGrid and the DataForm synchronized, we bind the DataForm’s
CurrentItem property to the DataGrid’s SelectedItem with the TwoWay binding.

9. Run the application by pressing Ctrl+F5. In the DataGrid, select one of the items.
The result is shown in Figure 8.9.

CHAPTER 8 Using Data Controls210

FIGURE 8.9 DataGrid and DataForm.

Notice the controls on top of the DataForm on the right. They allow paging or moving
through the items. Because of the TwoWay binding we set up, moving to the next item
using the DataForm’s controls will also move the selection in the DataGrid.

On the far right, the + and – add or remove items from the collection. This operation is
also provided automatically by the DataForm.

Adding a Description
In Figure 8.9, the labels Name and Contract Number are read from the display attributes
that we created inside the DataItem class. If the culture is changed to French (as we did in
Listing 8.19), the display will also be updated.

The Display attribute has another named parameter called Description. This is useful
when displaying items in the DataForm, as in the following example:

1. Open the file LocalizableTexts.resx in the Properties folder.

2. Add a new line to the table: Set the Name to “DescriptionColumn” and the Value to
“Set a unique value between 10000 and 99999”, as shown in Figure 8.10.

FIGURE 8.10 Adding a description to the resources.

3. Open the file DataItem.cs (in the Data folder).

4. Change the ContractNumber property’s attributes as shown in Listing 8.23.

 From the Library of Wow! eBook

ptg

LISTING 8.23 Adding a Description

[Display(

Name = “ContractNumberColumn”,

Description = “DescriptionColumn”,

ResourceType = typeof(Properties.LocalizableTexts))]

[Range(10000, 99999,

ErrorMessageResourceName = “ContractNumberRangeError”,

ErrorMessageResourceType = typeof(Properties.LocalizableTexts))]

public int ContractNumber

5. Run the application again. Notice the
small indicator next to the Contract
Number field. Passing the mouse over
it opens a ToolTip with the text we
entered as Description for this prop-
erty, as shown in Figure 8.11.

Validating the Input
The DataForm is also able to validate the
input according to the exact same valida-
tion attributes that we already set in
DataItem.cs. It is easy to test: Enter a
value lower than 10000 in the Contract
Number field and press the Tab key to
exit the field. The DataForm shows the
validation error, as shown in Figure 8.12.

Committing Changes Manually
With the application as it is implemented now, every change done by the user to a data
item is immediately saved to the collection. Sometimes, however, this is dangerous: If the
user clicks too fast, the change is committed and undoing it can be difficult. This can be
shown by running the application, entering a different value in the selected item’s
Contract Number field, and then tabbing out of the text box: The value is immediately
updated in the DataGrid, too.

A better idea, especially if the data item is complex and a lot of properties are shown, is to
commit the data manually with the following steps:

1. Add the AutoCommit property to the DataForm tag, and set it to False. The default
value for this property is True.

2. Run the application again and select an item.

3. Notice that a new button (OK) appears at the bottom of the DataForm. This button is
disabled right now.

Editing Data in the DataForm 211

8

FIGURE 8.11 Showing the Description.

FIGURE 8.12 Showing a validation error.

 From the Library of Wow! eBook

ptg

4. Edit the item’s properties. The item does not change in the DataGrid. The changes
are not committed yet.

5. Click the OK button. The DataGrid now displays the changes made in the DataForm.

Using a commit mechanism reduces the risk for minor errors such as typos to be saved
into the model. These errors might not be caught by the validation, so committing the
data gives the user a second chance to check the input.

Defining Fields Manually
If the automatic generation of fields does not fulfill the requirements, and a more
complex user interface is needed, the fields can be defined manually using data templates.
The DataForm accepts the following templates:

. EditTemplate: This template is used when the control is in edit mode.

. HeaderTemplate: Defines what is shown on top of the DataForm, next to the buttons
allowing to page and move through the items.

. NewItemTemplate: Will be shown when the “new item” button is pressed. For
example, you may want to allow the user to input some data when the item is
created, but turn these fields read-only later.

. ReadOnlyTemplate: Shown when the DataForm is not in edit mode.

The templates can be set inline as shown in Listing 8.24 or stored in resources and
referenced.

LISTING 8.24 Making an EditTemplate

<form:DataForm ItemsSource=”{Binding ElementName=MainRoot,

Path=Items}”

CurrentItem=”{Binding ElementName=MyDataGrid,

Path=SelectedItem, Mode=TwoWay}”

AutoGenerateFields=”False”

Grid.Column=”1”

Margin=”10”>

<form:DataForm.EditTemplate>

<DataTemplate>

<StackPanel>

<TextBox Text=”{Binding ContractNumber}” />

</StackPanel>

</DataTemplate>

</form:DataForm.EditTemplate>

</form:DataForm>

Making templates can be time-consuming and should not be underestimated. For
example, the sample in Listing 8.24 does not display the validation summary anymore, so

CHAPTER 8 Using Data Controls212

 From the Library of Wow! eBook

ptg

the user will not be informed when he enters invalid data. This work requires a certain
experience, and using Expression Blend is probably a good idea to customize the experi-
ence precisely according to the user requirements.

Getting More Information
The DataGrid and the DataForm are among the most complex controls in the Silverlight
framework (and the toolkit). There are many more properties, methods, and events in
both controls. For more information about these members, refer to the corresponding
documentation. Also, remember that all the controls in Silverlight can be styled and
templated to modify their appearance and behavior. These controls allow rapid develop-
ment of data applications if desired and, with more time and effort, precise customization
to fulfill the requirements exactly.

Making a Simple Property Editor
As mentioned earlier, the DataForm doesn’t necessarily need its ItemsSource property to be
set. It is also possible to work with the CurrentItem property directly. For example, the
following steps create a very simple property editor shown in Figure 8.13:

1. Create a new Silverlight application in Visual Studio.

2. Add a reference to the assembly
System.Windows.Controls.Data.DataForm.Toolkit.dll, and an xmlns statement in
MainPage.xaml, like we did earlier in this chapter.

3. Modify the LayoutRoot grid as shown in Listing 8.25.

LISTING 8.25 Simple Property Editor

<Grid x:Name=”LayoutRoot”

Background=”White”

Width=”600” Height=”400”>

<Grid.ColumnDefinitions>

<ColumnDefinition />

<ColumnDefinition />

</Grid.ColumnDefinitions>

<Rectangle Width=”100” Height=”200”

Fill=”Red” Stroke=”Orange”

StrokeThickness=”4” />

<controls:DataForm CurrentItem=”{Binding ElementName=LayoutRoot,

Path=Children[0]}”

Grid.Column=”1”

Margin=”10”/>

</Grid>

Editing Data in the DataForm 213

8

 From the Library of Wow! eBook

ptg

Through the data binding set on the
CurrentItem property to the first child
of the LayoutRoot grid (the red and
orange rectangle), all its public prop-
erties are inspected and displayed in
the DataForm on the right. Notice that
enum values are displayed in combo
boxes, and that some properties are
read-only. Finally, some properties
(such as the Fill) are of a complex
type that cannot be edited in this
simple view. However, the other
simple properties can be edited at
runtime, and will affect the way that
the rectangle is rendered on the
screen.

Summary
In this chapter, we took a closer look at the various elements that allow building data
applications. We started with the PagedCollectionView, which offers additional functional-
ity over the CollectionViewSource that we used in earlier chapters. We created a sample
displaying a list of customers, and you learned how to filter them and page through
them. The DataGrid and DataPager controls made this step quite easy and painless.

Later, we talked more about validation. After seeing how data bindings can be customized
for validation errors in Chapter 6, you saw how the DataGrid and the DataForm controls
react when such an error occurs. We also talked about data annotations, an exception-
based way to validate data based on attributes set in the data object, on its properties.

We reviewed the DataGrid control and learned how to customize and localize autogener-
ated columns using data annotations. The next control we examined was the DataForm,
and you learned how to autogenerate a detailed view of the bound item or to customize
this view using templates.

All these data collections and controls are very useful to create line-of-business applica-
tions and allow rapid application development because of their ability to autogenerate
columns and fields based on the data objects. This is, of course, only a more business-
oriented aspect of Silverlight-based development. Depending on your scenario, Silverlight
can be used to create a wide variety of applications.

The next chapter covers connectivity and web services, and you’ll learn how to get data
and information from the World Wide Web.

CHAPTER 8 Using Data Controls214

FIGURE 8.13 Simple property editor.

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Connect to cross-domain
servers, talk about permis-
sions and how to work around
them.

. Place simple web requests
(download and upload) with
the WebClient class.

. Understand and handle
networking errors.

. Send more complex requests
with the HttpWebRequest
class and talk about differ-
ences with the WebClient
class.

. Discover the new networking
stack and understand why it
was needed.

. Handle XML and JSON-based
responses.

. Set up and communicate with
WCF services.

CHAPTER 9

Connecting to the Web

Silverlight applications are historically tightly bound to
the World Wide Web. After all, even in the case of the so-
called out-of-the-browser applications that we will study in
Chapter 14, “Enhancing Line of Business Applications and
Running Out of the Browser,” the very first contact that
the user has with the application is through a web browser.
Most Silverlight applications are online all the time.

When data or resources (such as videos and images) are
needed by a Silverlight application, they can be included
inside the XAP file and delivered together with the applica-
tion. However, this can cover only a very small subset of
the real-life scenarios. In most cases, the content of the
application should be fetched online: Data is often
dynamic (for example, in the form of RSS feeds, Twitter
streams, stock exchange rates, and so on). Enclosing any of
that in the XAP file would expose the application to stale
information very fast. The developer cannot be expected to
recompile the XAP file every time that the data changes.

Also, resources are often too big to be enclosed in the XAP.
For example, videos should be left on the server and deliv-
ered to the Silverlight client via streaming (if available) or
progressive download. Finally, new resources are added to
the Web all the time with the explosion of social networks
where people store images, videos, and files. It is simply
impossible to enclose enough media to make the applica-
tion interesting.

In fact, today’s most common scenario for Silverlight devel-
opers is to implement some kind of client/server interac-
tion. In this case, the application relies on the online data,
and without this data, the application would barely make
sense. Although these applications can, sometimes, be used
offline (without connectivity), this is a special case where
data is stored locally, and a synchronization mechanism is
put in place.

 From the Library of Wow! eBook

ptg

With this in mind, this chapter covers the new developments in the domain of Silverlight
connectivity since version 2 of the framework. The moment where a Silverlight applica-
tion connects and retrieves data from the Internet is exciting even for experienced
developers.

Getting Information from Cross-Domain Servers
One common issue that Silverlight applications encounter is the problem of cross-domain
access restrictions. This occurs when a Silverlight application is served from a web server
(for example, www.domain.com) and tries to access information on another domain (for
example, www.anotherdomain.com). By default, such access is forbidden, and an excep-
tion occurs in the code trying to call the other domain.

The web server can allow access by using a cross-domain policy file. Silverlight checks for
two files with a slightly different format. Note that the policy file must be placed at the
root of the domain (for example, at www.anotherdomain.com/ClientAccessPolicy.xml):

. The file ClientAccessPolicy.xml is looked for first by the Silverlight application.

. Should the first file not be found, the Silverlight application tries to load another
file named CrossDomain.xml.

These two files are described in Silverlight 2 Unleashed, Chapter 23, Listings 23.1 and 23.2.
The CrossDomain.xml file is compatible with the Adobe Flash plug-in, and is available on
a large number of web servers. However, its format is limited and does not allow for a
very granular definition of the access policies. The ClientAccessPolicy.xml, on the other
hand, was developed more recently and palliates some of the older file format’s shortcom-
ings. Because the Silverlight plug-in always looks for the newer file first, and then falls
back to the older, it is possible to have both files in place if needed.

Checking Whether a Policy File Exists
Checking whether a policy file is in place on the server you attempt to access can be done
before the application is implemented. For example, the following web page made by
Silverlight expert Frank La Vigne can help you: http://www.galasoft.ch/sl4-crosscheck. Just
enter the URL of the top domain that you try to access (for example,
http://www.twitter.com). As shown in Figure 9.1, the tool informs you that there is no
ClientAccessPolicy.xml in place. On the other hand, the CrossDomain.xml file exists,
but the content (shown in Listing 9.1) allows access only from the Twitter.com domain.
All the Twitter application programming interfaces (APIs) are restricted, and standard
Silverlight or Flash clients cannot access it. You will see later in the “Working Around
Cross-Domain Restrictions” section how a Silverlight application can access the
restricted APIs.

CHAPTER 9 Connecting to the Web216

 From the Library of Wow! eBook

www.domain.com
www.anotherdomain.com
www.anotherdomain.com/ClientAccessPolicy.xml
http://www.galasoft.ch/sl4-crosscheck
http://www.twitter.com

ptg

FIGURE 9.1 Checking the Cross Domain Files for Twitter.com.

LISTING 9.1 The Twitter CrossDomain.xml File

<?xml version=”1.0” encoding=”UTF-8”?>

<cross-domain-policy

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”http://www.adobe.com/xml/schemas/PolicyFile.xsd”>

<allow-access-from domain=”twitter.com” />

<allow-access-from domain=”api.twitter.com” />

<allow-access-from domain=”search.twitter.com” />

<allow-access-from domain=”static.twitter.com” />

<site-control permitted-cross-domain-policies=”master-only”/>

<allow-http-request-headers-from

domain=”*.twitter.com”

headers=”*”

secure=”true”/>

</cross-domain-policy>

By reading the policy file such as the one in Listing 9.1, the Silverlight developer can see
what is allowed and what isn’t, and decide on an alternative if needed.

Working Around Cross-Domain Restrictions
If your application needs to connect to a web server that forbids it (for example,
www.twitter.com, as you saw earlier), there are two alternatives:

. Create a server application (a relay, or proxy) that will be contacted by your
Silverlight application, and relay all the calls to the forbidden service. Server-side
applications are not subjected to the same restrictions as the client-side Silverlight
or Flash applications.

Getting Information from Cross-Domain Servers 217

9

 From the Library of Wow! eBook

www.twitter.com

ptg

. Make your Silverlight application an out-of-the-browser application with elevated
permissions. You will see in Chapter 14 what it means and how to do that.

Neither solution is perfect. The first one (the server proxy) requires quite a lot of addi-
tional code to relay the requests and the responses. Also, the server proxy needs to be
hosted somewhere, which means additional costs and maintenance. One alternative is to
host the server proxy on the Azure platform developed by Microsoft, which solves the
issue of maintenance, but not the one of costs. You can find more information about
Azure at http://www.galasoft.ch/sl4-azure.

As for the second solution, elevated applications are not subjected to the same restrictions
as the standard Silverlight applications. However, depending on your scenario, an OOB
application might not be possible at all.

Finally, a last possible solution is to contact the service provider and to respectfully
request the addition of a cross-domain policy file. Some providers may have a good
reason for denying this, but some others are open to this addition.

Placing Simple Calls
The simplest way to place calls to resources located on the web is to use the WebClient
class. This class is optimized to be very simple to use, but also has limited abilities.

The WebClient’s methods are easy to use once the asynchronous pattern is understood.
For each operation, there is a calling method (with the Async suffix) and an event handler
(with the Completed suffix). Also available, the CancelAsync method will cancel the asyn-
chronous operation that is currently pending.

CHAPTER 9 Connecting to the Web218

WA R N I N G

Chaining Requests

The WebClient class does not queue requests. If an asynchronous operation is currently in
progress, attempting to call another asynchronous method on the WebClient causes an
exception. To work around this, either wait until one request is completed before placing the
next, or use multiple WebClient instances.

Informing the User
To inform the user about progress in a download operation, the WebClient class’s
DownloadProgressChanged event handler can be used. This handler is called every time that
part of the download completes. The DownloadProgressChangedEventArgs class contains
three properties that can be used to create information messages: BytesReceived indicates
how many bytes are already available on the client. TotalBytesToReceive indicates how
many bytes in total need to be downloaded. ProgressPercentage is a convenient property
that indicates the percentage completed. This value can be used immediately without
conversion.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-azure

ptg

For upload operations, use the UploadProgressChanged event. It is called similarly to the
DownloadProgressChanged event. The UploadProgressChangedEventArgs parameter passed to
the event handler contains the same properties as the DownloadProgressChangedEventArgs
class, with the addition of the BytesSent and TotalBytesToSend properties.

It can seem strange that the BytesReceived and the TotalBytesReceived properties are also
available for an upload. However, when a server-side service receives a request, it always
sends back a response, which is downloaded to the client.

Learning with a Sample
To understand the WebClient class better, a sample is available for download at
http://galasoft.ch/SL4U/Code/Chapter09. The next sections make reference to the sample.

The Client-Side Project
This sample consists of two projects: The Silverlight application DownloadUpload offers a
front-end page (MainPage.xaml) with a series of buttons, a textbox and an image. Each
button triggers a different operation. For string download, a text file is read from the web
server and displayed in a MessageBox. For binary download, an image file is read from the
web server and displayed on the page. Note that a simpler alternative to this would be to
set the Image control’s Source property to a URL directly, and the content download
would be triggered automatically. However, this does not provide fine control on the
download like the OpenReadAsync method that we demonstrate here. In addition, this
method can be used for any file, not just images.

For string upload, the user can enter a text in a textbox and send it to a service on the
web server. A text file is created into the folder c:\temp (provided that the web server has
write access to this directory of course). For binary upload, the user selects a JPG file on
the client and sends it to another service on the web server. Here, too, the sent content is
saved as is to a JPG file in the c:\temp folder.

The actual calls to the WebClient class are done in the DownloadUploadHelper class in the
Helpers namespace. Creating a helper class for this is a good practice, and avoids mixing
business logic code and UI code.

The Server-Side Project
The DownloadUpload.Web project is an ASP.NET web application. It serves the Silverlight
application, and also provides content and services: MyFile.txt is used to demonstrate the
string download. MyImage.jpg is used to demonstrate the binary download.
UploadString.ashx is a generic handler, a service that we use to upload a string to the web
server and create a text file. UploadImage.ashx is another service used to receive and save
an image file from the Silverlight application.

Downloading Strings
The WebClient’s DownloadStringAsync method and the DownloadStringCompleted event
handler are used to place a request corresponding to a HTTP GET method on a URL and
expect string content in return. This method is very convenient to get any string-based

Placing Simple Calls 219

9

 From the Library of Wow! eBook

http://galasoft.ch/SL4U/Code/Chapter09

ptg

resource, such as HTML code, XML data, simple text or to trigger a service and get a text-
based result (such as a string saying “OK”).

In the DownloadUpload sample, the button titled Download string triggers the download.
Its event handler GetStringClick calls the DownloadUploadHelper class’s GetString method
shown in Listing 9.2.

LISTING 9.2 DownloadUploadHelper.GetString Method

1 public static void GetString(

2 Action<string, Exception> callback)

3 {

4 var client = new WebClient();

5 client.DownloadStringCompleted += GetStringCompleted;

6 client.DownloadStringAsync(

7 new Uri(ServerPath + FileName),

8 callback);

9 }

. The only parameter of the GetString method is an Action<string, Exception>. This
is a reference to a callback method, defined somewhere else, with two parameters (a
string and an Exception). When the content is downloaded, the callback will be
executed: Either everything went well and the string parameter is set to the text
file’s content (in which case the Exception is null), or there was an issue and the
Exception parameter is set (in which case the string content is null). We will set
these values in Listing 9.3. For the moment, we just store the callback for later use.

. Line 4 creates a new WebClient.

. On line 5, we assign an event handler to the DownloadStringCompleted event. This
method is shown in Listing 9.3.

. Lines 6 to 8 are the actual call to the DownloadStringAsync method.

. The first parameter is the URI of the text file to download. We construct this
value from two constants defined in the DownloadUploadHelper class: the path
to the web server, and the name of the file. In real applications, these values
would probably be defined in a settings file.

. The second parameter is the callback that the method received as parameter.
We can actually pass any object to the DownloadStringAsync method, and this
will be stored as a “user state” that can be retrieved in the Completed event as
you will see in Listing 9.3.

The DownloadStringCompleted event is handled in Listing 9.3.

CHAPTER 9 Connecting to the Web220

 From the Library of Wow! eBook

ptg

LISTING 9.3 DownloadStringCompleted Event Handler

1 private static void GetStringCompleted(

2 object sender,

3 DownloadStringCompletedEventArgs e)

4 {

5 var callback = e.UserState as Action<string, Exception>;

6 if (callback == null

7 || e.Cancelled)

8 {

9 callback(null, e.Error);

10 return;

11 }

12

13 if (e.Error != null)

14 {

15 callback(null, e.Error);

16 return;

17 }

18

19 // Everything OK

20 callback(e.Result, null);

21 }

. Line 5 retrieves the user state, which is the callback method that shall be called
when the action is completed. This value is stored in the
DownloadStringCompletedEventArgs parameter named e. This way of saving the oper-
ation’s context is used very often in asynchronous methods in .NET, especially in
the calls to web services.

. If the callback is null, the method can be aborted immediately, because we do not
know what to do with the content. Similarly, the asynchronous operation might
have been canceled by a call to the WebClient’s CancelAsync method; in that case,
the Cancelled property is set to true in the e parameter. This is checked on lines 6
to 11.

. On lines 13 to 17, we check whether an error was encountered while executing the
call. In that case, the Error property of the e parameter is passed to the callback.

. Finally, if everything went fine, we call the callback method with the file’s content,
and set the Exception parameter to null.

In MainPage.xaml.cs, executing this operation is shown in Listing 9.4.

Placing Simple Calls 221

9

 From the Library of Wow! eBook

ptg

LISTING 9.4 Triggering the Download

1 private void GetStringClick(object sender, RoutedEventArgs e)

2 {

3 Cache.Visibility = Visibility.Visible;

4

5 DownloadUploadHelper.GetString((result, error) =>

6 {

7 if (error != null)

8 {

9 HandleError(error);

10 }

11 else

12 {

13 if (result != null)

14 {

15 MessageBox.Show(result);

16 }

17 }

18

19 Cache.Visibility = Visibility.Collapsed;

20 });

21 }

. On line 3, we display a Cache in front of the whole UI. This is a semitransparent
Border placed in front of everything, and blocks the user while the operation is
executed. This is not very user friendly, and in a real application a better user experi-
ence should be provided. The Border also displays a TextBlock in its center that we
can use to provide information to the user, as you will see later.

. Lines 5 to 20 show the call to the DownloadUploadHelper.GetString method, and the
callback operation. The callback is defined as a lambda expression.

. As you saw in Listing 9.2, the helper expects a callback method with two parame-
ters, a string and an Exception. Here, these parameters are named result and error,
and placed left of the => operator.

. On the right of the => operator, the body of the lambda expression is defined. This
code will only be executed later, after the operation is completed! The status of the
error is checked, and the method HandleError (defined in Listing 9.5) is called on
line 9. If there was no error, the file content is shown to the user on line 15, and the
Cache is hidden on line 19.

The asynchronous pattern of calling a method, providing a callback, saving this callback
as user state, handling the Completed event, retrieving and executing the callback is used
every time that asynchronous web calls are done. This can also prove convenient in other
asynchronous operations, such as multithreaded code as you will see in Chapter 22,
“Advanced Development Techniques.”

CHAPTER 9 Connecting to the Web222

 From the Library of Wow! eBook

ptg

Detecting Errors, Checking the Result
Accessing content online is a complex operation, and multiple issues can occur. You
already saw in Listing 9.3 how to check the Error property available on the EventArgs
parameter of the Completed event (DownloadCompletedEventArgs,
OpenReadCompletedEventArgs, and so forth). In case anything happened that prevented the
successful completion of the operation, the Error property contains corresponding infor-
mation. Although this property is of type Exception, it can be casted to a WebException to
get additional information about the server-side error, such as HTTP status code and
status description.

If the Error property is not null, attempting to access the Result property of the
EventArgs parameter will cause an error. Listing 9.5 shows the method HandleError that
the application uses to inform the user.

LISTING 9.5 Handling the Error

1 private void HandleError(Exception error)

2 {

3 var message = error.GetType().FullName

4 + “ “ + error.Message;

5 var webError = error as WebException;

6 if (webError != null)

7 {

8 var response = webError.Response as HttpWebResponse;

9 if (response != null)

10 {

11 message += “ (code “ + response.StatusCode + “)”;

12 }

13 }

14

15 MessageBox.Show(message);

16 }

. On lines 1 and 2, an error message is prepared, composed of the error type (for
example, System.Security.SecurityException) and of the error message.

. In the case of a server-side error, however, the error message does not provide any
information on what really happened. This is why we attempt to check the status
code sent by the web server. First, the error is casted to a WebException on line 5.

. If the cast worked, and the error is indeed a WebException, we can use the Response
property and cast it to an HttpWebResponse instance on line 8.

. If this cast was also successful, the StatusCode property can be accessed.

If the server application did not set the WebResponse’s status code explicitly, a server-side
error returns code 500 (internal server error). However, by default, the status codes are not

Placing Simple Calls 223

9

 From the Library of Wow! eBook

ptg

passed to the Silverlight application. Instead, a 404 status code is passed, which means
“not found” and can be confusing for the user. This limitation is due to the fact that
Silverlight, by default, uses the web browser’s communication stack, which limits the
information that it passes to plug-ins about errors. To solve this issue, see the section
“Discovering the New Networking Stack,” later in this chapter.

The EventArgs parameter contains additional information on the operation: The
Cancelled property is set to true if the operation has been canceled by the CancelAsync
method on the WebClient class. The Result property, as the name shows, contains the
result of the request. Depending on the operation, the Result property can be a string or
a Stream. Finally, the UserState property (of type object) is a utility property that can be
used to store temporary information while the asynchronous request is processed. It can
be set when the operation is initiated on the WebClient class, as you saw when we used it
to store the callback in Listing 9.2.

Opening a Resource for Reading
Although the DownloadStringAsync method can be used to easily get string-based content,
it cannot be used for binary content. Another method is available on the WebClient for
this: OpenReadAsync with its event handler OpenReadCompleted.

This method can be used to download any content. The Result parameter of the
OpenReadCompletedEventArgs is a Stream that can be read, for example, with the
BinaryReader class.

In the sample application, the code is very similar to what was shown for the
DownloadStringAsync method, with a few notable differences: The
DownloadUploadHelper.GetImage method requires two different callback methods. The first
callback will be called, just like before, when the operation is completed. The first parame-
ter is an ImageSource instance, instead of a string. This instance will be constructed from
a Stream of bytes that we download from the web server. In MainPage.xaml.cs (in the
method called GetImageClick), the ImageSource is assigned to the Source property of an
Image control, which has the effect of displaying the image. The second callback is an
Action<int> called progressCallback. This method is called when progress is made on the
download, to inform the user. In MainPage.xaml.cs (in the method called GetImageClick),
the int value is displayed as a percentage in the status TextBlock.

The DownloadProgressChanged event is handled by a method called
GetImageProgressChanged. In this method, the value of the ProgressPercentage property is
retrieved from the e parameter (of type DownloadProgressChangedEventArgs) and passed to
the progressCallback that was stored as a static attribute. Note that using a static attribute
for this is probably not the best practice, since it restricts the usage of
DownloadUploadHelper to one concurrent operation. You will see a better way to store
multiple objects in the user state in Listing 9.9.

CHAPTER 9 Connecting to the Web224

 From the Library of Wow! eBook

ptg

As for the OpenReadCompleted event, it is handled by
the method named GetImageCompleted. This method
is very similar to GetStringCompleted that was shown
in Listing 9.3. The ImageSource instance that is
passed to the callback is constructed with three lines
of code shown in Listing 9.6. The e.Result property
is of type Stream; conveniently the SetSource method
of the BitmapImage class accepts a Stream and trans-
lates that to an image. Because BitmapSource derives
from ImageSource, we can use this code, and the
result is displayed in the UI as shown in Figure 9.2.

LISTING 9.6 Getting a Stream and Making a BitmapSource

var image = new BitmapImage();

image.SetSource(e.Result);

callback(image, null);

Uploading a String
Like we have a specialized method to download a string, there is also the equivalent
method/event handler pair for uploading text-based content to the server. Although
download operations are quite simple and do not require a special server-side endpoint,
any upload operation requires a server-side service to accept the resource and save it. The
easiest way to do this in ASP.NET is to use a so-called generic handler ASHX, as shown in
Listing 9.7. To see this code, follow these steps:

1. Open the project called DownloadUpload.Web. This is an ASP.NET project (full
.NET, not Silverlight).

2. Locate the file called UploadString.ashx and expand it in the Solution Explorer. The
ASHX file is just an entry point. The code is located in the code-behind file.

3. Open the file UploadString.ashx.cs.

LISTING 9.7 Server-Side Generic Handler UploadString.ashx

1 public void ProcessRequest(HttpContext context)

2 {

3 var file = new FileInfo(@”c:\temp\receivedfile.txt”);

4

5 if (!file.Directory.Exists)

6 {

7 file.Directory.Create();

8 }

9

10 var content = context.Request.InputStream;

11

Placing Simple Calls 225

9

FIGURE 9.2 Loading and
Displaying an Image.

 From the Library of Wow! eBook

ptg

12 if (content != null)

13 {

14 using (var writer = new StreamWriter(DestinationFile))

15 {

16 using (var reader = new StreamReader(content))

17 {

18 writer.WriteLine(reader.ReadToEnd());

19 }

20 }

21 }

22

23 context.Response.ContentType = “text/plain”;

24 context.Response.Write(“OK”);

25 }

. The UploadString handler implements the IHttpHandler interface, which defines
two members: The ProcessRequest method will be called every time that the web
server receives a request for this handler’s URL. The context parameter contains all
the information needed to handle the request and deliver a response. The other
member, the IsReusable property is not used here. For more information about this
property, refer to the ASP.NET documentation.

. Line 3 creates a new FileInfo at c:\temp\receivedfile.txt. Hard coding the path in
the service is a very bad practice, only acceptable for this simple example. In real
applications, the path would be saved in a settings file. Note that the server must
have write-rights to that path, or else an error will occur. If needed, you can change
the path in the code directly.

. On line 10, the content of the request is retrieved as a Stream.

. On lines 14 to 20, a StreamWriter is used to write the content of this Stream to a
text file. The using statement on line 14 is very convenient: When used with dispos-
able objects (such as Stream, StreamReader, StreamWriter, and such), these objects
are created without having to worry about closing them or disposing them. This
simplifies greatly the process of working with streams. The StreamWriter will auto-
matically be closed and disposed on line 20 when the block under the using state-
ment is left.

. Similarly, on line 16, a StreamReader is created in a using statement, and received
the request’s Stream as input.

. On line 18, the StreamWriter writes the content obtained from the StreamReader.

. Finally, on lines 23 and 24, a text saying “OK” is set in the response. This is a way
to notify the client that everything went fine.

Back in the Silverlight application, calling the generic handler is very simple thanks to the
WebClient’s UploadStringAsync method (in DownloadUploadHelper.SendString): Set the first

CHAPTER 9 Connecting to the Web226

 From the Library of Wow! eBook

ptg

parameter to the URL of the generic handler on the web server. (This is the location of the
ASHX file expressed as a URL.) The second parameter is a string defining which HTTP
method should be used. In this sample, the POST method is used. Note that the PUT
method would cause an exception because it is not supported by default. You’ll learn
more about this and see a workaround in the section “Discovering the New Networking
Stack,” later in this chapter. The third parameter is the string content that should be sent.
Finally, as usual, the last parameter is the user state, which we use to store the callback
method.

The strings sent to the server are encoded using the UTF-8 format. If another format is
desired, the Encoding property of the WebClient class should be set to another value (for
example, Unicode).

Handling the UploadStringCompleted event is not compulsory if your application is not
interested in the result. However, like for the download operations, the Error, Cancelled,
Result, and UserState properties are available to provide information on the success or
failure of the operation.

The DownloadUploadHelper.SendString method is called in MainPage.xaml.cs in the
SendStringClick method. Just like before, the method is called with a callback expressed
as a lambda expression. The content sent to the server is read from a TextBox named
MyText in the XAML markup.

Opening a Resource for Writing
If the resource to upload is not a string, the method OpenWriteAsync can be used. This
method uses a Stream as input, and sends the content to a server-side service (for
example, a generic handler ASHX) using the POST method by default.

In contrast to the other methods available on the WebClient class, the OpenWriteAsync
method is not straightforward, and does not offer a way to get a response from the web
server, which can be inconvenient. The DownloadUpload sample provides a method
uploading a picture to a service on the web server, with the following steps:

1. A picture needs to be chosen by the user. To do this, the OpenFileDialog provided by
Silverlight is used, as shown in Listing 9.8. Note that there are certain security
restrictions when using this dialog: Opening the file dialog must be triggered by the
user. Silverlight will throw an exception if you attempt to open it programmatically
somewhere else than in a Click or MouseDown event handler. Even in such an event
handler, configuring and opening the file dialog is the first thing that you must do,
or a SecurityException is raised.
Also, the dialog uses the properties File (of type FileInfo) and Files (an array of
FileInfo instances if multiselection was enabled) to give access to the chosen files.
However, security prevents the application to access some of the FileInfo proper-
ties, such as FullName, Directory, DirectoryName, and so forth. Any information that
hints where the file is located on the client computer causes a SecurityException
when accessed.

Placing Simple Calls 227

9

 From the Library of Wow! eBook

ptg

LISTING 9.8 Selecting a File and Calling the Helper

private void SendFileClick(object sender, RoutedEventArgs e)

{

var dialog = new OpenFileDialog();

dialog.Filter = “JPEG files|*.jpg”;

if (dialog.ShowDialog() == true)

{

Cache.Visibility = Visibility.Visible;

DownloadUploadHelper.SendImage(

dialog.File,

SendFileCallback);

}

}

2. Before the file can be read and sent to the server, the WebClient needs to be opened
for writing. This is also an asynchronous operation with a Completed event. Note,
however, that when the Completed event is called, the request has not been sent yet.
It is merely ready for writing. Listing 9.9 shows how to open the WebClient for
writing.

LISTING 9.9 Opening the WebClient for Writing

1 public static void SendImage(

2 FileInfo content,

3 Action<string, Exception> callback)

4 {

5 var client = new WebClient();

6 client.OpenWriteCompleted += SendImageCompleted;

7

8 var info = new SendImageInfo

9 {

10 Content = content,

11 Callback = callback

12 };

13

14 client.OpenWriteAsync(

15 new Uri(ServerPath + SendImageService),

16 “POST”,

17 info);

18 }

19

20 private struct SendImageInfo

21 {

22 public FileInfo Content;

23 public Action<string, Exception> Callback;

24 }

CHAPTER 9 Connecting to the Web228

 From the Library of Wow! eBook

ptg

. The Completed event handler is set on line 6 (and the code is shown in Listing 9.10).
When this event is raised, the request is ready for writing, but has not been sent to
the server yet.

. A lightweight object is used on lines 8 to 12 to store information while the asyn-
chronous request is prepared. Because we need to store more than just the callback
in the UserState, a struct (shown on lines 20 to 24) is used.

. The OpenWriteAsync method is called on lines 14 to 17. The POST HTTP method is
used. This is not the most efficient way to send a file to a web server, but this is the
only way available by default. Here, too, we will see a different way in the
“Discovering the New Networking Stack,” later in this chapter.

3. When the Completed event handler is called, the local file can be read using a
BinaryReader, and then sent to the web server, as shown in Listing 9.10.

LISTING 9.10 Reading and Sending the File

1 private static void SendImageCompleted(

2 object sender,

3 OpenWriteCompletedEventArgs e)

4 {

5 if (e.Cancelled)

6 {

7 return;

8 }

9

10 var info = (SendImageInfo)e.UserState;

11

12 if (e.Error != null)

13 {

14 info.Callback(null, e.Error);

15 return;

16 }

17

18 var inputStream = info.Content.OpenRead();

19 var outputStream = e.Result;

20

21 ReadWriteFile(inputStream, outputStream);

22

23 // Everything OK

24 info.Callback(“File sent, no server response to show”, null);

25 }

. After retrieving the UserState on line 10, we check whether an error occurred while
preparing the request, and abort the sending operation on lines 12 to 16 if that is
the case.

Placing Simple Calls 229

9

 From the Library of Wow! eBook

ptg

. On line 18, we open the file for reading. This operation is allowed by security: the
content of the file is accessible, only its location is concealed.

. On line 19, we get the output stream to which the content will be written.

. Line 21 calls a method called ReadWriteFile (shown in Listing 9.11) that will do the
actual reading/writing operation. A separate method was created for this, because we
will reuse this code in Listing 9.14 when using the HttpWebRequest to perform the
same operation.

. Finally, even though we did not get any confirmation from the web server, the user
is informed that as far as we know, the operation was successful.

4. The method ReadWriteFile is a utility method that reads the file’s stream, and writes
the bytes read into the request’s stream that will be sent to the server, as shown in
Listing 9.11. Note that as soon as the request’s stream is closed, the request is sent
to the web server.

LISTING 9.11 Reading and Writing the File’s Content

public static void ReadWriteFile(

Stream inputStream,

Stream outputStream)

{

using (var writer = new BinaryWriter(outputStream))

{

using (var reader = new BinaryReader(inputStream))

{

var stop = false;

while (!stop)

{

var bytes = reader.ReadBytes(1000);

writer.Write(bytes);

if (bytes.Length < 1000)

{

stop = true;

}

}

}

}

}

CHAPTER 9 Connecting to the Web230

 From the Library of Wow! eBook

ptg

Accessing Headers
The WebClient class allows accessing the request’s web headers, which can be useful if you
need to send additional information to the web server. Note, however, that headers can
be modified by all the actors involved on the way from the Silverlight client to the web
server (such as routers, proxies, and so on).

The request’s headers are stored in the WebClient’s Headers property, which is a key/value
collection.

The WebClient class does not allow retrieving the headers from the response, however. If
the application needs this information, the HttpWebRequest class should be used instead,
as you’ll see in the following section.

Sending Complex Messages
The WebClient class is very convenient to place simple calls to a web server, either for
download or upload. It fulfills most of the developer’s needs and is relatively simple to
use. If finer control is needed on the request and the response, the Silverlight framework
offers the HttpWebRequest class. In fact, the WebClient class uses the HttpWebRequest class
under the covers. The WebClient is a higher-level abstraction.

The main differences between the WebClient and the HttpWebRequest class are as follows:
When sending a binary file to the web server, the WebClient ignores the response sent by
the server (as you saw earlier in this chapter). If the response is important for that opera-
tion, the HttpWebRequest should be used instead. Also, the WebClient does not provide a
convenient access to cookies like the HttpWebRequest does. Finally, the WebClient’s
methods and events are always executed on the initiating thread. For example, if you start
a request on the UI thread, the response is automatically dispatched to the UI thread, too.
In the case of the HttpWebRequest, however, the response arrives on a background thread
and dispatching must be done manually, as you will see in Listing 9.15.

Posting a File to the Server with HttpWebRequest
The DownloadUpload sample provides a class sending a picture to the web server using
the HttpWebRequest. The method is similar to the WebClient’s one, but the actual code is
more complex, as you can see in Listing 9.12.

LISTING 9.12 Storing Information While Sending

private struct SendImageInfo

{

public WebRequest Request;

public Action<string, Exception> Callback;

public FileInfo Content;

public SynchronizationContext MainThreadContext;

public WebResponse Response;

public Exception Error;

}

Sending Complex Messages 231

9

 From the Library of Wow! eBook

ptg

This structure expands on the one we used with the WebClient, and stores in addition the
context on which the request is sent. We will need that later to dispatch the response
from the worker thread created by the HttpWebrequest. We also prepare a field for the
WebResponse, and one to store a possible Exception. We will need this later in Listing 9.15.

Listings 9.13 and 9.14 show how the request is prepared as an asynchronous operation
with a callback method.

LISTING 9.13 Preparing the Request

1 public static void SendImage(

2 FileInfo content,

3 Action<string, Exception> callback)

4 {

5 var request = (HttpWebRequest)WebRequest.Create(

6 new Uri(ServerPath + SendImageService));

7 request.Method = “POST”;

8

9 var info = new SendImageInfo

10 {

11 Request = request,

12 Callback = callback,

13 Content = content,

14 MainThreadContext = SynchronizationContext.Current

15 };

16

17 request.BeginGetRequestStream(SendImageRequestCallback, info);

18 }

Note how the SynchronizationContext is stored on line 14. We will use that later. On line
17, the method BeginGetRequestStream is called. The callback method for this is shown in
Listing 9.14. The user state is the info structure that was just created in lines 9 to 15.

LISTING 9.14 Sending the Request

1 private static void SendImageRequestCallback(IAsyncResult result)

2 {

3 var info = (SendImageInfo)result.AsyncState;

4 var request = info.Request;

5

6 var inputStream = info.Content.OpenRead();

7 var outputStream = request.EndGetRequestStream(result);

8

9 DownloadUploadHelper.ReadWriteFile(inputStream, outputStream);

10

11 request.BeginGetResponse(ResponseCallback, info);

12 }

CHAPTER 9 Connecting to the Web232

 From the Library of Wow! eBook

ptg

After retrieving the info structure on line 3, the streams are prepared: The file is open for
reading on line 6, and the request’s stream is obtained with the call to the
EndGetRequestStream method. The streams are read and written using the method shown
in Listing 9.11. Nothing changed here. Then, on line 11, the request is actually sent to
the server. A callback is provided for the response, shown in Listing 9.15.

LISTING 9.15 Getting the Server’s Response

1 private static void ResponseCallback(IAsyncResult result)

2 {

3 var info = (SendImageInfo)result.AsyncState;

4

5 try

6 {

7 var response = info.Request.EndGetResponse(result);

8 info.Response = response;

9 }

10 catch (Exception ex)

11 {

12 info.Error = ex;

13 }

14

15 info.MainThreadContext.Post(MainThreadCallback, info);

16 }

. The response (of type HttpWebResponse) is obtained from the Request object with the
call to EndGetResponse. This class contains a Stream to the actual bytes sent by the
web server (which we will decode in Listing 9.16) as well as other information about
the operation, such as status code and description, response headers, cookies, length
and type of the content, and so forth.

. On line 8, the response is stored into the info structure.

. The EndGetResponse method might throw an Exception if something went wrong on
the web server. To avoid crashing the Silverlight application, this possible Exception
is caught on line 10 and stored into the info structure.

. Because this method is executed on a worker thread, it needs to be dispatched to
the main thread (this is one of the disadvantages of the HttpWebRequest class over
the WebClient class). You’ll learn more about dispatching in Chapter 22. Here, the
dispatching is done by the SynchronizationContext instance that we stored earlier in
Listing 9.13. The method that is being dispatched is shown in Listing 9.16.

Sending Complex Messages 233

9

 From the Library of Wow! eBook

ptg

LISTING 9.16 Executing the Callback

1 private static void MainThreadCallback(object state)

2 {

3 var info = (SendImageInfo)state;

4 if (info.Error != null)

5 {

6 info.Callback(null, info.Error);

7 return;

8 }

9

10 var response = info.Response as HttpWebResponse;

11 var stream = info.Response.GetResponseStream();

12

13 using (var reader = new StreamReader(stream))

14 {

15 var serverMessage = reader.ReadToEnd();

16 info.Callback(serverMessage, null);

17 }

18 }

This method concludes the complex operation of sending a file to the server. Because it
has been dispatched, it can access the UI directly by using the callback that was stored
in Listing 9.13. If an Exception was thrown by the server, the user is informed on lines
4 to 8.

On lines 13 to 17, the text sent by the web server is read with a StreamReader class. Of
course, depending on the ContentType property of the HttpWebResponse class, other
methods could be used to read and decode the bytes sent.

This sample shows that the HttpWebRequest class is more complicated to use than the
WebClient, but also provides finer control over the request and the response objects. Note
that for simplicity, the previous listings do not include much error handling code. A real
application should be more careful when using these methods, to avoid crashes.

Discovering the New Networking Stack
In the early days, Silverlight’s only way to communicate with a web server was to use the
browser’s networking stack in the background. Although this allowed Silverlight to be
released faster (because a whole lot of functionalities didn’t have to be rewritten), it also
came with limitations.

Some of these have already been mentioned in this chapter (for instance, the fact that a
request can only be sent with the HTTP methods GET or POST). Although many operations
can be done with these two HTTP methods, additional methods such as PUT and DELETE
should be made available, especially when using REST services.

CHAPTER 9 Connecting to the Web234

 From the Library of Wow! eBook

ptg

Also, you saw that any server-side error translates to a 404 code (or “file not found”) on
the client. This is because the web browsers do not pass any additional information to the
plug-ins they host. Implementing a clean error handling and informing the user is, of
course, impossible in these conditions.

Another limitation is the fact that a Silverlight application cannot get or set cookies when
it is using the default networking stack. Cookies can be used to send or receive additional
information when communicating with the web server. If the web application relies on
cookies, using the new networking stack may be the only way to go.

Using the Client HTTP Stack
The new HTTP stack (called the client HTTP stack, as opposed to the browser HTTP stack)
is never used by default. The Silverlight application must opt in explicitly to use the new
features. Opting in the new HTTP stack can be done at different levels.

For All Requests
Your Silverlight application can require all HTTP requests to be sent using the new stack,
throughout the application, for both the WebClient and for the HttpWebRequest class.
Listing 9.17 shows how the new stack can be required for all HTTP requests. Similar code
can be used for HTTPS requests (secure HTTP communication, where the requests and
responses are encrypted).

LISTING 9.17 Using the New Stack for All Requests

bool httpResult = WebRequest.RegisterPrefix(

“http://”,

WebRequestCreator.ClientHttp);

For a Specific Domain
The RegisterPrefix method can also be used to force using the client HTTP stack for a
given domain, as shown in Listing 9.18. All web requests to other domains will be done
using the old browser stack.

LISTING 9.18 Using the New Stack for a Specific Domain

bool httpResult = WebRequest.RegisterPrefix(

“http://www.galasoft.ch”,

WebRequestCreator.ClientHttp);

For a Specific Request
If the client HTTP stack should be used only for a specific request, but all others should be
done with the default stack, you can create a new request specifically for the new
networking stack. Listing 9.19 shows how the WebRequestCreator class’s ClientHttp prop-
erty is used to create a new HttpWebRequest instance. Once the instance exists, it can be
used just like we did earlier in this chapter.

Discovering the New Networking Stack 235

9

 From the Library of Wow! eBook

ptg

LISTING 9.19 Creating a Request for the New Stack

var request = WebRequestCreator.ClientHttp.Create(

new Uri(“http://www.galasoft.ch”)) as HttpWebRequest;

Using Other HTTP Methods
Once the new stack has been obtained, either for the whole application, for a given
domain, or for a given request, the calls can be placed just as you saw earlier in this
chapter. The restrictions mentioned earlier are lifted, though. For instance, it is now
possible to send a file to the web server using the HTTP method PUT, as shown with the
following steps:

1. Open the DownloadUpload solution.

2. Open the file MainPage.xaml.cs.

3. Locate the lines shown in Listing 9.17 in the MainPage constructor, and uncomment
them to make the code active. This requires using the new stack for all requests
through the HTTP protocol.

4. Open the file DownloadUploadHelper.cs and locate the method named SendImage.

5. In the actual call to the WebClient’s OpenWriteAsync method, change the HTTP
method from POST to PUT.

6. Run the application and send an image to the web server.

This last operation would cause an exception to occur if we had not requested the new
networking stack. Note that even with the new networking stack, not all HTTP methods
are supported for security reasons.

Using the CookieContainer
The new networking stack also allows using cookies, providing a mechanism to exchange
small pieces of meta-information with the web server. In the web browser, cookies are also
used to store information on the client. In Silverlight, however, a much more convenient
and powerful storage facility exists, named the isolated storage. You’ll learn more about
this secure file system in Chapter 17, “New Transforms, Right Click, HTML Browser,
WebBrowserBrush, and Isolated Storage.”

To access the cookies, either to send them to the server or to read them from the
response, the CookieContainer class is used, as shown in Listing 9.20, taken from the
DownloadUpload sample (in the CookieSample class). The request does not create a
CookieContainer by default, so a new instance must be set explicitly before the request is
sent. A Cookie instance is always set for a given domain, with a key and a value.

CHAPTER 9 Connecting to the Web236

 From the Library of Wow! eBook

ptg

LISTING 9.20 Sending a Cookie to the Server and Getting One Back

1 public static void SendCookie()

2 {

3 WebRequest.RegisterPrefix(“http://”, WebRequestCreator.ClientHttp);

4

5 var request = (HttpWebRequest)

6 WebRequest.Create(ServerPath + CookieService);

7

8 request.CookieContainer = new CookieContainer();

9

10 request.CookieContainer.Add(new Uri(ServerPath),

11 new Cookie(“mycookie”, “Hello”));

12 request.BeginGetResponse(ReadCallback, request);

13 }

14

15 private static void ReadCallback(IAsyncResult result)

16 {

17 var request = (HttpWebRequest)result.AsyncState;

18 var response = request.EndGetResponse(result)

19 as HttpWebResponse;

20 var stringValue = response.Cookies[“mycookie”].Value;

21 }

. On line 3, the client HTTP stack is requested. Cookies can only be used with the
new networking stack.

. On line 5 and 6, a new request is prepared. The CookieService constant contains the
address of a server-side service that will simply read the value of the cookie and
return one back after adding the word success.

. On line 8, a new CookieContainer is created. This step would be needed even if we
didn’t want to send cookies to the server, but only read those sent back instead.

. On lines 10 and 11, a new Cookie is created and added to the container. Note that
we didn’t specify additional properties in the Cookie, such as the expiration date.

. Finally, after the response has been received, the new value can be read from the
response’s Cookies collection.

Handling Responses
Often, web servers use XML or another text-based language called JavaScript Object
Notation (JSON) to answer a query from a web client. These text-based protocols are very
convenient:

Handling Responses 237

9

 From the Library of Wow! eBook

ptg

. XML is very well known, and many tools and services have been using it for years.
It is very well suited for HTTP communication. After all, HTML is very similar to
XML in its structure (even though XML obeys stricter rules).

. JSON is also text based, and because it was developed more recently than XML, it
answers some of the concerns that XML is causing. Most important, XML is a very
verbose protocol, and a lot of text in an XML document is not actually carrying
information. JSON, on the other hand, is very concise, and allows crafting messages
that carry only very few formatting characters.

Silverlight is well equipped to decode both XML- and JSON-based messages. When a
service exposes endpoints delivering both XML and JSON, it makes sense to prefer the
JSON based one, to reduce the strain on the network. Decoding XML and JSON responses
is quite easy using a technology called LINQ (Language INtegrated Query). This was
already introduced in Silverlight 2 as an intrinsic part of the C# and VB.NET languages.

Handling XML Responses
Loading an XML document and accessing the content with LINQ-to-XML is done with
the XDocument class. This class is available in an assembly that must be added to your
Silverlight application with the following steps:

1. Right-click the Silverlight project in the Visual Studio Solution Explorer.

2. Select the Browse tab in the Add Reference dialog.

3. Navigate to C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client and
locate the DLL named System.Xml.Linq.dll.

4. Select this DLL and click OK.

5. The XDocument class is included in the namespace System.Xml.Linq that must be
referenced with a using directive on top of the page.

6. Also add a using directive including the namespace System.Linq. This namespace
contains multiple extensions methods that help parsing the XML elements.

Silverlight 2 Unleashed, Chapter 22, Listing 22.8, shows how to parse the XML result of a
WebClient’s DownloadStringAsync method with LINQ.

Handling JSON Responses
Similarly, a JSON-formatted document can be parsed using LINQ-to-JSON, which is also a
part of Silverlight. Often, JSON is not the default format returned by a web service, but
must be requested explicitly. For example, the location service Foursquare exposes a set of
API methods described at http://www.galasoft.ch/sl4-4sq. This is from the documentation:

You can currently request output in XML (the default) as well as JSON. You should format
the URL like this: http://api.foursquare.com/v1/user.json
If your URL has no format extension, the default (XML) will be served up:
http://api.foursquare.com/v1/user

CHAPTER 9 Connecting to the Web238

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-4sq
http://api.foursquare.com/v1/user.json
http://api.foursquare.com/v1/user

ptg

Once the JSON formatted string is available in the application (for example, with a call to
the WebClient’s DownloadStringAsync method), LINQ-to-JSON methods can be used to
parse the results and convert them to C# objects. In Silverlight 2 Unleashed, Chapter 23,
Listing 23.16 and subsequent listings show a JSON-formatted string obtained from the
Flickr web services decoded by these means. It uses the JsonObject class, available in the
System.Json namespace, in the assembly System.Json.dll, which must be referenced as we
did in the previous section.

Communicating with WCF
Windows Communication Foundation (WCF) is an important pillar of the .NET frame-
work. Before WCF was released, there were various communication frameworks based on
the .NET framework, and used in various configurations. For example, sockets-based
communication allows Windows applications to communicate at a low level, ASMX web
services use an XML-based protocol (called SOAP, Simple Object Access Protocol) to
exchange information with web applications, and so forth.

WCF groups and unifies all these various protocols and technologies. With mere configu-
ration, it is possible to expose the same service as a TCP-based, binary endpoint, or as an
HTTP-based endpoint delivering XML-based data. Of course, WCF is also a very complex
framework, and many complete books are available for this technology. This section
shows how to create a WCF service optimized for Silverlight and connect to it using a
Silverlight application.

Setting Up a Service
A WCF service can be exposed in the same web server that is hosting the Silverlight appli-
cation (same domain), or in a completely different web server. In this case, a cross-domain
policy file may be needed to make sure that the Silverlight application can communicate
with the service.

In this sample, we use the same web application to host the Silverlight application and
the WCF service, with the following steps:

1. Create a new Silverlight application in Visual Studio, named WcfServiceSample.

2. Make sure that you host the Silverlight application in a new website named
WcfServiceSample.Web.

3. Right-click the web project WcfServiceSample.Web and select Add, New Item from
the context menu.

4. Select the Silverlight category, and then a Silverlight-enabled WCF Service. Name
this new item SampleService.svc.

5. Right-click the web project again and select Add, Class from the context menu.
Name this new item DataItem.cs. This class will be used to transport information
from the web server to the web client.

Communicating with WCF 239

9

 From the Library of Wow! eBook

ptg

6. Edit the DataItem class as shown in Listing 9.21. Note that the DataContract and
DataMember attributes are into the namespace System.Runtime.Serialization. The
corresponding using directive must be added. These attributes notify the WCF
service that the class and properties are to be serialized and sent to the client.

LISTING 9.21 Implementing the DataItem Class

[DataContract]

public class DataItem

{

[DataMember]

public string Name

{

get;

set;

}

[DataMember]

public int ContractNumber

{

get;

set;

}

}

7. Open the file SampleService.svc.cs. The SVC file is the endpoint through which all
calls are going; the implementation is into this code-behind file.

8. Set the ServiceContract attribute to a unique namespace (for example,
“http://www.mydomain.com”). The namespace does not have to be a valid domain
name; it is just a unique resource identifier.

9. Delete the method DoWork that had been generated, and instead implement the
service, as shown in Listing 9.22. This is a simple method that takes an offset in
hours and returns the server date/time minus the offset. Note the OperationContract
attribute that is decorating the method, notifying WCF that this method should be
exposed as a service.

LISTING 9.22 Implementing a New Method

[OperationContract]

public DateTime GetServerDateTime(int hoursMinusOffset)

{

var now = DateTime.Now;

return now - TimeSpan.FromHours(hoursMinusOffset);

}

CHAPTER 9 Connecting to the Web240

 From the Library of Wow! eBook

ptg

To make sure that everything is okay, right-click the file SampleService.svc in the Solution
Explorer, and select View in Browser from the context menu. This starts your favorite web
browser and should display a web page with information about the service.

Using ASMX Web Services
Before WCF was released, web services were exposed as ASMX web services (so called
because the extension of the service endpoint is .asmx). Because ASMX services use SOAP,
Visual Studio is able to create proxy for these services, too. When creating a new service,
however, it is recommended to rather choose WCF.

Connecting the Client Application
With the service created, we are ready to set up the client Silverlight application to
connect to it. Follow these steps:

1. In the web browser window displaying the SampleService.svc page, copy the URL
from the location bar. This URL shows the location of the SampleService.svc file on
the web server. This is the endpoint through which our Silverlight application will
connect.

2. In Visual Studio’s Solution Explorer, right-click the WcfServiceSample project (the
Silverlight project) and select Add Service Reference from the context menu.

3. Paste the URL you copied in Step 1 above in the Address field of the Add Service
Reference dialog. Then click the Go button.

4. If all goes well, you should see the
SampleService in the list of
Services. Enter the name
MyService in the Namespace field,
and then click OK.

Visual Studio uses the information
downloaded from the web service to
create a new namespace (named
MyService) and a set of proxy objects (that
is, client-side representation of the
server side objects). The DataItem class that we implemented on the server is now also
present in the Silverlight application. For the WCF service, a client is created, exposing all
the methods that had been marked with the OperationContract attribute.

1. Open the file MainPage.xaml and modify the user interface as shown in
Listing 9.23.

Communicating with WCF 241

9

T I P

Using the Discover Button

When the service is located in the same
solution as the Silverlight application like
here, you can also use the Discover button
instead of copying/pasting the URL. If the
service is remote, however, this doesn’t
work.

 From the Library of Wow! eBook

ptg

LISTING 9.23 Setting the UI

<StackPanel x:Name=”LayoutRoot”

Background=”White”>

<TextBox x:Name=”OffsetHoursTextBox”

Text=”0”

Margin=”10” />

<Button Content=”Call service”

Click=”CallServiceClick”

x:Name=”MyButton”

Margin=”10” />

</StackPanel>

2. Right-click the event handler name CallServiceClick and select Navigate to Event
Handler from the context menu. This opens the file MainPage.xaml.cs and sets the
cursor in the corresponding event handler code.

Using the Client
Now that Visual Studio is set up to use the WCF client, sending asynchronous messages is
as easy as calling a method and handling a Completed event. This event is raised when the
response from the server comes back. The following steps show how to call the client, and
use the DateTime instance returned by the service.

Modify the CallServiceClick event handler as shown in Listing 9.24.

LISTING 9.24 Calling the Client

1 private void CallServiceClick(object sender, RoutedEventArgs e)

2 {

3 var offset = Int32.Parse(OffsetHoursTextBox.Text);

4

5 var client = new MyService.SampleServiceClient();

6 client.GetServerDateTimeCompleted

7 += ClientGetServerDateTimeCompleted;

8 client.GetServerDateTimeAsync(offset, offset);

9 }

This event handler is called when the button is clicked. On line 3, the value entered in
the TextBox is parsed. If the user entered an invalid value (not an integer number), this
line will throw an exception, which should be handled. In this simple sample, we just
leave it as is. On line 5, a new client is instantiated. Depending on the scenario, the client
could be saved as a private member into the MainPage class. In this sample, the client is
used and discarded. A new client is created the next time that the user clicks on the
button.

CHAPTER 9 Connecting to the Web242

 From the Library of Wow! eBook

ptg

On lines 6 and 7, the Completed event handler is assigned. The code is shown in Listing
9.25. Finally, on line 8, the GetServerDateTimeAsync method is called. There is an “async
method / event handler” pair available for each method marked with the
OperationContract attribute on the server. This pair is generated by Visual Studio in the
client when the Add Service Reference operation is executed.

Note that we pass the offset variable twice to this method. Do not get confused:

. The first parameter is sent to the server-side method, and will be used in the calcula-
tion.

. The second parameter is optional. It is the UserState that we already saw earlier in
this chapter. This parameter remains on the client, and will be used in the Completed
event handler. This is just a convenient way to save information while the asyn-
chronous call is executed.

Implement the Completed event handler as shown in Listing 9.25.

LISTING 9.25 Handling the Completed Event

1 void ClientGetServerDateTimeCompleted(

2 object sender,

3 MyService.GetServerDateTimeCompletedEventArgs e)

4 {

5 var offset = (int)e.UserState;

6

7 MyButton.Content = string.Format(

8 “Current date time on client: {0}”

9 + Environment.NewLine

10 + “Date time - {1} hours on server: {2}”,

12 DateTime.Now.ToString(),

13 offset,

14 e.Result.ToString());

15 }

Line 5 retrieves the offset that the user had entered from the UserState property. Then,
lines 7 to 14 set the text displayed by the button in the user interface.

On lines 8 to 10, we create a string with 3 placeholders {0} to {2}. The string.Format
method uses these placeholders and replaces them with the arguments after the first para-
meter:

. The first placeholder is replaced by the current date/time on the client.

. The second placeholder is replaced by the offset that the user had entered.

. The last placeholder is replaced by the date/time sent by the server. The e.Result
property is conveniently prepared by the WCF client, and its type corresponds to
the type DateTime specified as the return value for the GetServerDateTime method in
the server-side SampleService class.

Communicating with WCF 243

9

 From the Library of Wow! eBook

ptg

At this point, you can run the application, enter an offset into the text box, and then
press the button. After a short delay, a new text is displayed in the button.

Updating the Code on the Server
If changes are made on the server (such as adding or removing a method, changing the
list of parameters on existing methods, and so on), the service reference must be updated.
This is needed because the WCF client and all the proxy objects must be regenerated to
reflect the changes. Visual Studio makes it easy to update the service reference, but this
must be done every time changes are made on the server, as shown in the following steps:

1. Open the file SampleService.svc.cs in the WcfServiceSample.Web project.

2. Modify the name of the GetServerDateTime method to GetServerDateTimeWithOffset.

3. Build the application and run it. In the Silverlight page, click the button. This
throws an exception because the client attempts to call a method that does not exist
anymore on the server. The reference needs to be updated with the following steps:

4. In the Solution Explorer, expand the Service References folder in the Silverlight
project.

5. Right-click the reference named MyService and select Update Service Reference from
the context menu.

6. Wait until the references are updated, and then build the application.

The compilation fails now because the WCF client has been updated with the new
method name. The Silverlight code needs to be changed accordingly, and then the appli-
cation can be used.

Publishing the Service
Of course, getting the server date/time is not very exciting when the application runs on
the same physical PC than the WCF service (which is the case while it is being devel-
oped). The WCF service should be published to a web server. This step is done in Visual
Studio by right-clicking the web application and selecting Publish from the context menu.
Depending on your web server configuration, you can choose Web Deploy, FTP, or
another method to publish the code. For more information about what your web server
supports, you should contact your Internet service provider.

After the service has been published, one step is needed in the Silverlight client. The URL
of the SVC endpoint must be updated with the following steps:

1. In the Silverlight application, right-click the MyService reference (in the Service
References folder) and select Configure Service Reference from the context menu.

2. Update the address of the SVC file in the Address field of the Service Reference
Settings dialog (see Figure 9.3).

3. Compile the application after the reference has been updated.

CHAPTER 9 Connecting to the Web244

 From the Library of Wow! eBook

ptg

The Silverlight application now connects to the remote WCF service when it is run. Do
not get confused! Any changes made to the local WCF application will be ignored by the
Silverlight client, at least as long the changes are not published to the web server.

Summary 245

9

FIGURE 9.3 Updating the endpoint URL.

Summary
Connecting to the Web is always an exciting step in a development project. Filling an
otherwise empty UI with data, images, and videos and getting updated information
continuously give life to your application. In this chapter, you saw how to use the
WebClient class to connect easily to the Internet and download or upload text-based
content as well as any binary content (files, videos, pictures, and so on). Then the
HttpWebRequest was shown, as a way to access more complex services and to get finer
control over the messages sent over the wire.

A bit further, we talked about the new HTTP stack introduced to overcome some of the
shortcomings of the browser stack used as the default. This allowed us to use other HTTP
methods (for example, to fully use REST-based services) and to access cookies.

We talked shortly about a way to handle text-based response from the web service, either
using the XML or JSON protocols. Finally, you saw how to create and use a WCF service,
which allows us to communicate with the server is a transparent way, just by calling
methods and handling a Completed event.

In later chapters, we use this knowledge to build connected application and fully enjoy
the advantages of the rich communication framework built in to Silverlight 4.

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Talk about resources and
dictionaries.

. Use resources in Expression
Blend.

. See why you should clean up
unused resources, and how to
do it.

. Create styles for controls and
see what new features are
available in Silverlight 4.

. Create templates for controls.

. Create custom easing func-
tions for animations.

. Discover and use themes to
easily customize Silverlight
applications.

CHAPTER 10

Creating Resources,
Styles, and Templates

One of the most exciting features of Silverlight (and of its
big sister Windows Presentation Foundation, WPF) is the
ability to separate the functionality of a control from its
appearance. This separation was already tested in other
frameworks, such as HTML. The Cascading Style Sheets
system (CSS) is used to describe the appearance of the page,
while the HTML code itself is used to store the content of
the page.

Such a separation makes a lot of sense because two very
different roles are working on a user interface: The devel-
oper creates the functionality, while the designer works on
the appearance of the page. In Silverlight, the same separa-
tion happens and the same roles work together to create
beautiful applications.

Changing the appearance of the controls is done at two
different levels in Silverlight:

. With styles, various properties of an element can be
set. This is roughly equivalent to what CSS is offering:
You can group property setters in a way that is
isolated (so that a designer can work on them
without disturbing the developer’s work), and
reusable (so that you have to define the looks of a set
of similar controls only once).

. With templates, you can completely redefine the
appearance of a control. This frees the designers
completely because there are no limits anymore to
what they create in their comps. Templates can be
used to change the shape of a control and even to
specify the transitions between various states that the
control can have (such as MouseOver, Pressed,
Disabled, and so on).

 From the Library of Wow! eBook

ptg

In this chapter, we first take a look at the resources system in Silverlight 4. Although not
directly related, the resources system is used to store the elements that are needed to
modify controls’ appearance. Then we take a deep dive into the styles and templates
system, and you’ll learn how to create and modify them in XAML (in Visual Studio) and
in Expression Blend.

Working with Resources in XAML
Resources can be thought of as a series of shelves, in which any element can be stored for
later use. Although resources are used to define styles and templates, they can in fact store
any element that can be expressed in XAML. For example, in Listing 2.2, a Storyboard was
fetched from the local resources and started. This element had been placed there by
Expression Blend when it had been created earlier. In Listing 3.1, a Double value was
stored in the UserControl’s resources, and used further in XAML with the help of a
StaticResource markup extension. In Listing 4.7, a whole view-model was stored in
resources, and later used to set the DataContext of a StackPanel.

These few examples show how versatile a resource dictionary can be: As long as the
element you want to store can be created in XAML, it can be placed in resources, and
given a key for later use.

Using Local Resources
The Resources property is available on any FrameworkElement. Its type is
ResourceDictionary, a specialized key/value collection. Each element it stores must have a
key for identification.

CHAPTER 10 Creating Resources, Styles, and Templates248

WA R N I N G

Using x:Name in Resources

A particularity of Silverlight over WPF is that a name (set through the x:Name attribute) can be
used when storing an element in resources, instead of x:Key. This is a remnant of Silverlight
1.0, when resource dictionaries were not implemented in a way compatible with WPF yet.
Because using x:Name in a resource dictionary causes an error in WPF, it is recommended
not to use this in Silverlight, but to use the x:Key attribute instead, with the possible excep-
tion of storyboards, where using x:Name actually facilitates the usage of such elements.

Listing 10.1 shows two Border elements in a StackPanel. Each Border stores a
SolidColorBrush in its Resources, with the same key. Inside each Border, a Button element
uses that key to set its Background property.

LISTING 10.1 Using Local Resources

<StackPanel>

<Border Margin=”10”>

<Border.Resources>

 From the Library of Wow! eBook

ptg

<SolidColorBrush x:Key=”MyBrush”

Color=”Red” />

</Border.Resources>

<Button Background=”{StaticResource MyBrush}”

Width=”100” Height=”30” />

</Border>

<Border Margin=”10”>

<Border.Resources>

<SolidColorBrush x:Key=”MyBrush”

Color=”Green” />

</Border.Resources>

<Button Background=”{StaticResource MyBrush}”

Width=”100” Height=”30” />

</Border>

</StackPanel>

. Because resources are searched bottom up, each Button uses the resource with the
key MyBrush that is the closest to itself. This is why in Figure 10.1 the first button
has a shade of red, whereas the second one has a shade of green. This is true also
when using external resource dictionaries!

. Note that a Button’s default template uses a linear gradient as
its background, which is why Figure 10.1 does not show a
plain red or green background. You’ll learn more about default
templates later in this chapter.

Merging Dictionaries
Silverlight 3 introduced the ability to use external resource dictionar-
ies to store elements. This was a welcomed addition because it makes
it possible to structure the resources in a more flexible way and to reuse whole
dictionaries in various locations of the application (or even in other applications).

An external resource dictionary (as opposed to the local Resources property of a
FrameworkElement) is defined in a XAML file. To create a new resource dictionary in a
Silverlight application, follow these steps:

1. In the Solution Explorer in Visual Studio, right-click the Silverlight project and
select Add, New Item from the context menu.

2. Select the Silverlight category and then Silverlight Resource Dictionary from the Add
New Item dialog.

3. With the new dictionary selected in the Solution Explorer, show the properties by
pressing F4. Notice that the Build Action for this element is set to Page, and that a
custom tool is used to compile the XAML. This is needed to place the XAML file in
the XAP file and make it available to the Silverlight application.

Working with Resources in XAML 249

1
0

FIGURE 10.1
Red and green
buttons.

 From the Library of Wow! eBook

ptg

A new resource dictionary can also be added into Expression Blend, using the Add New
Item dialog.

A simple external resource dictionary is shown in Listing 10.2. Notice that there is no
x:Class attribute, because there is no code behind. Resources are defined in the external
resource dictionary exactly in the same way than in local resources, with a key. Additional
xmlns prefixes can be defined if needed.

LISTING 10.2 External Resource Dictionary

<ResourceDictionary

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”

xmlns:sys=”clr-namespace:System;assembly=mscorlib”>

<sys:Double x:Key=”ButtonWidth”>100</sys:Double>

<SolidColorBrush x:Key=”ButtonBackground”

Color=”Red” />

</ResourceDictionary>

From the Same Assembly
After one or more resource dictionaries have been added, they need to be merged into the
application resources (global resources) or into a local element’s Resources property (local
resources). Typically, a Silverlight application has application-level resources, as shown in
Listing 10.3 (for example, brushes, default styles, and templates that are used throughout
the application), and page-level resources, such as in Listing 10.4 (for example, special
styles and templates that are used only within the current page).

LISTING 10.3 Merging External Dictionaries in App.xaml

<Application.Resources>

<ResourceDictionary>

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source=”Styles/GlobalResources.xaml”/>

<ResourceDictionary Source=”Styles/ButtonStyles.xaml”/>

<ResourceDictionary Source=”Styles/CheckboxStyles.xaml”/>

<ResourceDictionary Source=”Styles/SliderStyles.xaml”/>

</ResourceDictionary.MergedDictionaries>

</ResourceDictionary>

</Application.Resources>

CHAPTER 10 Creating Resources, Styles, and Templates250

 From the Library of Wow! eBook

ptg

LISTING 10.4 Merging External Dictionaries in MainPage.xaml

<UserControl.Resources>

<ResourceDictionary>

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source=”Styles/MainPageStyles.xaml”/>

</ResourceDictionary.MergedDictionaries>

</ResourceDictionary>

</UserControl.Resources>

From a Different Assembly
Resource dictionaries can be included in external assemblies. This offers a neat way to
create skins for an application, by grouping all the resources into a DLL. Later, the project
used to compile the skin DLL can be passed to designers for a redesign. Also, such a DLL
can be used in multiple applications (for example, to create a consistent corporate look
and feel). A skin DLL can be created as follows:

1. Create a new Silverlight application in Visual Studio, named SkinnedApplication.

2. Right-click the SkinnedApplication solution in the Solution Explorer (the topmost
node in the tree).

3. Select Add, New Project from the context menu.

4. Select a Silverlight Class Library from the dialog, and name it
SkinnedApplication.Skins. Select Silverlight 4 as the target for this new project.

5. In this new project, delete the file named Class1.cs. We will not need this file.

6. Right-click the SkinnedApplication.Skins project in the Solution Explorer, and add a
new Silverlight resource dictionary named MainPageSkin.xaml.

7. Add a new SolidColorBrush in MainPageSkin.xaml, and set its x:Key attribute to
LayoutRootBackgroundBrush. Set its Color attribute to Red.

8. To use the external resource dictionary, a reference must be added in the main
assembly. To do this, right-click the SkinnedApplication project in the Solution
Explorer and select Add Reference from the context menu.

9. In the Add Reference dialog, select the Projects tab, then the
SkinnedApplication.Skins project and click OK. This adds a reference to this project
in the References folder. It will also copy the SkinnedApplication.Skins.dll assembly
to the bin\Debug folder, and in the XAP file.

10. In MainPage.xaml, merge the dictionary from the external assembly with the
markup shown in Listing 10.5.

11. Set the main Grid’s Background property as shown in Listing 10.5. Because the
resources from the external resource dictionary have been merged, you can use
them just as you would use local resources.

Working with Resources in XAML 251

1
0

 From the Library of Wow! eBook

ptg

LISTING 10.5 Merging and Using a Dictionary from a Different Assembly

<UserControl.Resources>

<ResourceDictionary>

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary

Source=”/SkinnedApplication.Skins;component/MainPageSkin.xaml” />

</ResourceDictionary.MergedDictionaries>

</ResourceDictionary>

</UserControl.Resources>

<Grid x:Name=”LayoutRoot”

Background=”{StaticResource LayoutRootBackgroundBrush}”>

</Grid>

The syntax to reference elements in an external assembly is
/AssemblyName;component/Path/ElementName, as follows:

. AssemblyName is name of the external assembly. This assembly must be available
when the Source property is parsed. In general, it is a referenced assembly.

. component is a keyword specifying that the element referenced is within the external
assembly.

. Path is the hierarchy of folders in which the element is located. In Listing 10.5,
MainPageSkin.xaml is at the root of the assembly, so the path is empty.

. ElementName is the name of the referenced element.

The syntax shown for the Source property in Listing 10.5 is named pack URI syntax, and is
very useful to reference elements in XAML. It can be used with XAML files (like here), but
also with images, videos, or any other element that must be located within a referenced
assembly in the Silverlight application. You can find more information about the pack
URI syntax online at http://www.galasoft.ch/sl4-packuri. Note that even though this page
talks about pack URIs for WPF, the information is also valid for Silverlight.

Using external resource dictionaries is very useful when you have a large application with
hundreds of resources and need to structure them in an organized manner. Choosing to
use external assemblies or not depends on multiple factors, such as your application’s
complexity, the developer-designer workflow in your firm, and so forth.

Merging a Dictionary Within Another Dictionary
It is also possible to merge one or more resource dictionaries within another resource
dictionary, using the exact same syntax. This can be convenient to create skins for the
application. Listing 10.6 shows a resource dictionary named Classic.xaml and merging
resource dictionaries contained in a folder named Classic. The Classic.xaml dictionary can
then be merged into the application’s resources, as shown in Listing 10.7).

CHAPTER 10 Creating Resources, Styles, and Templates252

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-packuri

ptg

LISTING 10.6 Creating a “Summary Resource Dictionary”

<ResourceDictionary

xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source=”Classic/GlobalResources.xaml” />

<ResourceDictionary Source=”Classic/ButtonStyles.xaml” />

<ResourceDictionary Source=”Classic/Check boxStyles.xaml” />

<ResourceDictionary Source=”Classic/SliderStyles.xaml” />

</ResourceDictionary.MergedDictionaries>

</ResourceDictionary>

To create a different skin (for example, named Glass), follow these steps:

1. Create a new folder named Glass.

2. Copy all the resource dictionaries from the Classic folder into the Glass folder.

3. Update the resources into the Glass folder to create the new skin.

4. Create a new resource dictionary named Glass.xaml and merge all the dictionaries
from the Glass folder into this resource dictionary.

5. In App.xaml, remove the merged dictionary pointing to Classic.xaml and replace it
with Glass.xaml.

Thanks to the summary resource dictionary, only one entry needs to be changed in the
application to apply the new skin.

Mixing Resources and Merged Dictionaries
It is also possible to mix resources and merged dictionaries, as shown in Listing 10.7. This
allows refining a skin with additional resources specific to that application only. You can
also overwrite a resource contained in a merged dictionary by defining a new local
resource with the exact same key, but with a different content. Of course, it is important
to make sure that the types are compatible. For example, a SolidColorBrush can be over-
written with a LinearGradientBrush, because both are deriving from Brush.

LISTING 10.7 Mixing Resources and Merged Dictionaries

<Application.Resources>

<ResourceDictionary>

<ResourceDictionary.MergedDictionaries>

<ResourceDictionary Source=”Styles/Classic.xaml”/>

</ResourceDictionary.MergedDictionaries>

Working with Resources in XAML 253

1
0

 From the Library of Wow! eBook

ptg

<SolidColorBrush x:Key=”MainTextBrush”

Color=”#FF333333” />

</ResourceDictionary>

</Application.Resources>

Resolving Resources
After resources have been created and stored in resource dictionaries (either through the
Resources property or in a merged resource dictionary), they can be assigned to an
element’s properties. A resource can be used in XAML markup or in code. Note that it
makes no differences at all if a resource has been defined locally into the Resources prop-
erty of an element (or of the application) directly or if it has been merged.

Setting a StaticResource in XAML
XAML can be extended by using objects called markup extensions. We have already
encountered some of these objects: Binding, RelativeSource, TemplateBinding are such
elements. In XAML, a markup extension is delimited by curly brackets, {}. Unlike WPF,
though, Silverlight does not support custom markup extensions; this means that only the
ones available in the framework can be used.

The StaticResource markup extension allows any property to be
set to a resource in the XAML markup directly. An example was
shown in Listing 10.5. When a StaticResource is set on a prop-
erty, the XAML parser tries to locate the corresponding resource
in the tree of elements, such as shown in Figure 10.2. When a
property is set through a StaticResource in the Button, the
XAML parser looks within the Button’s Resources property first
for the given key. If the key is not found, the parser looks into
the Border, then in the Grid, and then into the UserControl. If
the resource is still not found, the application’s global resources
are searched. Finally, if nothing is found, the Silverlight framework itself contains default
resources that can be searched. This method of looking into an element, then its parent,
and then its parent’s parent is called “walking the tree.”

CHAPTER 10 Creating Resources, Styles, and Templates254

FIGURE 10.2 Tree
of elements.

WA R N I N G

What About DynamicResource?

Developers coming from WPF and discovering Silverlight will notice that the DynamicResource
markup extension is missing. Silverlight can only resolve resources statically, which makes
dynamic skinning rather complicated. After a property has been set through a
StaticResource, this resource cannot be modified anymore, and the only way to modify the
property is by setting its value locally.

 From the Library of Wow! eBook

ptg

Using Default Styles and Templates
As mentioned earlier, the Silverlight framework contains a set of default resources. Most
interesting, each standard control has a default style and template that defines its appear-
ance. When these resources are not overwritten (as you will see later in this chapter),
the default look and feel is used. There is a complete separation of functionality and
appearance.

For custom controls, you saw in Chapter 3, “Extending Your Application with Controls,”
how to define their default appearance in a file named Generic.xaml included in the
Themes folder. This is the same mechanism: The default style and template are resources
that can be overwritten to modify the control’s appearance.

Using Resources Set Later in the Markup
One limitation of the StaticResource markup extension is that it cannot “look forward”
in the elements tree. For example, in Figure 10.2, if a resource is defined in the Button, a
property of the Border cannot use it through StaticResource: When Border is parsed, the
Button’s resources are not available yet to the parser. The resources must be structured in a
way that prevents such “future reference” to occur.

Setting a Resource in Code
A resource can also be retrieved in code, by accessing a named element’s Resources prop-
erty directly. Similarly, the application’s resources can also be searched, as shown in
Listing 10.8.

LISTING 10.8 Accessing Resources in Code

1 public MainPage()

2 {

3 InitializeComponent();

4

5 TestButton.Background

6 = Resources[“LightColorBrush”]

7 as Brush;

8 TestButton.Foreground

9 = Application.Current.Resources[“MainTextBrush”]

10 as Brush;

11 }

. Lines 5 to 7 get a resource from the UserControl’s Resources property. If the resource
does not exist, no exception is thrown. The property will simply be set to null.

. Lines 8 to 10 get a resource from the application’s resources (defined or merged into
the App.xaml file).

Note, however, that there is no built-in way to “walk the tree” and find resources defined
in an element’s parent, or its parent’s parent, and so forth. In Silverlight 2 Unleashed,
Chapter 24, Listings 24.25 and 24.26 show how to implement an equivalent to the WPF

Working with Resources in XAML 255

1
0

 From the Library of Wow! eBook

ptg

method TryFindResource that walks the tree and attempts to find a resource in the same
way that StaticResource does. However, this recursive method can cause performance
issues in the application. If possible, using StaticResource in markup is a better strategy,
but it is not always possible.

Working with Resources in Blend
Expression Blend offers diverse features to facilitate operations on resources. When
working in XAML, it is not easy to keep an overview of all the resources available in an
application. Although Blend is not perfect yet and some resource management features
are missing, the team is constantly working to improve the application and help users.

Merging a Resource Dictionary
Expression Blend makes it easy to merge a resource dictionary into an element’s Resources
property, as follows:

1. Create a Silverlight application in Expression Blend.

2. Right-click the Silverlight project in the Projects panel, and select Add New Item
from the context menu.

3. Select a Resource Dictionary from the New Item dialog and name it
MainPageSkin.xaml.

4. When a new resource dictionary is added into an application, Blend automatically
merges it into the application’s resources. However, we do not want this here; so,
simply close the App.xaml file that Blend has opened, without saving.

5. Make sure that the MainPage.xaml is open and select the Resources tab in Blend.

6. Expand MainPage.xaml in the Resources tab and right-click the UserControl.

7. Expand Link to Resource
Dictionary in the context menu
and then select
MainPageSkin.xaml, as shown
in Figure 10.3.

This creates the same markup in
MainPage.xaml that you saw in
Listing 10.4, and is a convenient way
to merge multiple dictionaries. This
method also works with dictionaries
defined in referenced assemblies.

Resource dictionaries can also be merged into App.xaml or within another resource dictio-
nary with the same context menu. Also, note that you can delete a link to a resource
dictionary. To do this, expand the UserControl in the Resources tab, right-click the
resource dictionary you want to remove, and select Delete from the context menu.

CHAPTER 10 Creating Resources, Styles, and Templates256

FIGURE 10.3 Merging resource dictionaries in
Blend.

 From the Library of Wow! eBook

ptg

Creating New Resources
New resources can be created directly into Blend and saved to the resources of your choice
(local or external) as follows:

1. Set the Background property of the main Grid (named LayoutRoot) to a
LinearGradientBrush. If you are unsure how to do this, check Silverlight 2 Unleashed,
Chapter 4.

2. In the Properties panel, with
the LayoutRoot Grid selected,
locate the Background property
and click the small white peg
next to the brush’s preview. We
saw this peg in Figure 6.4 and
discussed its functionality.

3. Clicking the peg opens a
context menu. Select Convert
to New Resource from this
menu.

4. In the Create Brush Resource
dialog, enter a key for the new resource, and select a location to place it. This can be
the Application, the current document (in which case you can select an element
from the combo box as shown in Figure 10.4), or any resource dictionary merged
into the current XAML file. You can even create a new resource dictionary directly
from this dialog.

This functionality is not limited to brushes. New resources can be created for properties of
any type (as long as this type can be created in XAML), including styles and templates.

Selecting a Resource for a Property
The small advanced property peg allows selecting a resource for a given property: Locate
the property in question in the Properties panel, click the peg to open a context menu,
and then expand the Local Resources menu item. All the suitable resources from all the
linked resource dictionaries are listed. However, there is no way to filter resources by
name or to change the order in which they are sorted.

Using the Resources Panel
The way to manage resources in Blend is through the Resources panel. For example, if
MainPage.xaml is open, the Resources panel displays MainPage.xaml, App.xaml, and a
resource dictionary currently merged into MainPage.xaml and App.xaml. This offers a
convenient view of all the resources that might be used by the current document.

Although the Resources panel speeds up work with resources, it also has a few shortcom-
ings. For example, there is no way to search for a resource in this panel or to filter or sort
the resources.

Working with Resources in Blend 257

1
0

FIGURE 10.4 Creating a new resource.

 From the Library of Wow! eBook

ptg

If you are unsure where a resource is located, use the Find in Files dialog (Ctrl+Shift+F).
Also, when an element is selected in the Objects and Timeline panel, the small button
circled in red in Figure 10.5 can be toggled to display only the resources used by the
current element.

Editing Resources
Resources can be edited directly in the Resources panel.
Figure 10.5 shows the editor used to modify a brush, but
in fact many types of resources can be edited in this
panel directly.

Renaming Resources
One of the most convenient features of the Resources
panel is the ability to rename a resource and automati-
cally update all the StaticResource references to that
resource in the XAML markup. To do this, follow these
steps:

1. Locate the resource you want to rename in the
Resources panel.

2. Double-click the resource’s name and edit the
name as desired.

3. Press Enter.

4. Expression Blend displays a dialog shown in Figure
10.6. All the references to that particular resource
are shown. You can choose to:

. Update References: This is the most common
choice. Use this to automatically update all the
references to the new name.

. Break References: This choice replaces the
StaticResource extension by the explicit value
where it was used. For example, for a Background
property, the Brush is copied locally into the
control that used the old resource.

. Reset to Default Values: The properties that used
the old resource will simply be reset.

. Don’t Fix: The existing StaticResource will keep
using the old names. This is likely to break the
application, but might prove useful in some
scenarios.

CHAPTER 10 Creating Resources, Styles, and Templates258

FIGURE 10.5 Editing
resources in the Resources
panel.

FIGURE 10.6 Updating a
resource name.

 From the Library of Wow! eBook

ptg

If a resource is referenced in code (as you saw in Listing 10.8), it is not updated by Blend
when the resource is renamed. If the application is using resources in code, a search-and-
replace operation should be conducted.

Moving Resources
You can also use the Resources panel to move resources from one resource dictionary to
another. This can prove quite useful to organize the application’s resources in a more
convenient way (for example, by moving local resources to an external resource dictio-
nary).

To move a resource, just select it in the Resources panel, and then drag/drop it on the
target dictionary. You can also reorder resources within a single dictionary (for example,
grouping them by functionality).

Note that if a resource has XML comments for documentation purposes, they are not
moved together with the resource. Generally speaking, it is better to avoid XML
comments and to use meaningful resource names instead.

Cleaning Up Unused Resources
In large applications with many resources, a good way to improve the performance at
startup and the memory usage is to remove unused resources from the application.

In Silverlight, unlike in WPF, all resources are instantiated and placed into memory at the
time when they are parsed. For example, if the App.xaml file has multiple resource dictio-
naries merged into it, all the resources of all these dictionaries are created when the appli-
cation starts. For a page, the creation occurs when the page is displayed. This can cause
unnecessary delays. To improve this, analyzing your application’s resources and removing
the unused ones is a good practice.

Using the Pistachio Tool
The Pistachio tool was developed by Grant Hinkson and provides a visualization of XAML
resources for Silverlight and WPF. Pistachio analyzes a CSPROJ file and the entire included
XAML markup, and shows in which files each resource is used. It also helps to find
unused resources that can be deleted safely, improving the performance without causing
side effects in the application.

You can download Pistachio from http://www.galasoft.ch/sl4-pistachio. To install it,
just unzip the content to a folder on your hard drive. Then start Pistachio.exe.
To test the functionality, download a sample Silverlight application from
http://www.galasoft.ch/sl4-resources.

To find out unused resources, follow these steps:

1. With Pistachio running, select the CSPROJ file containing the XAML files that you
want to analyze.

2. Wait until the analysis is completed.

Cleaning Up Unused Resources 259

1
0

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-pistachio
http://www.galasoft.ch/sl4-resources

ptg

3. All the XAML files used in the application are shown, with a count of the resources
as shown in Figure 10.7 (circled in red). The left number indicates the total number
of resources; the right number is the number of used resources.

4. Select one of the XAML files. If a resource is used, its line can be expanded (as
shown in Figure 10.7) and Pistachio shows in which XAML files it is in use.

CHAPTER 10 Creating Resources, Styles, and Templates260

FIGURE 10.7 Pistachio.

Once an unused resource is located, it can be searched for in Visual Studio or in
Expression Blend and deleted. Unfortunately, the current version of Pistachio lacks the
ability to copy a resource name or to delete it directly from the tool. It does, however,
speed up the process of looking for unused resources and understanding where each
resource is used.

Styling a Control
As mentioned previously, there are a number similarities between Silverlight styles and
the CSS that HTML pages are using. A Style in Silverlight contains a series of Setter
elements, each with a dependency property name and a value. When the style is applied
to a suitable element, the dependency properties defined in the style will have their value
set correspondingly. One Style can be applied to multiple elements. However, in Chapter
5, “Understanding Dependency Properties,” we discussed the system of precedence used
to calculate the value of a dependency property. Styles are relatively low in the prece-
dence list, so it is possible that the value of a Setter is overridden by another value of
higher precedence.

 From the Library of Wow! eBook

ptg

Styles were already discussed in Silverlight 2 Unleashed, especially in Chapter 17, in the
“Styling a Control” section. In this chapter, we concentrate on the additions made to the
styling system in Silverlight 3 and 4.

Using Implicit Styles
Silverlight 4 introduces the possibility to create implicit styles. These styles are defined in
resources like any other standard style, but they do not have a key, only a TargetType
property. When an implicit style is available in the hierarchy of resources for a given
control type (for example, a Button), it will automatically be applied to this control.

Although implicit styles can be handy to create a default look and feel for elements of an
application, they also have a few inconveniencies:

. When implicit styles are applied, it can be really hard to find out where a given
value comes from. This can make a designer’s life really hard when he tries to
“debug” a user interface and find out why the elements do not look like they
should.

. In Silverlight, an implicit style cannot be used as the base for another style. (We will
talk about BasedOn styles a little later in this chapter.) It is therefore impossible to
define an implicit base style for all controls of a given type and then to refine a
derived style for some of these controls.

For these reasons, implicit styles should be used with care in Silverlight.

Creating an Implicit Style in Blend
Expression Blend can be used to create an implicit style for a control, as follows:

1. Open a Silverlight application in Blend.

2. In the MainPage, add a Button control.

3. Make sure that the Button is selected in the Objects and Timeline panel, and then
select Object, Edit Style, Create Empty from the menu.

4. In the Create Style Resource dialog, do not enter a key, but select the Apply to All
radio button instead.

5. Select a location for the new implicit style and click OK.

Typically, implicit styles are placed in global resources (either in App.xaml, or in a
resource dictionary that is merged into App.xaml) and thus made available for the whole
application. An implicit style will be applied to a control only if the resource is “visible”
from this control’s location (through the hierarchy of resources that we discussed earlier
in this chapter) and if no explicit style has been defined for that control.

Styling a Control 261

1
0

 From the Library of Wow! eBook

ptg

Creating a Default Template
As mentioned, a Setter can be used to set any dependency property of an element,
including the Template property, as shown in Listing 10.9.

LISTING 10.9 Implicit Style and Template

1 <Application.Resources>

2 <ControlTemplate x:Key=”ButtonControlTemplate”

3 TargetType=”Button”>

4 <Grid x:Name=”Root”>

5 <Ellipse x:Name=”BackgroundEllipse”

6 Fill=”#FF930000”

7 Stroke=”#FFFF6B00”

8 StrokeThickness=”3” />

9

10 <ContentControl Content=”{TemplateBinding Content}”

11 VerticalAlignment=”Center”

12 HorizontalAlignment=”Center”

13 Foreground=”#FFFF6B00”

14 FontFamily=”Showcard Gothic”

15 FontSize=”16” />

16 </Grid>

17 </ControlTemplate>

18

19 <Style TargetType=”Button”>

20 <Setter Property=”Template”

21 Value=”{StaticResource ButtonControlTemplate}” />

22 <Setter Property=”Cursor”

23 Value=”Hand” />

24 </Style>

25 </Application.Resources>

. The Style and ControlTemplate are placed into the application resources. This makes
them global to the whole application. Unless they are overriden, this default look
and feel will be used for all Button controls in the application.

. The ControlTemplate is defined before the Style. This is necessary, because a
StaticResource is used on line 21 to set the Template property. As mentioned earlier,
StaticResource can refer only to already parsed resources.

. Note that to keep things simple, this ControlTemplate does not specify any transi-
tions from a state to another. In a real template, the XAML markup would be more
complex.

. On line 19, the Style element is configured for a TargetType of Button. However, no
key is entered. This is the only occasion where an element can be set in resources
without a key. That makes it an implicit style.

CHAPTER 10 Creating Resources, Styles, and Templates262

 From the Library of Wow! eBook

ptg

Figure 10.8 shows a series of Button controls.
Although they all use the same implicit Style and
ControlTemplate, their Height, Width, and position are
set individually.

Creating a Hierarchy of Styles
A welcomed addition in Silverlight 3 was the possibil-
ity to base a style on another style, using the BasedOn
property. This provides the possibility to create a base
style for a control and then to refine it for various
parts of the application. As mentioned earlier,
however, an implicit style cannot be used as base
style in Silverlight.

The BasedOn property can be set through a StaticResource as shown in Listing 10.10. In
theory, there is no limitation to the depth of the hierarchy, but in practice it makes sense
to avoid too many levels. Defining one basic Style and then one or two levels of refine-
ment should suffice.

LISTING 10.10 Basing a Style on Another One

1 <ControlTemplate x:Key=”ButtonControlTemplate”

2 TargetType=”Button”>

3 <Grid>

4 <Ellipse Fill=”{TemplateBinding Background}”

5 Stroke=”{TemplateBinding BorderBrush}” />

6

7 <ContentControl Content=”{TemplateBinding Content}”

8 VerticalAlignment=”Center”

9 HorizontalAlignment=”Center”

10 FontFamily=”{TemplateBinding FontFamily}”

11 FontSize=”{TemplateBinding FontSize}”

12 Foreground=”{TemplateBinding Foreground}” />

13 </Grid>

14 </ControlTemplate>

15

16 <Style x:Key=”ButtonStyle”

17 TargetType=”Button”>

18 <Setter Property=”Template”

19 Value=”{StaticResource ButtonControlTemplate}” />

20 <Setter Property=”Background”

21 Value=”Red” />

22 <Setter Property=”BorderBrush”

23 Value=”#FFF9A200” />

24 <Setter Property=”Foreground”

25 Value=”#FFF9A200” />

Styling a Control 263

1
0

FIGURE 10.8 Buttons with
implicit Style and
ControlTemplate.

 From the Library of Wow! eBook

ptg

26 <Setter Property=”FontSize”

27 Value=”18” />

28 <Setter Property=”FontFamily”

29 Value=”Showcard Gothic” />

30 </Style>

31

32 <Style x:Key=”ButtonDerivedStyle”

33 TargetType=”Button”

34 BasedOn=”{StaticResource ButtonStyle}”>

35 <Setter Property=”Background”

36 Value=”#FF1800FF” />

37 <Setter Property=”FontFamily”

38 Value=”Snap ITC” />

39 <Setter Property=”FontSize”

40 Value=”24” />

41 </Style>

. The first Style defines a ControlTemplate and a set of properties defining the look
and feel of a Button control. Note how, in the ControlTemplate, the TemplateBinding
markup extension is used (for example, on line 4). This allows reusing the same
template with different properties, when these are overridden in a derived Style.

. The second Style on lines 32 to 41 is based on the first Style (as set on line 34) and
overrides the properties Background, FontFamily, and FontSize.

. Figure 10.9 shows two Button controls. The top one uses the
first Style, while the second one uses the derived Style.

Creating a New Style in Blend
Expression Blend facilitates the creation of new styles for a given
control, with the following steps:

1. In a Silverlight application, use local properties to give the
control the desired look and feel.

2. When you are satisfied with this, create a new style by select-
ing Object, Edit Styles, Create Empty from the menu.

3. In the Create Style Resource dialog, enter a name for the new style, and place it
within the current document.

4. Note that the Objects and Timeline panel now shows the Style, and not the UI
elements hierarchy anymore. Any change you make in the Properties panel now
applies to the Style, and not directly to the control.

5. Set Blend in split mode, using the button shown in Figure 2.16 (back in Chapter 2,
“Setting Up and Discovering Your Environment”).

CHAPTER 10 Creating Resources, Styles, and Templates264

FIGURE 10.9
Base and derived
styles for Button
controls.

 From the Library of Wow! eBook

ptg

6. Locate the control to which the Style is applied in the XAML markup.

7. Start moving the values from the control to the Style. For example, if the Height is
set on the control directly, find the Height property in the Properties panel. Then
click the Advanced Property Options peg and select Convert to Local Value from the
context menu.

The last step creates a new Setter element in the Style for the Height property; it also
removes the local Height attribute from the control. The value is now set through the
Style, and not locally anymore. Repeat Step 7 until all the properties you want to move
are now located within the Style. Note that some properties might need to remain local
into the control element. Also, you might want to create a hierarchy of styles using the
BasedOn property that was discussed earlier in this chapter.

Templating a Control 265

1
0

T I P

In-Place or Out-of-Place Editing

Expression Blend does a great job editing controls when the style is located in the same
document as the control it gets applied to. This allows “in-place editing,” changing the
appearance of the control in its context, next to all the other controls in the page, and with
the background brush of the panel it is contained into.

When the style is located in an external resource dictionary, however, “out-of-place editing” is
happening, and the control appears out of its context. This is much less convenient. To solve
this, temporarily move the style from the external resource dictionary into the XAML file
where the control is located. After the editing is done, you can move the style back where it
belongs. This can be complicated and requires a lot of care.

Templating a Control
When a control’s appearance should be changed radically, setting properties is not suffi-
cient for the job. Instead, the ControlTemplate should be edited. Silverlight 2 Unleashed
shows how to edit a relatively simple template, a CheckBox control into Expression Blend
(Chapter 17, in the “Templating the Lookless Control” section). In the present chapter,
you’ll learn how to template a much more complex control, the Scrollbar. Then, we will
see how to use a new feature of Expression Blend (introduced in Blend 3) allowing creat-
ing a control out of existing elements in the page.

Copying a Template in Blend
As mentioned before, the Silverlight framework comes with default styles and templates
for all the controls it includes. This is the same for the Silverlight Toolkit and for any
third-party controls set.

Creating a new template for a given control requires understanding the states and parts
that this control presents. We already talked about this in Chapter 3. Creating a new

 From the Library of Wow! eBook

ptg

template involves exposing the parts that the control will use to hook event handlers.
In addition, a designer will create transitions between the states to improve the user
experience.

Although it is possible to create a new control template completely in Visual Studio, it is a
rather complex task. Expression Blend is the best-suited tool for the job, thanks to its
ability to copy an existing template and modify it.

Checking Which States and Parts a Control Exposes
The states and parts are defined by attributes set on the class. You can learn how a control
is built by checking the control’s documentation in MSDN. For example, the Silverlight 4
Scrollbar control is documented at http://www.galasoft.ch/sl4-scrollbar. On this page, the
states and the parts are documented as shown in Listing 10.11.

LISTING 10.11 States and Parts for the Scrollbar Control

[TemplateVisualStateAttribute(Name = “Disabled”, GroupName = “CommonStates”)]

[TemplatePartAttribute(Name = “HorizontalRoot”, Type = typeof(FrameworkElement))]

[TemplatePartAttribute(Name = “HorizontalLargeIncrease”, Type =

typeof(RepeatButton))]

[TemplatePartAttribute(Name = “HorizontalLargeDecrease”, Type =

typeof(RepeatButton))]

[TemplatePartAttribute(Name = “HorizontalSmallDecrease”, Type =

typeof(RepeatButton))]

[TemplatePartAttribute(Name = “HorizontalSmallIncrease”, Type =

typeof(RepeatButton))]

[TemplatePartAttribute(Name = “HorizontalThumb”, Type = typeof(Thumb))]

[TemplatePartAttribute(Name = “VerticalRoot”, Type = typeof(FrameworkElement))]

[TemplatePartAttribute(Name = “VerticalLargeIncrease”, Type = typeof(RepeatBut-

ton))]

[TemplatePartAttribute(Name = “VerticalLargeDecrease”, Type = typeof(RepeatBut-

ton))]

[TemplatePartAttribute(Name = “VerticalSmallIncrease”, Type = typeof(RepeatBut-

ton))]

[TemplatePartAttribute(Name = “VerticalSmallDecrease”, Type = typeof(RepeatBut-

ton))]

[TemplatePartAttribute(Name = “VerticalThumb”, Type = typeof(Thumb))]

[TemplateVisualStateAttribute(Name = “Normal”, GroupName = “CommonStates”)]

[TemplateVisualStateAttribute(Name = “MouseOver”, GroupName = “CommonStates”)]

public sealed class ScrollBar : RangeBase

Based on this listing, we learn a great deal about the control. For example, there are two
different templates: one used for the Scrollbar in vertical orientation, and the other used
when the Scrollbar is horizontal. We also learn that the horizontal template is composed
of a root (of type FrameworkElement), four RepeatButton controls, and a Thumb control (the
central element that can be dragged to modify the value).

CHAPTER 10 Creating Resources, Styles, and Templates266

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-scrollbar

ptg

Because the RepeatButton and Thumb control also have a default template, we can already
foresee that creating a new template for the Scrollbar will also require new templates for
these parts.

Copying the Template
A good way to start creating a new control template for a complex control is by copying
and modifying the default template. You can do so easily in Expression Blend, as follows:

1. Create a new Silverlight application in Expression Blend and name it
ScrollbarTemplateSample.

2. In the Assets tab, select a Scrollbar control and position it
in MainPage.xaml. Note that the Scrollbar is vertical by
default. Figure 10.10 shows the default appearance.

3. Right-click the control and select Edit Template, Edit a
Copy from the context menu. A different option is to start
with an empty control template. This, however, requires
understanding already how the control works with its parts.

4. In the Create Style Resource dialog, enter the name
MyCustomScrollbarStyle and click OK.

Blend displays the new ControlTemplate that was just
created and applied to the Scrollbar through the Style. No
differences are visible on the screen because this is an exact
copy of the default style and template. Figure 10.11 shows
the vertical template expanded in the Objects and Timeline
panel. A similar set of elements is
available in the HorizontalRoot grid.
Notice the small icon next to
VerticalRoot, VerticalSmallDecrease,
and other elements. This means that
the element has been set as a part for
this control. The names match the
ones set through the
TemplatePartAttribute in Listing
10.11. These parts have a special
meaning for the control: For example,
a Click event will be hooked to the
VerticalSmallDecrease RepeatButton

control.

5. Right-click the VerticalSmallDecrease
element in the Objects and Timeline
panel.

Templating a Control 267

1
0

FIGURE 10.10
Scrollbar default
template.

FIGURE 10.11 VerticalRoot grid and its
elements.

 From the Library of Wow! eBook

ptg

6. Select Edit Template from the
context menu. Notice that the
menu item titled Edit Current is
now available. This is because
Blend didn’t just copy the
template for the Scrollbar, but
also the template used by each
part. In fact, if you check the
XAML markup now, you will see
that the copied style and all the
templates represent about 660
lines of XAML.

7. Select Edit Current from the
context menu. Blend now displays
the RepeatButton control template
in the Objects and Timeline panel.

8. Select the States panel in Blend.

9. On top of this panel, just below the pin and close
buttons, click the button Turn on Transition Preview
button (shown in Figure 10.12).

10. Select the Rectangle named BackgroundMouseOver in the
Objects and Timeline panel.

11. Select the Normal state in the States panel, and then the
MouseOver state. Notice how this Rectangle’s Opacity
property changes from 0% to 100% in the Properties panel.

12. Click the small arrow and plus
sign (+) next to the Normal state,
and select the Normal ➞
MouseOver transition, as shown
in Figure 10.13.

13. In the newly added transition, set
a duration (for example, 0.2s, as
in Figure 10.14).

14. Click the small EasingFunction button on the left of the duration text box. This is
where you can select how the transition is played by Silverlight. By default, a linear
transition is used, but you can select an acceleration or a deceleration for this transi-
tion. For example, Figure 10.14 shows a Cubic acceleration being selected.

15. Click the Normal state, and then click the MouseOver state. Observe how the transi-
tion is played by Blend. This allows you to select exactly which experience you want
to create.

CHAPTER 10 Creating Resources, Styles, and Templates268

T I P

Setting the Template Through a Style

Expression Blend does not set the Template
property of the Scrollbar directly, but
instead creates a new Style with a Setter
for this property. This is a good practice
enabling designers to modify templates in an
external resource dictionary without having to
modify the MainPage.xaml file. Also, hooking
the template through the style makes
working visually in Blend much easier
because changes to the style will automati-
cally be visible on the template through the
TemplateBinding elements.

FIGURE 10.12
Turning on the transition
preview.

FIGURE 10.13 Adding a transition.

 From the Library of Wow! eBook

ptg

16. With the MouseOver state selected, modify the appearance of the RepeatButton
to match the design that you want to implement. Blend records all the changes
and creates an extrapolated transition matching the duration that was entered in
Step 13.

Templating a Control 269

1
0

FIGURE 10.14 Setting the transition duration and selecting an EasingFunction.

By editing all the templates and all the states/transitions in the Scrollbar control, you
can completely modify its appearance. This is a long process that a designer (or what the
Silverlight community calls an integrator; that is, someone sitting between a designer and
a developer, and using Blend as his main tool) usually performs. Expression Blend helps a
lot by displaying the visual representation of the control at all stages. Having at least one
person on the team with a good knowledge of Blend is recommended if a custom user
experience is desired.

Creating a Custom Easing Function
It is easy to implement a custom easing function with the following steps:

1. In the application, add a new class and name it MyOwnEasingFunction. You can
do this in Expression Blend or in Visual Studio.

2. Modify the new class as shown in Listing 10.12. The custom function returns a
power of the duration. The Factor property specifies which power will be used. Note
that to use the EasingFunctionBase base class, you must add a using directive to
System.Windows.Media.Animation.

3. Build your application, and then select the EasingFunction button shown in Figure
10.14.

4. Scroll to the bottom of the list. The new function should be visible.

5. Select the figure in the In column.

6. Modify the Factor property. Blend updates the
preview of the function according to the value
entered, as shown in Figure 10.15. This allows
fine-tuning the transition.

FIGURE 10.15 Setting up the
custom easing function.

 From the Library of Wow! eBook

ptg

LISTING 10.12 Custom Easing Function with a Property

public class MyOwnEasingFunction : EasingFunctionBase

{

public double Factor

{

get; set;

}

protected override double EaseInCore(double normalizedTime)

{

return Math.Pow(normalizedTime, Factor);

}

}

Making a Control in Blend
Another way to create a custom control template is to use the Make Into Control function
available since Expression Blend 3. For example, a simple horizontal Slider control is easy
to implement with the following steps:

1. Create a new Silverlight application in Expression Blend, name it
SliderTemplateSample and open MainPage.xaml.

2. Create a horizontal Grid; set its Height to 30 and its Width to 450.

3. Create three columns in the Grid. Set the first column’s Width to Auto, the second
column’s Width to 30 pixels, and the last column’s Width to 1 Star. When you set the
first column’s Width to Auto, make sure that its MinimumWidth property is set to 0.

4. In the new Grid, create a thin Rectangle and set its Fill property to Gray, Height to
4 pixels, Width to Auto, Column to 0, ColumnSpan to 3, HorizontalAlignment to Stretch,
VerticalAlignment to Center, and the Margin to 0.

5. In the same Grid, create an Ellipse and set its Fill property to Blue, Height and
Width to Auto, Column to 1, ColumnSpan to 1, HorizontalAlignment and
VerticalAlignment to Stretch, and Margin to 0.

6. Add a RepeatButton (available from the Assets tab, in the Controls/All category) to
the first cell of the Grid. Set its Opacity to 0%, Column to 0, ColumnSpan to 1,
HorizontalAlignment and VerticalAlignment to Stretch, and Margin to 0.

7. Add another RepeatButton to the last cell of the Grid. Set its Opacity to 0%, Column
to 2, ColumnSpan to 1, HorizontalAlignment and VerticalAlignment to Stretch, and
Margin to 0.

8. In the Objects and Timeline panel, right-click the new Grid and select Make into
Control from the context menu.

CHAPTER 10 Creating Resources, Styles, and Templates270

 From the Library of Wow! eBook

ptg

The resulting group should look
like Figure 10.16. The next step is
to turn this Grid and its children
into a Slider control, and to
assign the parts, as follows:

9. In the Make into Control dialog,
select a Slider control and enter the name MySliderStyle. As before, Blend creates a
Style and set the Template property through a Setter.

10. Right-click the Grid and select Make into Part of Slider, HorizontalTemplate from the
context menu.

11. Right-click the first RepeatButton and select Make into Part of Slider,
HorizontalTrackLargeChangeDecreaseRepeatButton from the context menu.

12. Right-click the second RepeatButton and select Make into Part of Slider,
HorizontalTrackLargeChangeIncreaseRepeatButton from the context menu.

13. Right-click the Ellipse and select Make into Part of Slider, HorizontalThumb from
the context menu.

14. In the Make into Part dialog, enter the name MyHorizontalThumbStyle for the
Thumb’s Style, and click OK.

With Steps 13 and 14, Blend creates a new ControlTemplate for the Thumb control. This is
why the procedure was slightly different than for both RepeatButton elements and for the
Grid.

Blend’s scope is now set into the Thumb template; return the scope to the MainPage by
clicking twice on the “return scope” button (just below the Objects and Timeline panel
title). The page now displays a Slider control where before the new Grid and its children
were located. You can set the Slider’s properties, such as the Maximum, Minimum, and Value.
The Thumb control (templated as a blue Ellipse) moves according to these values. In addi-
tion, the application can be run and the Thumb be dragged to modify the Slider’s Value.

Applying a Theme
Microsoft provides a number of themes that can be applied to an application. These
themes are available in the Silverlight toolkit at http://www.galasoft.ch/sl4-themes.

Applying a theme to the whole appli-
cation or to selected parts is easy
following the indications provided on
the themes’ home page. Figure 10.17
shows 3 of the currently 11 available
themes side by side: Expression Dark,
Bubble Cream, and Rainier Orange.

Applying a Theme 271

1
0

FIGURE 10.16 Grid and children.

FIGURE 10.17 Three different themes.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-themes

ptg

Using a theme for a Silverlight application can be a good compromise when a designer is
not available or when Expression Blend cannot be used to create a custom user experi-
ence. In addition, Microsoft regularly releases new themes in the latest versions of the
Silverlight toolkit, which makes it really easy to change the application’s appearance at
less cost.

Summary
This chapter provided an overview of a Silverlight integrator’s work with Visual Studio
and especially Expression Blend.

First, we discussed resources and the new functionalities in Silverlight 3 and Silverlight 4,
such as the ability to use external resource dictionaries, either in the same assembly or in
an external DLL. You saw how resources are resolved in XAML and in code. Then we took
a good look at resources in Expression Blend, a tool that offers a lot of helper functions to
make this process easier.

We finished our overview of resources with the tool Pistachio, which helps to clean up
unused resources and thus speeds up the startup of Silverlight applications and the
opening of new pages.

Later, we talked about styles, in particular the new functions in Silverlight 3 and 4. The
ability to create a hierarchy of styles with the BasedOn property was introduced in
Silverlight 3. The implicit styles were added in Silverlight 4, and you saw how to use them
to create a default look and feel for a type of controls.

Next, we discussed control templates, and how to copy a default template in Expression
Blend to modify its parts and the transitions between the states. We also discussed how to
create custom easing functions to animate the transitions according to any mathematical
function. Finally, you saw how to use the Make into Control function introduced in
Blend 3 to create a brand new Style and ControlTemplate for a control.

In the last section, we talked about the themes provided in the Silverlight toolkit that
provide a way to change the appearance of an application. Although not allowing
advanced customization of the user interface, it can be very useful for applications where
a graphics designer or an integrator is not available.

In the next chapter, we continue our exploration of Blend and discuss advanced tech-
niques to improve the Silverlight application user experience.

CHAPTER 10 Creating Resources, Styles, and Templates272

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Understand what Expression
Blend is and why using it is
necessary sometimes.

. See how an application can
be made “blendable,” that is,
how it can be developed to
improve the experience in
Expression Blend to the
maximum.

. Talk about design time data
and why it is important to
improve the designer-devel-
oper workflow.

. Use and implement Blend
Triggers, Actions and
Behaviors.

CHAPTER 11

Mastering Expression
Blend

In Chapter 10, “Creating Resources, Styles, and
Templates,” you saw how Expression Blend can be used to
visually design styles and templates applied to controls and
to manage resources. Blend is a fantastic visual tool, very
different from the Visual Studio designer experience that
“classic” application developers are used to (for example, in
Windows Forms or ASP.NET technologies).

In this chapter, we take a deeper look at Expression Blend,
and you’ll learn some of the techniques that user experi-
ence integrators have developed in their profession.

To setup Expression Blend and its options, refer to
Silverlight 2 Unleashed, Chapter 4.

 From the Library of Wow! eBook

ptg

What Is Blend, Exactly?
The position of Expression Blend in the designer-
developer workflow is somewhat in the middle, as
shown in Figure 11.1. Even though Blend was initially
intended as a designer tool, it is fair to say that many
developers are using it nowadays.

Working as a Tool for Integrators
In fact, many firms specializing in Silverlight develop-
ment adopt a new role between the designer and the
developer, dubbed the integrator, user experience devel-
oper, or production designer. Often, this role is fulfilled by a part-time developer with a
good eye for design or by a part-time designer with a strong interest in code.

The integrator sits between the traditional designers and the developers and uses his skills
to enhance the communication between these two very different professions. Expression
Blend sits similarly between the designers’ classic tools (such as Adobe Photoshop) and
the developers’ development environment (such as Visual Studio): It is used to visually
design a client application, but it can also edit code, build and run the application, create
simulated data, and so forth.

The tools that designers traditionally use to create comps are static and create deliverables
that are completely separate from the final application. This used to make the process of
integrating the visual assets (brushes, icons, shapes, and so on) cumbersome and difficult:
The developer needs to run the application often to visualize the latest changes, which
takes a lot of time, especially if he is working on a page that requires multiple steps to be
displayed. Connecting the application to live data is not always possible in the develop-
ment stage, either because it is too slow or because the services don’t exist yet when the
client is developed. In all these situations, Blend is an invaluable tool to assist the devel-
oper, the designer, and of course, the integrator.

Editing XAML Markup
Most important, the output that Blend creates is XAML markup. There is nothing hidden;
every single tag and property can be visualized in the XAML editor (in Blend, in Visual
Studio or even in Notepad) and modified manually if needed. In fact, Blend and Visual
Studio work with the exact same files (SLN file for the solution, CSPROJ files for the C#
projects, XAML and CS files for the markup and the code, and so on). The same project
can be opened in Blend and in Studio at the same time, and you can switch from one
environment to the other depending on the task at hand.

When Should You Use User Controls?
In Chapter 3, “Extending Your Application with Controls,” you saw the difference
between custom controls and user controls. The latter are typically used to separate a page is
smaller, more manageable units. It is a good practice to split the application in smaller
files and to edit these separately if possible.

CHAPTER 11 Mastering Expression Blend274

FIGURE 11.1 Expression
Blend, between Photoshop and
Visual Studio.

 From the Library of Wow! eBook

ptg

Making an Application Blend
Silverlight applications work with data. There is a multitude of kinds of data, a thousand
ways to represent this data, and a large number of possible data sources. For example, a
video stream coming from a streaming server acts very differently than an XML docu-
ment with customer information. During the integration process, Expression Blend will
attempt to load and execute some of the code from the Silverlight application. In some
cases, Blend is able to load the data and to display it correctly, as you already saw in
previous chapters using the MVVM pattern.

In other cases, however, Blend fails at
showing data. For example, sometimes
the code behind is not executed at all, as
you will see later in this chapter. Other
sections of the code may cause an
exception when run in the context of
Expression Blend. In those cases, it is
impossible to design the screens visually.
We say that the application is not blend-
able anymore.

Why Is Some Code Not Executed?
Even though Expression Blend loads and runs the XAML markup and some of the
Silverlight code, the code behind of the user control that is being edited (the code file
that is attached to most XAML files) is ignored by Blend (although Blend executes the
code-behind when the control is used as part of another user control). If, for instance, a
collection of items is exposed as a user control’s property, initialized in the constructor,
and data bound to a ListBox in XAML, the view will remain empty in Blend when the
parent user control is being edited because the items are never created. Similarly, depen-
dency properties in the edited user control’s code-behind are not initialized.

This implementation choice can seem weird, but it prevents many issues (for example,
when code-behind is used to trigger animations that would cause the user interface to get
into an unwanted state in Expression Blend).

Why Does Some Code Fail?
Other code is, however, executed by Expression Blend:

. Custom controls are instantiated; their constructor and any method that it uses are
run by Expression Blend.

. The resources placed in a page or a control are created by Blend. Here, too, the
constructor is executed, as well as any methods that it uses.

. If a data binding uses a converter (as in Chapter 6, “Working with Data: Binding,
Grouping, Sorting, and Filtering”), the Convert (or the ConvertBack) method is
executed when the binding is evaluated.

Making an Application Blend 275

1
1

T I P

Using the Visual Studio Designer

Because the Visual Studio designer shares
much of its architecture with Expression
Blend, the restrictions, patterns, and
workarounds that are exposed here also
apply to this editor.

 From the Library of Wow! eBook

ptg

In certain conditions, it is possible that this code causes an exception in Expression Blend
but not when the application runs standalone. When Blend loads the application’s code
into its own context, some calls do not work the same. For instance, Blend does not allow
calling a web service (such as Windows Communication Foundation, WCF) or executing
web requests (through the WebClient class). Such code will cause an exception in the
designer, as shown in Figure 11.2. There are other operations that will cause a similar
exception in the design surface. All can be traced to the same cause: The context in which
Blend executes the code is different from the runtime.

CHAPTER 11 Mastering Expression Blend276

FIGURE 11.2 Exception in Blend’s design surface.

Detecting the Cause of an
Exception
To make the application blendable again
(that is, to avoid the exception on the
design surface), it is necessary to detect
what code caused it, just as we would do
when the application runs in the web
browser. However, Expression Blend
does not offer a debugger like Visual
Studio does.

To find the cause of the error, we will
take advantage of the fact that Blend is a
WPF application and that the Visual
Studio debugger can be attached to
other processes, as the following steps
show:

1. Close the page that is causing the
exception in Blend.

T I P

Setting an Image’s Source Property

Even though Blend cannot execute web
requests, an image’s Source property may
be set to a web URI, which will cause it to be
downloaded and displayed on the design
surface. This does not cause an error.

T I P

Opening a Closed Panel in Blend

If an Expression Blend panel mentioned in
this chapter (such as Assets, Objects and
Timeline, Properties, and so on) isn’t visible,
you can reopen it through the Window menu.

 From the Library of Wow! eBook

ptg

2. (If the project was not open in Studio already) In Blend’s Projects panel, right-click
the Solution and select Edit in Visual Studio from the context menu. This starts
Visual Studio and opens the exact same Solution and projects in Studio.

3. In Visual Studio, select Debug, Attach to Process. This opens the dialog shown in
Figure 11.3.

Making an Application Blend 277

1
1

FIGURE 11.3 The Attach to Process dialog.

4. Locate the instance of Blend that has the exception. If you see multiple processes
named Blend.exe, take a close look at the title to make sure that you select the
correct one.

5. Make sure that the debugger is configured to be attached to Silverlight code. If this
is not the case, click the Select button and choose Silverlight in the Debug These
Code Types box.

6. Click the Attach button.

7. Set a few breakpoints in the code. If you use the MVVM pattern we discussed in
Chapter 7, “Understanding the Model-View-ViewModel Pattern,” a good entry point
is the view-model’s constructor. If your XAML page uses converters, you can also
place a breakpoint in the Convert and ConvertBack methods. If there are custom
controls on the page, and you have access to their code, place a breakpoint in the
control’s constructor, too.

8. Return to Expression Blend and open the page that was throwing the exception.
This will cause the execution to break in Visual Studio. You can then debug the code
step by step using the F10 and F11 keys. You can also inspect variables and proper-
ties and so forth.

 From the Library of Wow! eBook

ptg

This technique requires a bit of intuition and can be a kind of detective work, but at least
it provides a modern debugging tool to assist you.

Isolating Code in Design Mode
After the offending code has been detected, it needs to be isolated in design mode. The
Silverlight framework provides a convenient utility class to do this: the
DesignerProperties class and its IsInDesignTool static property, as shown in Listing 11.1.

LISTING 11.1 Using the IsInDesignTool Property

1 public class MainViewModel : ViewModelBase

2 {

3 public const string HtmlStringPropertyName = “HtmlString”;

4 private string _html;

5

6 public string HtmlString

7 {

8 get { return _html; }

9

10 set

11 {

12 if (_html == value)

13 {

14 return;

15 }

16

17 _html = value;

18 RaisePropertyChanged(HtmlStringPropertyName);

19 }

20 }

21

22 public MainViewModel()

23 {

24 if (DesignerProperties.IsInDesignTool)

25 {

26 HtmlString = “<div>This is design time</div>”;

27 }

28 else

29 {

30 var client = new WebClient();

31 client.DownloadStringCompleted += (s, e) =>

32 {

33 HtmlString = ParseHtmlString(e.Result);

34 };

35

36 client.DownloadStringAsync(

CHAPTER 11 Mastering Expression Blend278

 From the Library of Wow! eBook

ptg

37 new Uri(“http://www.galasoft.ch”));

38 }

39 }

40

41 private string ParseHtmlString(string html)

42 {

43 // ...

44 }

45 }

. This class is a view-model, as you saw in Chapter 7. However, the code used to make
this class blendable can also be used in other classes, such as converters or custom
controls.

. On lines 3 to 20, a bindable property is declared. In XAML, a text element (for
example, the Text property of a TextBox) can be data bound to the HtmlString prop-
erty. The UI will automatically be updated when HtmlString is changed.

. In the MainViewModel constructor on line 24, we check whether the code is running
in Expression Blend or the Visual Studio designer. The
DesignerProperties.IsInDesignTool property returns true if that is the case.

. On line 26, the HtmlString property is set to a dummy string. We talk about design-
time data. This is the data that will be displayed in the design surface, and which
will help the designer to visualize the changes that he is making.

. On lines 30 to 37, the WebClient class is used to fetch the content of a URL from the
Web. This code would cause an error if run into Expression Blend. This is why it is
isolated this way.

Note that to keep things simple, the ParseHtmlString method is not implemented here.

Improving the Separation
This implementation is handy for small applications because it rapidly provides design
data for the integrator working in Blend. However, mixing design data (as we did on line
26 of Listing 11.1) with the runtime implementation is not very clean.

Instead, a cleaner implementation would use a high-level service abstracted by an inter-
face (such as the ICustomerServiceProxy in Listing 7.6) and injected into the view-model’s
constructor (as in Listing 7.10).

Because the view-model knows only the interface and not the actual implementation of
the service, it is easy to build a design time version of the service that does not cause the
exception in Blend. This technique is very powerful because it allows creating any kind of
data in code and provides a very lifelike visualization on Blend’s design surface. For more
information and a sample, check this author’s session at MIX 2010
(http://www.galasoft.ch/sl4-mix10).

Making an Application Blend 279

1
1

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-mix10

ptg

Creating Design Time Data in Blend
Creating a design-time service and passing it to the view-model works great when the
data is quite complex. It does, however, require a developer to write code and takes some
time to set up. Although it is very clean and creates a wonderful separation of concerns, it
is not always applicable for a simple application, or when the team of developers is very
busy with other tasks.

To solve this, Expression Blend 4 offers the possibility to create design-time data in three
different ways.

Creating Design Time Data Manually
If the objects Blend needs to simulate at design time are fairly simple, the data can be
created manually as follows:

1. Create a new application and name it DesignTimeDataSample.

2. Click the Data panel in Blend.

3. Click the small button on the top right of the Data panel showing a database with a
plus sign (+). There are two such buttons; select the one circled in red in Figure 11.4.

4. From the context menu, select New Sample
Data.

5. In the New Sample Data dialog, enter a name
for the sample data source.

6. Choose where the sample data should be
added. You can choose either the Project (in
which case the sample data will be available in
the whole application) or This Document (in
which case it will be local to the current XAML file).

7. If the design-time data should also be used at runtime, check the Enable Sample
Data When Running check box. This is useful when the runtime data is not avail-
able yet but you want to test the application and visualize data in the UI anyway.
For now, leave the check box checked.

A new sample data source appears
in the Data panel, as shown in
Figure 11.5.

The sample data source currently has one
collection. Each item in this collection has
two properties by default. The first (named
Property1) is a string, and the second
(Property2) is a Boolean. To add a new prop-
erty to the collection, follow these steps:

CHAPTER 11 Mastering Expression Blend280

FIGURE 11.4 Creating new
sample data.

FIGURE 11.5 New sample data source.

 From the Library of Wow! eBook

ptg

1. Click the small arrow (circled in red in Figure 11.5) and open the menu.

2. You can select a simple property, a complex property (for example, to simulate an
object containing other properties), or a collection of properties (to simulate arrays
or lists). This allows you to simulate any kind and shape of data. For now, select a
simple property.

3. Name the property Birthday.

4. Click the small ABC icon (the one that shows Change Property Type when you
hover over it). This opens another menu in which the property can be configured.
The following types are available:

. String: Creates a text property in various formats: Lorem ipsum (random text),
Address, Color, Company Name, Date, Email, Name, Phone Number, Price, Time,
URL. For random text, the number of words and the maximum length of each word
can also be specified.

. Number: Generates a number according to the digits (length) specified. For
example, a length of 2 creates numbers between 10 and 99.

. Boolean: Generates true or false at random.

. Image: Selects a random image from a folder. If no custom folder is specified, Blend
adds a number of stock images to the project.

5. In this case, select the String type and change its format to be a Date.

6. Double-click the property name Property1 and change this to CustomerName.
Then change the type of this string property to be a Name.

7. Double-click the property name Property2 and change this to Gender. We will use
true for female, and false for male.

8. Add a new property and name it Picture. Change the prop-
erty’s type to be an Image. Do not specify a folder for the
images, so that Blend uses the stock ones.

9. Drag the collection onto the design surface. Blend displays a
ToolTip mentioning that it will create a new ListBox and
data bind its ItemsSource property to the collection. After
you drop the collection, a data template is automatically
created and the ListBox displays the items as shown in
Figure 11.6. The new ListBox can be set to fill the whole
space by right-clicking on it and selecting Auto Size, Fill
from the context menu.

10. The same data is used at runtime (as we specified), which
can be verified by pressing F5 to run the application.

Making an Application Blend 281

1
1

FIGURE 11.6
Design-time data in
the ListBox.

 From the Library of Wow! eBook

ptg

Changing the Template
Obviously, the data template that Blend generated is not very satisfying. It is easy to
change it with the following steps:

1. Select the ListBox in the Objects and Timeline panel.

2. Select Object, Edit Additional Templates, Edit Generated Template (ItemTemplate),
Edit Current. This opens the data template in Expression Blend.

3. Modify the template to suit the needs of your application.

Changing the Data
It is also possible to edit the data even after the collection has been data bound, as
follows:

1. In the Data panel, press the small database icon on the Collection line (circled in
green in Figure 11.5). This opens a new dialog shown in Figure 11.7 where all the
created sample data is visible.

CHAPTER 11 Mastering Expression Blend282

FIGURE 11.7 Editing the sample data.

2. To edit a string value (such as the Birthday or the CustomerName), select the value
in the grid and type the new value.

3. To edit an image, double-click the image in the grid and select a new image. Note
that you can also click the small picture icon in the grid’s header and select a folder
in which you placed sample images. Blend will add these images to the project and
use them rather than the stock ones.

 From the Library of Wow! eBook

ptg

4. It is also possible to create more or fewer rows of data by editing the Number of
Records field.

The Create Sample Data functionality enables a designer to create sample data in a fast
way. However, if the data set is very complex, or if the shape of the data changes often,
this is not the most efficient way to work.

Importing Design-Time Data from XML
Blend also offers the possibility to import sample XML data. This can be the output of an
application or data created by a developer to help the design process. Such a sample XML
file is shown in Listing 11.2.

LISTING 11.2 Sample XML Data File

<?xml version=”1.0” encoding=”utf-8”?>

<customers>

<customer Name=”Laurent Bugnion”

Birthday=”1971/4/13”

Gender=”false”

Picture=”pics/laurent.png” />

<customer Name=”Alise Bugnion”

Birthday=”2001/10/18”

Gender=”true”

Picture=”pics/alise.png” />

<customer Name=”Laeticia Bugnion”

Birthday=”2004/3/29”

Gender=”true”

Picture=”pics/laeticia.png” />

<customer Name=”Chi Meei Bugnion”

Birthday=”1969/12/25”

Gender=”true”

Picture=”pics/chimeei.png” />

</customers>

To import the data file, follow these steps:

1. Click the icon with the ToolTip Create Sample Data, located on top of the Data
panel (shown in Figure 11.4).

2. Select Import Sample Data from XML.

3. In the Import Sample Data from XML dialog, browse to locate to XML file stored on
your hard disk. Note that it is also possible to enter the URL of a web file or the
path of an XML file already in your project.

Making an Application Blend 283

1
1

 From the Library of Wow! eBook

ptg

4. Just as before, specify whether the data should be used when the application is
running. You will learn later in this chapter how to replace the sample data with
real data when it is ready.

5. When you click OK, a new sample data source is created in the Data panel. Drag the
collection (named customerCollection after the customer item shown in Listing
11.2) onto the ListBox and drop it to bind its ItemsSource property to the list of
data and to create a DataTemplate.

Note that the Picture property is not rendered by an Image control as it was before.
Instead, a TextBlock is used. This is because Blend has no way to know in advance how to
handle this string. Also, the corresponding pictures are not included in the project. This
can be changed with the following steps:

1. In the Objects and Timeline panel, right-click the Silverlight project and select Add
New Folder from the context menu.

2. Name the new folder pics just like the XML data shows.

3. Right-click the pics folder, and select Add Existing Item from the context menu.

4. Add four sample pictures and name them just like in the XML data file that was
imported (in this case, Laurent.png, Alise.png, Laeticia.png and ChiMeei.png).

5. Select the ListBox, and then select Object, Edit Additional Templates, Edit
Generated Template (ItemTemplate), Edit Current.

6. Select the last TextBlock, which shows the path to the picture for the selected
customer, and delete it.

7. In the Assets tab, select the Image control. To find it easily, type the word image in
the Search box.

8. Make sure that the root StackPanel is selected in the ItemTemplate in the Objects
and Timeline panel, and then double-click the Image control in the Assets panel.
This adds a new image to the template.

9. With the Image selected, open the Properties panel.

10. Locate the Source property, and click the small peg on the right of the field, with
the ToolTip reading Advanced Properties.

11. In the menu, select Data Binding.

12. In the Create Data Binding dialog shown in Figure 11.8, select the Picture property
and click OK. You should now see the pictures you added to the project appear in
the ListBox.

CHAPTER 11 Mastering Expression Blend284

 From the Library of Wow! eBook

ptgFIGURE 11.8 Create Data Binding dialog.

Creating Design-Time Data from a Class
The last possibility to create design-time data in Expression Blend was added in Blend 4.
Instead of using a manual process or an XML file to create the data, it is possible to
specify a data class to Expression Blend and to let it inspect that class and create design
data accordingly.

This way of doing is very convenient when the application’s user interface is data bound
to data classes, especially when using the MVVM pattern discussed in Chapter 7. To test
this, follow these steps:

1. Create a new Silverlight application in Blend and name it DesignTimeClassSample.

2. Right-click the Silverlight project in the Objects and Timeline and select Add New
Folder from the context menu.

3. Name the new folder ViewModel.

4. Right-click the ViewModel folder and select Add New Item from the context menu.

5. In the New Item dialog, select a class and name it ViewModelBase.cs. Then click
OK.

6. Implement the ViewModelBase class as shown in Listing 11.3. You need to add a
using statement at the top of the page: using System.ComponentModel.

Making an Application Blend 285

1
1

 From the Library of Wow! eBook

ptg

LISTING 11.3 ViewModelBase Class

public class ViewModelBase : INotifyPropertyChanged

{

public event PropertyChangedEventHandler PropertyChanged;

public void RaisePropertyChanged(string propertyName)

{

if (PropertyChanged != null)

{

PropertyChanged(

this,

new PropertyChangedEventArgs(propertyName));

}

}

}

7. Add a new class to the ViewModel folder and name it MainViewModel.cs.
Implement this class as shown in Listing 11.4. Here, you need to add using
System.Collections.ObjectModel.

LISTING 11.4 MainViewModel Class

public class MainViewModel : ViewModelBase

{

public ObservableCollection<CustomerViewModel> Customers

{

get;

set;

}

}

8. Add another class to the ViewModel folder and name it CustomerViewModel.cs.
The code for this class is shown in Listing 11.5.

LISTING 11.5 CustomerViewModel Class

public class CustomerViewModel : ViewModelBase

{

public const string NamePropertyName = “Name”;

private string _name = string.Empty;

public string Name

{

get { return _name; }

set

CHAPTER 11 Mastering Expression Blend286

 From the Library of Wow! eBook

ptg

{

if (_name == value)

{

return;

}

_name = value;

RaisePropertyChanged(NamePropertyName);

}

}

public const string BirthdayPropertyName = “Birthday”;

private DateTime _birthday = DateTime.MinValue;

public DateTime Birthday

{

get { return _birthday; }

set

{

if (_birthday == value)

{

return;

}

_birthday = value;

RaisePropertyChanged(BirthdayPropertyName);

}

}

}

9. Build the application by pressing Ctrl+Shift+B.

10. Open MainPage.xaml. In the Data panel, press the icon circled in red in Figure 11.4,
and select Create Sample Data from Class from the menu.

11. In the Create Sample Data from Class dialog, locate and select the MainViewModel
class and click OK.

12. A new entry named MainViewModelSampleData is created in the Data panel.
Expand this and the MainViewModel it contains, and locate the property named
Customers (shown in Figure 11.9).

13. Drag the Customers collection onto the LayoutRoot grid in MainPage.xaml.

This last step creates a new ListBox, which is populated as before by design-time data, and
a new DataTemplate. Note, however, the difference from the previous methods: The design
data created by inspecting a data class is available only at design time. If you run the

Making an Application Blend 287

1
1

 From the Library of Wow! eBook

ptg

application now, the ListBox will remain empty. Also, Blend was not able to format the
Name property as a name, and used random text instead. This can be changed in the Data
panel.

Disadvantages of Using Expression Blend to Generate Design-Time Data
Using Expression Blend to generate design-time data (as opposed to creating the design
data in a view-model or in a design data service) is a very nice automated way to provide
data to the designer in charge of creating the user interface. However, there are a few
disadvantages to this method:

. If the shape of the data changes often (for example, because the services are not
completely implemented yet), it can be difficult to keep the design-time data and
the runtime data in sync. In such a case, it is easier to leave the responsibility of the
data in the hands of developers working in Visual Studio.

. If the data is complex, requiring that a designer generate it in Expression Blend can
be a difficult matter. In such a case, too, it might be easier to leave a developer in
charge of the data, runtime and design time.

. When design-time data is generated, Expression Blend adds files in the project.
Removing these files in the production application is an additional step.

On the other hand, having a tool integrated in Expression Blend to create design data is
an advantage for designers because they rely less on developers to make progress. This can
help a lot, especially in the middle of the development process when developers are busy
with other tasks.

Understanding the Design-Time Data Context
In the “Creating Design-Time Data in Blend” section, we always checked the check box
(when applicable) requiring the design-time data to be made available at runtime, too.

Having design data displayed at runtime is convenient when the runtime services are not
available yet (for example, because they are still being developed, or when using them is
complex and requires a lot of setup). At some point, however, it is necessary to switch to
real data. To understand how this is done, it is necessary to get the difference between
design-time data context and runtime data context.

We’ve already discussed the DataContext property and explained that it is used to bind a
UI element to a data class, so that the context is set for data bindings. The DataContext of
an element is applied to its children (if it has any). Of course, it is possible to override a
child’s DataContext by setting it explicitly to a different object. We also saw that
Silverlight sets a DataTemplate’s DataContext implicitly, in which case the represented data
item is used.

In addition to the standard DataContext property, Expression Blend, and Visual Studio
2010 use a different property named d:DataContext. You already saw properties starting
with d: such as d:DesignHeight and d:DesignWidth. These properties are active only in

CHAPTER 11 Mastering Expression Blend288

 From the Library of Wow! eBook

ptg

Expression Blend and the Visual Studio designer, and ignored at runtime, as explained in
Chapter 2, “Setting Up and Discovering Your Environment.” To observe this, follow these
steps:

1. Reopen the solution DesignTimeDataSample that we created earlier in this chapter
and open the MainPage.xaml.

2. Select the Grid named LayoutRoot in the Objects and Timeline panel.

3. Set the designer surface in “split view” using the button shown in Figure 2.16, back
in Chapter 2.

4. Observe in the XAML editor that the Grid’s DataContext is set to the
SampleDataSource through a Binding.

5. In the Data panel, locate the SampleDataSource
and click the small icon with the Data Source
Options ToolTip, shown in Figure 11.9.

6. In the menu, uncheck Enable When Running
Application.

7. Observe the XAML of the LayoutRoot Grid again.
The DataContext property has now been replaced
by d:DataContext.

Because d:DataContext is now used, no data is
displayed when the application runs. This can be
changed by setting the DataContext property to an
object that is created in runtime, as we did in Chapter
7. Note, however, that the names of the properties
(such as the Collection property used to set the ListBox’ ItemsSource) must match in
design time and in runtime, to avoid data errors.

You can find more information about design-time data in Blend and in Visual Studio on
Karl Shifflett’s blog at http://www.galasoft.ch/sl4-designinstance.

Using Blend Behaviors
In Chapter 5, “Understanding Dependency Properties,” we discussed how to implement
so-called “attached behaviors” (that is, attached properties that are used to add function-
ality to the object to which they are attached). Attached behaviors are very powerful and
encapsulated. This is interesting for people without programming experience (for example,
graphic designers) because they can reuse the encapsulated functionality without having
to deal with the implementation. However, adding an attached behavior in XAML is
annoying because Expression Blend cannot assist you in that task. The code must be
written in XAML by hand. Also, if one attached behavior requires multiple properties to
be set up, the syntax becomes cumbersome.

Using Blend Behaviors 289

1
1

FIGURE 11.9 Sample data
source options.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-designinstance

ptg

To propose a solution to these issues, the Expression Blend team developed Blend behav-
iors. Relying on the same principle as attached behaviors, Blend behaviors offer a friend-
lier interface and can be added in Expression Blend by dragging them from the asset
library and dropping them on an element, as the following steps show:

1. Start Expression Blend and create a new Silverlight application named
UsingBlendBehaviors.

2. Locate a few images in Windows Explorer, select a few of them, and then drag them
into the main Grid in Blend. The images will be added to the Objects and Timeline
panel and appear on the Grid.

3. Resize the images so that they do not fill
the whole Grid, but overlap each other, as
shown on Figure 11.10.

4. Select the Assets tab, and the Behaviors cate-
gory. This shows all the behaviors that are
installed with Expression Blend, and those
that are included into the application and
any referenced DLL.

5. Select the MouseDragElementBehavior and
drop it on the first image. You can either
drop it on the Image control in the Objects
and Timeline panel or on the image in the
visual designer itself. Notice how the behav-
ior appears as a child of the Image control in Objects and Timeline.

6. With the newly added MouseDragElementBehavior selected, check the Properties
panel. This simple behavior has only one common property:
ConstraintToParentBounds. If set to true, this property will restrict the image’s
movement within the limits of the Grid. You can choose to turn this property on
or off.

7. Repeat the Steps 4 to 6 for each of the images you added to the Grid.

8. Run the application by pressing F5. You can now press and hold the mouse on any
of the images and drag them to another place on the Grid.

Note that we didn’t write any C# or VB.NET code for this to happen. The drag functional-
ity is encapsulated into the MouseDragElementBehavior, and we reuse it in our project. To
understand what happened, return to Expression Blend and open MainPage.xaml in
XAML view. You should see two new xmlns statements on top of the page:

. xmlns:i pointing to the namespace http://schemas.microsoft.com/expres-
sion/2010/interactivity. This URI is mapped to a CLR namespace named
System.Windows.Interaction, in the DLL of the same name. This is where the base
classes for all Blend behaviors are defined.

CHAPTER 11 Mastering Expression Blend290

FIGURE 11.10 Preparing the
scene for Blend behaviors.

 From the Library of Wow! eBook

http://schemas.microsoft.com/expression/2010/interactivity
http://schemas.microsoft.com/expression/2010/interactivity

ptg

. xmlns:ei pointing to the namespace http://schemas.microsoft.com/expres-
sion/2010/interactions. This URI corresponds to a few CLR namespaces, among
which Microsoft.Expression.Interactivity.Layout in the assembly
Microsoft.Expression.Interactions. This assembly contains the
MouseDragElementBehavior implementation itself.

Note that neither of these two assem-
blies belongs to the core Silverlight
framework. They will appear in the
bin\Debug folder of your application, be
packaged into the XAP file, and down-
loaded to the Silverlight client. This
makes the XAP file larger, which is the
price to pay to enjoy the benefit of the
encapsulated functionality. They are,
however, available as part of the Blend software development kit (SDK) at no cost, and do
not require Expression Blend itself to be purchased or installed.

The behavior is added with the XAML code in Listing 11.6.

Finding Behaviors Online
The current functionality is annoying because if you drag an image that is behind the
others, it remains in the background. Ideally, you should have a way to set the image in
front of the others. We will look for an existing behavior online and add it to our project
by following these steps:

1. Download the behavior named BringToFrontBehavior from
http://www.galasoft.ch/sl4-bringtofront. This behavior is also available on the
Expression gallery (as well as many other behaviors) at
http://gallery.expression.microsoft.com.

2. Download BringToFrontBehavior.zip and save it to your hard drive. As usual,
unblock the file using the Properties dialog in Windows Explorer and the Unblock
button (if available).

3. Extract the zip file and copy the DLL named BringToFrontBehavior.dll to a well-
known place on your drive.

4. In Expression Blend, in the Projects panel, right-click the UsingBlendBehavior
project and select Add Reference from the context menu. Navigate to the location
where you just saved BringToFrontBehavior.dll and add it. Note that this DLL
requires a reference to System.Windows.Interactivity.dll, but this assembly is already
referenced in your project. Build the application to make sure that all assemblies are
correctly referenced.

5. Select the Assets tab and the Behaviors category. You should now see the new
BringToFrontBehavior listed.

Using Blend Behaviors 291

1
1

T I P

Adding Multiple Behaviors to an
Element

You can add multiple behaviors on each
element. The actions of the behaviors will be
combined.

 From the Library of Wow! eBook

http://schemas.microsoft.com/expression/2010/interactions
http://schemas.microsoft.com/expression/2010/interactions
http://www.galasoft.ch/sl4-bringtofront
http://gallery.expression.microsoft.com

ptg

6. Drag the behavior and drop it on
the LayoutRoot grid in the Objects
and Timeline panel.

7. Run the application again.
Clicking an image should bring
the image to the foreground when
the mouse button is released. The
drag behavior is still active,
though.

Other Blend behaviors can also be found
on individual blogs, websites, and so forth. Note however that if these behaviors were
compiled in an older version of Blend, they might not appear in the Assets library in
Expression Blend 4 RTM. In that case, you need to download the source code (if possible)
and rebuild in the current version of Blend.

Behavior, Trigger, or Action?
What is often referred to as a “Blend behavior” can in fact be a Behavior, a Trigger, or an
Action. What is the difference?

Action
This is a rather general object: Its main feature is that it can be invoked, but the creators
of the Action object did not set a constraint on what action it will perform. This allows
for a great number of scenarios. For example, invoking an Action can play a sound, start
an animation, set a control in a given state, and so forth. You can think of the Action as
an actuator. Action objects should be designed to be as atomic and self-contained as possi-
ble: They should aim to fulfill one functionality only and should not rely on a state.

Trigger
On the other hand, a Trigger is an object that can be stimulated. Here, too, the way that
it is stimulated is not constrained. It can be when an event is raised, when a storyboard is
completed, and so forth. You can think of the Trigger as a sensor. A Trigger contains one
or more Action instances, and when the Trigger is stimulated, it invokes all the Action
instances.

You should consider Action and Trigger as building blocks. An Action should not expect
to be invoked by a special kind of Trigger.

Behavior
The Behavior class is a little more specialized. Their intent is to add functionality to an
element, as you saw before with the MouseDragElementBehavior. Behaviors often respond
to multiple events (for example, MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp)
and modify the attached element accordingly.

CHAPTER 11 Mastering Expression Blend292

T I P

Using the Behaviors Included in
Blend 4

Expression Blend 4 comes with a large
number of behaviors, actions, and triggers
that cover a wide range of user interaction.
You can find a list of the included Blend
behaviors, actions, and triggers in Chapter
12, “Sketching User Experience.”

 From the Library of Wow! eBook

ptg

Adding a Blend Behavior in Code
Of course, it possible to add a Blend behavior to an element in XAML markup and in C#
code. For instance, the XAML code in Listing 11.6 and the C#code in Listing 11.7 are
equivalent.

LISTING 11.6 Adding a Blend Behavior in XAML

<Image Margin=”192,204,239,42”

Source=”el20100101006.jpg”

Stretch=”Fill”>

<i:Interaction.Behaviors>

<ei:MouseDragElementBehavior />

</i:Interaction.Behaviors>

</Image>

LISTING 11.7 Adding a Blend Behavior in C#

var uri = new Uri(“el20100101006.jpg”, UriKind.Relative);

var image = new Image

{

Margin = new Thickness(192, 204, 239, 42),

Source = new BitmapImage(uri),

Stretch = Stretch.Fill

};

Interaction.GetBehaviors(image)

.Add(new MouseDragElementBehavior());

Creating a New Blend Behavior
Action, Trigger and Behavior are made of code, so it is easier to implement them in
Visual Studio. To avoid too strong a dependency on Expression Blend, the Blend team
created the Expression Blend SDK that can be downloaded from
http://www.galasoft.ch/sl4-blendsdk. Unfortunately, at the time of this writing, creating
new Behaviors, Actions, or Triggers is not possible automatically in Visual Studio (unlike it
was in a previous version of the Blend SDK). To work around this limitation, you can
either create the classes in Expression Blend and edit them in Visual Studio (as we will do
here), or do the work manually in Visual Studio alone.

Note that the SDK is also installed when you install the full Expression Blend, and
Behaviors, Actions and Triggers are available as templates in Blend’s New Item dialog. You
can create a new Behavior as follows:

Using Blend Behaviors 293

1
1

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-blendsdk

ptg

1. In Visual Studio, create a new Silverlight class library for Silverlight 4 and name it
MyOwnBehaviors. This is not strictly needed and Blend behaviors can also be
created directly in the application that uses them. Packing them in a class library
makes them easier to reuse.

2. Delete the file Class1.cs.

3. Open MyOwnBehaviors.sln in Expression Blend.

4. Add a new item to the project in Blend. From the New Item dialog, select a Behavior
and name it TextBoxListenerBehavior.cs. Then select File, Save All and return to
Visual Studio.

The Behavior we will implement now as an example listens to the text entered in a
TextBox and reacts if the text includes the string “hello” by displaying a MessageBox
displaying the date and time. Continue the implementation with the following steps:

1. The Behavior is actually a generic class, and you must specify the type of the
element that you expect. By default, the Behavior accepts any DependencyObject. In
our case, we want to attach an event handler to the KeyUp event of a TextBox.
Modify the class declaration to inherit from Behavior<TextBox> instead of
Behavior<DependencyObject>.

2. Delete the commented lines in the TextBoxListenerBehavior constructor as well the
commented lines further later in the object specifying an ICommand and the method
named MyFunction. We will not need these for the simple example.

3. Add a dependency property to the TextBoxListenerBehavior as shown in Listing
11.8.

LISTING 11.8 Adding a Dependency Property

1 public const string MessagePropertyName = “Message”;

2

3 public string Message

4 {

5 get

6 {

7 return (string)GetValue(MessageProperty);

8 }

9 set

10 {

11 SetValue(MessageProperty, value);

12 }

13 }

14

15 public static readonly DependencyProperty MessageProperty

16 = DependencyProperty.Register(

17 MessagePropertyName,

CHAPTER 11 Mastering Expression Blend294

 From the Library of Wow! eBook

ptg

18 typeof(string),

19 typeof(TextBoxListenerBehavior),

20 new PropertyMetadata(“-empty-”));

There are two interesting methods to implement: OnAttached and OnDetaching.
Remember when we implemented our attached behavior earlier in Chapter 5 we
attached an event handler to the element. In the Behavior implementation, the act
of attaching is done in the OnAttached method, which is defined on the Behavior
class and overridden in your own implementation.

4. The attached element is saved automatically in the AssociatedObject property.
Because this is a generic class, the AssociatedObject in our example is actually of
type TextBox. Modify the OnAttached method to look like Listing 11.9. This method
listens to every key pressed in the TextBox. If the letters form the word “hello”, a
MessageBox is shown.

LISTING 11.9 Attaching to the KeyUp Event

protected override void OnAttached()

{

base.OnAttached();

AssociatedObject.KeyUp += TextBoxKeyUp;

}

private string _textEntered = string.Empty;

private const string ReferenceText = “hello”;

private void TextBoxKeyUp(object sender, KeyEventArgs e)

{

_textEntered += e.Key.ToString();

if (ReferenceText.Equals(

_textEntered,

StringComparison.InvariantCultureIgnoreCase))

{

MessageBox.Show(

string.Format(“It is now {0}; your message is {1}”,

DateTime.Now,

Message));

_textEntered = string.Empty;

return;

}

if (!ReferenceText.ToLower().StartsWith(

_textEntered.ToLower()))

{

Using Blend Behaviors 295

1
1

 From the Library of Wow! eBook

ptg

// Reset

_textEntered = string.Empty;

}

}

In Listing 5.13 of the attached behavior implementation, we provided a way to
unregister the event handler and avoid memory leaks. However, we didn’t have a
guarantee that the developer using the attached behavior would call this method.
For Blend behaviors, the solution proposed is cleaner: The method OnDetaching will
be called when the Behavior is detached from the element. This is where the event
handlers should be unregistered, as shown in Listing 11.10.

LISTING 11.10 Detaching the KeyUp Event Handler

protected override void OnDetaching()

{

base.OnDetaching();

AssociatedObject.KeyUp -= TextBoxKeyUp;

}

Using the Behavior
Using the new Blend behavior requires adding a dependency to the assembly named
MyOwnBehaviors.dll, which is copied by Visual Studio in the bin\Debug folder of the
MyOwnBehaviors project. Should you decide to reuse this Behavior in a different project
or to release it to the public (for example, in the Expression Blend gallery where we found
the BringToFrontBehavior), this DLL should be kept in a safe place so that it can be refer-
enced later.

CHAPTER 11 Mastering Expression Blend296

T I P

Adding More Behaviors to the DLL

Multiple Behavior, Action, and Trigger classes can be added to a single DLL. There is a
compromise to be found between adding too many objects to a single DLL (in which case its
size will grow, and finding an element will be more difficult) and adding too few of them (in
which case, many projects and DLLs must be maintained).

It is also possible to use the Behavior through a project reference rather than a DLL refer-
ence, which is especially convenient when the Behavior must be tested. This can be done
with the following steps:

 From the Library of Wow! eBook

ptg

1. Open the MyOwnBehaviors solution in Visual Studio.

2. Right-click the solution in the Solution Explorer.

3. Select Add, New Project from the context menu.

4. Select a new Silverlight application (not a class library, but a runnable application).
Name the new project MyOwnBehaviors.Test.

5. Right-click the new Silverlight application in the Solution Explorer and select Set as
StartUp Project.

6. Right-click the Silverlight application again, and select Add Reference.

7. In the Add Reference dialog, select the Projects tab.

8. Select the MyOwnBehaviors project and click OK.

This adds a project reference to our Silverlight application. A project reference
behaves very much the same as an assembly reference, but only works with projects
located in the same Solution. Note, however, that the referenced project does not
need to be located in the same folder as the project referencing it.

9. Save all the files by pressing Ctrl+Shift+S.

10. Right-click MainPage.xaml and select Open in Expression Blend from the context
menu.

11. In Blend, open MainPage.xaml.

12. Add a TextBox to the page. Then, add a Rectangle next to the TextBox.

13. Build the application by selecting the menu Project, Build Project.

14. In the Assets tab, select Behaviors and locate the one named
TextBoxListenerBehavior.

15. Drag the TextBoxListenerBehavior and drop it on the TextBox.

In the Properties panel, notice the property named Message that was added in
Listing 11.8. Because it is a dependency property, it can be data bound to another
element or it can be set in a static manner in the Properties panel.

16. Enter a message in the Message text box in the Properties panel.

17. Run the application and enter a text in the TextBox. As long as you do not type the
word “hello”, nothing happens. If at any moment you do type this word, however,
the MessageBox appears with the message you configured.

18. In Blend, try to drag another TextBoxListenerBehavior and drop it on the Rectangle.
This does not work; Blend doesn’t consider the Rectangle to be a valid drop target.
This is because we defined that our Behavior can only be attached to elements deriv-
ing from TextBox.

Using Blend Behaviors 297

1
1

 From the Library of Wow! eBook

ptg

Creating an Action
The Behavior we created in the previous section reacts to a TextBox.KeyUp event only. This
is a much-encapsulated solution, but it is not very flexible. Using an Action instead makes
it slightly less easy to configure and use, but more versatile. To create a
DisplayMessageAction, follow these steps:

1. Reopen the MyOwnBehaviors solution in Blend.

2. Right-click the MyOwnBehaviors project in the Projects panel and select Add New
Item from the context menu.

3. In the New Item dialog, select an Action. Name it DisplayMessageAction.cs, and
then click OK. Save everything and go back to Visual Studio.

4. Change the base class from TriggerAction<DependencyObject> to
TriggerAction<TextBox>.

5. Add the same dependency property named Message shown in Listing 11.8 to the
DisplayMessageAction class.

Important: On line 19 of Listing 11.8, replace the TextBoxListenerBehavior with
DisplayMessageAction. This is the new owner for this dependency property.

6. Implement the method Invoke as shown in Listing 11.11.

LISTING 11.11 Implementing the Invoke Method

protected override void Invoke(object o)

{

MessageBox.Show(

string.Format(“It is now {0}; your message is {1}”,

DateTime.Now.ToString(),

Message));

}

Using the Action
After building the project, the new Action is visible in Expression Blend’s Assets tab.
Follow these steps to configure it:

1. Drag a DisplayMessageAction onto the TextBox on the main page.

2. In the Properties tab, notice that the Action is configured by default to work with
an EventTrigger, a Trigger that reacts when an event is fired. This is shown in
Figure 11.11.

3. For this sample, we will use another kind of Trigger, which reacts when a key is
pressed on the target element. Click the New button next to the TriggerType
property.

CHAPTER 11 Mastering Expression Blend298

 From the Library of Wow! eBook

ptg

4. From the Select Object dialog, select a
KeyTrigger (under Microsoft.
Expression.Interactivity.Input) and
click OK.

5. Configure the KeyTrigger to be fired on
KeyDown. Set the Key property to
PageDown and the Modifiers property
to Control.

6. Expand the conditions. This section,
available for every kind of Trigger,
allows specifying a set of conditions to
invoke the Action instances that the
Trigger contains. When multiple
conditions are defined, you can config-
ure the Trigger to work when all the
conditions are met, or only one of
them.

7. To add a condition, press the small plus
sign (+) button on the right of the
Condition List title. This adds a
ComparisonCondition to the list.

8. Use the small property peg next to the first value to create a new data binding.

9. In the Create Data Binding dialog, select the Element Property tab and select the
TextBox.

10. Check the Use a Custom Path Expression check box and type Text.Length in the
text box.

11. Set the combo box between the two values to GreaterThanOrEqual.

12. Set the second value to 10.

The configuration entered will fire the Action when the TextBox has the focus, when
Ctrl+PageDown is pressed, but only if the string is at least 10 characters long. To test this,
run the application and apply all these conditions, and then press Ctrl+PageDown. The
MessageBox should appear.

Creating a Trigger
New Trigger classes can also be created in Visual Studio just as we created Behavior and
Action classes. The process is fairly simple. After the Trigger is created and the application
is built, the custom Trigger will appear in the Select Object dialog from which we
selected the KeyTrigger in the previous section.

Using Blend Behaviors 299

1
1

FIGURE 11.11 Properties panel for the
Action.

 From the Library of Wow! eBook

ptg

Finding More Information
In the version 4, Expression Blend grew to become an extremely rich tool, providing the
user experience integrator with a very rich range of functionalities, so much so that it
would be impossible to detail them all in just a couple of chapters.

For more information, we recommend Expression Blend 4 Unleashed that will be available
at Sams Publishing in the beginning of 2011.

Also, a presentation given in March 2010 by this author is available for viewing online
and shows tools and techniques used by Silverlight and WPF integrators to create
customized user interfaces in collaboration with graphics designers. This video is available
at http://www.galasoft.ch/sl4-integrator.

Summary
In this chapter, we took a deep dive into Expression Blend, one of the most innovative
and surprising tools for Silverlight developers. Although the learning curve with
Expression Blend is rather steep for traditional developers, the rewards are really outstand-
ing when the user becomes more familiar with the functionalities. This chapter empha-
sized two areas where Expression Blend enhances radically the process of developing user
interfaces and user experience: the creation of design-time data (so that the designer has
something to design against), and the Blend behaviors, an encapsulation of functionality
that is reusable and very friendly to configure.

There are multiple ways to create design-time data for Expression Blend (or the Visual
Studio designer) and to make an application blendable. Although doing so requires a little
additional work, the rewards are huge because a large portion of the user interface can be
designed visually in Expression Blend.

Which option you choose to create design-time data is up to you, to the project’s organi-
zation, to the size of the application, to the type of the services, and so forth. Whatever
you choose, having design-time data in Expression Blend is going to help you tremen-
dously to create a beautiful user experience. In the next chapter, we take a look at a differ-
ent tool distributed as part of Expression Blend and used to create wireframes and
prototypes in Silverlight 4: SketchFlow. Note that we will also see some features that are
useful in Expression Blend itself, not just when prototypes are being developed. It is a
recommended read even if you are not working in SketchFlow at all!

CHAPTER 11 Mastering Expression Blend300

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-integrator

ptg

IN THIS CHAPTER, WE
WILL:

. Talk about the process of
sketching and how it can be
used to discover the require-
ments for an application.

. Talk about sketching, wire-
framing and prototyping, and
how SketchFlow can assist
you in these tasks.

. Create a prototype for a quiz
application in SketchFlow,
using states, transitions,
mockups, animations and so
on.

. Deploy and run the prototype.

. Collect and manage user feed-
back in the SketchFlow
player.

. Talk about importing and
exporting data to and from
various applications.

. Integrate feedback and collab-
orate through Sharepoint and
TFS.

CHAPTER 12

Sketching the User
Experience

A very important step in the creation of an application is
the phase sometimes called envisioning, in which the
requirements are gathered and the first sketches of the
application are drawn. The information gathered during
this step is used to shape the whole development process.
It is important that this phase be executed as thoroughly as
possible because any detail that is forgotten will end up
costing time and effort to be integrated in the application
later. In fact, forgotten details will cost more and more as
the project reaches completion, until eventually it is not
possible to make changes anymore without missing the
deadline or killing the budget.

The envisioning, like all the phases of a software develop-
ment project, is iterative. It is a succession of discussions
with the end users, translating their ideas and inputs into
requirements, sketching, and going back to the users for
feedback. In fact, more than a phase, it is a process that is
very active at the beginning of the project and then gradu-
ally less active as the development proceeds.

Sketching as a Discovery
Process
The process of sketching is an important part of the envi-
sioning. By simplifying an idea and representing it in a
simple form, the focus is very much concentrated on this
idea, and there are no other distractions. A user interface
element should be represented in a simple manner, to

 From the Library of Wow! eBook

ptg

convey only the functionality of the element, and to avoid confusing the user who is
going to give feedback.

For example, a combo box control can be represented
by a sketch, as shown in Figure 12.1. All the important
parts are there (the drop-down, a scrollbar, items), but
at the same time there is no overload of information:

. Colors are absent from the element because the
user should not lose time discussing colors at
this stage of the discovery process. This is way
too early.

. The text is taken from Lorem Ipsum, and right
now it doesn’t quite matter what text will appear
there. This question is discussed in later itera-
tions.

. Similarly, the final application will probably not
show pictures of chairs; their actual final content
is not relevant at this stage.

By removing some visual information (such as the color), and by using data that is obvi-
ously a placeholder, the focus is removed from these questions and put on the functional-
ity of the element only.

Using Sketching and Wireframing Tools
The deliverable resulting from the envisioning phase and from the sketching exercises are
often named wireframes because the sketches look as if they were made of wires.
Depending on the preference of the information architect in charge of the envisioning,
various tools can be used:

. Pen and paper: It is often a great way to jot down ideas in a fast way, to be refined
later. Most great ideas started as a quick sketch on a scrap of paper!

. Whiteboard: A refinement of the previous option, a whiteboard is a great way to
sketch ideas in a more “social” way than with a piece of paper. Discussions in front
of a whiteboard with end users or members of the team can be very lively and
creative.

These two mediums are very useful but are somewhat difficult to archive and to iterate.
Paper can be scanned, and whiteboards photographed for safekeeping, but past the initial
discovery, it is better to move to more versatile mediums:

. Applications such as PowerPoint or Visio, where it is easy to draw blocks, shapes,
and connections, can also be used to create wireframes. However, they are not very
interactive. Although it is possible to add animations and even, in some of these
applications, to react to user input, they were not made for this purpose, which can

CHAPTER 12 Sketching the User Experience302

FIGURE 12.1 Sketched
combo box.

 From the Library of Wow! eBook

ptg

render their usage cumbersome at times. Also, there is no built-in way to gather
feedback in an iterative manner.

. Wireframing tools are available in quite a large number on the Web. Some of them
work online, some others can also be installed offline, some have integrated feed-
back abilities, and so forth. One such tool in particular is quite popular: Balsamiq
Mockups (http://www.galasoft.ch/sl4-balsamiq).

All these tools have one major inconvenience: They are fairly static and do not allow
much user interaction. Also, the wireframes are not running in Silverlight. There is a
disconnection between the technology used in the early stages of the project and the final
result. This can be an issue because some elements might be available in the wireframe
and not in Silverlight, or some of the richness of Silverlight might not be easy to sketch
in the chosen tool (for example, animations). Also, as the development process
progresses, it will be more difficult to transition from the sketch to the application.

To solve these issues, the Expression
Blend team developed a tool named
SketchFlow, which we examine in this
chapter. This tool creates applications in
Silverlight and in Windows Presentation
Foundation (WPF) just like Blend, but it
provides a range of additional features
and styles that allow rapid discovery and
a sketch-like experience. More informa-
tion about the genesis of SketchFlow can
be found on Christian Schormann’s blog
at http://electricbeach.org/?p=332.

Other Kinds of Sketching
For the sake of completeness, let’s mention other kinds of sketching that SketchFlow does
not handle. For example, it can sometimes be a good idea to create animations (cartoons)
or animated videos to explore an idea or to explain a concept. The technique of stop
motion is very interesting in that regard,
and some amazing examples can be
found on video sites such as Vimeo
(http://www.vimeo.com). Of course, a
good stop-motion video requires quite a
lot of work, and it is not rare to see
some of them becoming as beautiful and
interesting as the final application that
they are supposed to represent. In that
case, it becomes difficult to talk about
sketching as a supposedly rapid and itera-
tive process.

Sketching as a Discovery Process 303

1
2

WA R N I N G

Installing SketchFlow

At the time of this writing, SketchFlow is
installed together with Expression Blend 4.
However, it is not impossible that, in later
versions, SketchFlow may be deployed and
installed as a separate setup.

T I P

A Trace of Bill Buxton

Bill Buxton is present in SketchFlow in quite
a personal manner: When you install the
tool, a font named Buxton Sketch is also
installed on your system. This font is used
by default by all the SketchFlow controls as
shown in Figure 12.2, and is included as
homage to Bill Buxton. Because it is
installed on your system, it can also be used
in other applications.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-balsamiq
http://electricbeach.org/?p=332
http://www.vimeo.com

ptg

A very inspirational book should be mentioned at this stage: Sketching User Experiences, by
Bill Buxton (http://www.galasoft.ch/sl4-sketching). Bill is a computer scientist and
designer working as a principal researcher at Microsoft. It is an interesting book, especially
for nondesigners who try to understand and think a little more like a designer.

CHAPTER 12 Sketching the User Experience304

FIGURE 12.2 Buxton Sketch font in Expression Blend.

Discovering SketchFlow
The deliverables created by SketchFlow are, as mentioned before, made in Silverlight. For
developers working in WPF, it is also possible to create WPF SketchFlow prototypes.

For a Silverlight developer, this is a great advantage because the same frameworks,
controls and objects are used at all stages of the development process. This allows a faster,
more efficient way to work. It also enables reusing parts of the prototype application in
the final application, by gradually modifying and integrating them. Note that even
though most of the SketchFlow application development happens in XAML directly, with
no C# code involved, nothing prevents you from adding functionality in code. This is
just a Silverlight application!

However, the SketchFlow application does not run as a standalone Silverlight application.
Instead, it is executed in the SketchFlow player, which adds various functionalities, as you
will see later in this chapter.

WA R N I N G

A Prototype Is Not an Application

It is usually not a good idea to try to convert a prototype into a production application. A
prototype should be made rapidly and explore multiple possibilities to implement some func-
tionality. The developer should not be burdened by the thought of what will happen to the
code after the prototype is completed. This is simply not the same kind of code. However,
concepts and sometimes even parts of the SketchFlow application can be used to speed up
the production application’s development.

The SketchFlow documentation gives some directions to convert a SketchFlow prototype into
a Silverlight application. However, we recommend against converting the SketchFlow proto-
types.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-sketching

ptg

Creating a New SketchFlow Application
In the following sections, we create the prototype of a quiz application, used to learn
multiplications. According to first discussions with the marketing department, the user
should be able to create a new quiz, to edit an existing quiz, and to take a quiz.

To create a new SketchFlow application, follow these steps:

1. Start Expression Blend.

2. Select File, New Project.

3. In the New Project dialog, select the Silverlight category, and then SketchFlow,
Silverlight SketchFlow Application. Note that you can select which version of
Silverlight the prototype should run on: Silverlight 3 or Silverlight 4.

4. Enter the name Quiz.Prototype and a location and click OK.

The new SketchFlow application is created, as is an initial screen.

Checking the Panels
Most of the panels used when creating a SketchFlow application are the same as for a
standard Silverlight application in Blend. There are, however, a few specific ones. Should
one of these screens be missing, they can be reopened through the Window menu:

. The SketchFlow Map panel: This important panel is used to create various screens,
screen parts, and their connections. It provides a high-level overview over the appli-
cation.

. The SketchFlow Animation panel: Here, frame-based animations for a given screen
can be defined. This is a little different from states and transitions, as you will see
later in this chapter.

. The SketchFlow Feedback panel: Used to import and manage user feedback.

These specialized panels are available only for SketchFlow applications. In addition to
those, we will use all the well-known Blend panels to create the prototype. Expression
Blend supports the concept of workspaces and it is possible to create and arrange the
panels as you wish, and then to save this configuration. For example, a simplified work-
space can be created with the indications at http://electricbeach.org/?p=238.

Creating and Connecting Screens
A good place to start creating a SketchFlow prototype is the Map panel. This is where the
screens and their relations are defined. After creating the SketchFlow application, a screen
is already available. Change its name by following these steps:

Discovering SketchFlow 305

1
2

 From the Library of Wow! eBook

http://electricbeach.org/?p=238

ptg

1. In the SketchFlow Map panel, double-click the blue item marked Screen1. This
selects the panel’s name.

2. Replace the name Screen1 with Start. Note that this changes only the name of the
screen, but not the name of the XAML file. Changing the name of the XAML file is
possible in the Projects tab, but it is not necessary.

3. Select a TextBlock from the toolbar and place it on the screen. Enter the text Start
in the Text property of the TextBlock. Notice that the font family used is automati-
cally set to the Buxton Sketch font that was shown in Figure 12.2.

Now we need to create new screens with the following steps:

1. Pass the mouse over the Start screen and
pause until a small toolbar appears under it,
as shown in Figure 12.3.

2. Click the first button on the left of the
toolbar (with the ToolTip reading, “Create a
Connected Screen”), and drag it to create a
new screen below the Start screen. Note that
the new screen is connected to the first one.

3. Name the new screen CreateQuiz.

4. In the CreateQuiz screen, add a TextBlock
and set its Text property to CreateQuiz.

5. Right-click the connection line. This line
represents the transition between the two
screens. From the context menu shown in
Figure 12.4, select Transition Style, Push.

Testing the Navigation
1. Press F5 to run the application. This starts

your favorite web browser and displays the
SketchFlow player with the Start screen, as
shown on Figure 12.5. Notice that the SketchFlow player is simply a Silverlight
application, and can therefore run on any platform supported by Silverlight 4. You’ll
learn more about the SketchFlow player later in this chapter.

CHAPTER 12 Sketching the User Experience306

FIGURE 12.3 SketchFlow map and
screen toolbar.

FIGURE 12.4 Changing the
transition style.

 From the Library of Wow! eBook

ptg

FIGURE 12.5 SketchFlow player in the Chrome browser.

2. On the left side, in the Navigate tab, select the CreateQuiz screen. The Push transi-
tion that was selected is played and the new screen is displayed.

Now the Navigate tab does not
show any screen name anymore.
This is because the navigation was
defined only from the Start screen
to the CreateQuiz screen.

3. In Expression Blend, change the
transition to a different one (for
example, the Fade transition).
Then press F5 and test the naviga-
tion again.

4. Go back to Expression Blend and add two more screens connected to the Start
screen. Name them EditQuiz and TakeQuiz.

Connecting Existing Screens
We will now add a navigation path from the CreateQuiz screen to the TakeQuiz screen,
and from the EditQuiz screen to the TakeQuiz screen, with the following steps:

1. Pass your mouse over the CreateQuiz screen in the SketchFlow map.

2. In the toolbar, click the button with the “Connect an Existing Screen” ToolTip (the
second button from the left in Figure 12.3).

Discovering SketchFlow 307

1
2

T I P

Returning to the Home Screen

It is always possible to go back to the home
screen (in this case, the Start screen) by
clicking the Home button located below the
Microsoft SketchFlow Prototype label (see
Figure 12.5).

 From the Library of Wow! eBook

ptg

3. Drag the connection to the TakeQuiz screen.

4. Repeat the same operation to add a connection between the EditQuiz screen and
the TakeQuiz screen.

5. Finally, add a connection between each of the three new screens (CreateQuiz,
EditQuiz, TakeQuiz) and the Start screen. This will be useful to create a Home
button.

The SketchFlow map should now look
like Figure 12.6. The small green arrow
on the Start screen indicates that this
is the startup screen. This can be
changed by right-clicking a different
screen and selecting Set as Start from
the context menu. This menu is also
useful in case you need to duplicate,
rename, or delete a screen. For
complex maps, it is also possible to
tag the screens or the transition lines
visually by changing their color in the
Visual Tag context menu.

Building the UI
Now that the screens and the navigation are established, it is time to start adding controls
to the screens. First, let’s add buttons to the Start screen to enable navigation to other
screens, as follows:

1. Open the Start screen.

2. Delete the Start TextBlock.

3. Right-click the LayoutRoot grid and select Change Layout Type, StackPanel from the
context menu.

4. Make sure that the new StackPanel is selected in the Objects and Timeline panel,
and then double-click the button icon in Blend’s toolbar. This adds a new button to
the panel. Repeat the operation two more times, to have three buttons. Notice that
the buttons have the sketch look and feel by default.

5. Select all three buttons in the Objects and Timeline panel and set their Height to
100px and their Margin to 10px on each side.

6. Set the first button’s Content property to Take Quiz.

7. Right-click the first button (in Objects and Timeline or on the design surface) and
select Navigate To, TakeQuiz from the context menu.

CHAPTER 12 Sketching the User Experience308

FIGURE 12.6 SketchFlow map of the quiz
application.

 From the Library of Wow! eBook

ptg

8. Expand the first button in the Objects and Timeline panel. Notice that an element
named NavigateToScreenAction has been added. This is a Blend behavior that is in
charge of screen navigation.

9. Repeat the operation for the second button, with Create Quiz as the Content and
the CreateQuiz screen as the navigation target.

10. Finally, do the same for the third button, with Edit Quiz as the Content and the
EditQuiz screen as the navigation target.

11. Run the application and click the first button. Doing so will display the TakeQuiz
screen with the transition that was selected earlier in this chapter.

Notice that the Navigate tab in the SketchFlow player now shows a link to the Start
screen, because this is how the navigation has been defined. Notice also that the
CreateQuiz and the EditQuiz screens now offer a navigation path to the TakeQuiz screen.
This can be confirmed by pressing on the Map button in the SketchFlow player, at the
right of the Navigate tab (see Figure 12.5).

Creating a Component Screen
The navigation forward (from the Start screen to another screen) works well, but we
should also offer the possibility, from any screen, to return to the Start screen. This is a
shared functionality, which is what component screens are for.

You can think of a component as a user control (in fact, this is exactly how they are
implemented in SketchFlow) that can be reused in multiple places. It is easy to build a
component screen with the following steps:

1. Open the TakeQuiz screen.

2. From the Assets library, select a DockPanel. Note that such panels are actually part of
the Silverlight Toolkit, which has to be installed on the developer’s computer. (See
Chapter 4, “Investigating Existing Controls,” for more information about how to
install the Silverlight Toolkit.) Because SketchFlow applications are really Silverlight
applications, it is possible to use any Silverlight library to build the prototype.

3. Set the DockPanel’s HorizontalAlignment to Stretch, VerticalAlignment to Bottom,
and Height to 50 pixels. The Margin should be set to 0 pixels on all sides and its
Width should be set to Auto.

4. With the DockPanel selected in the Objects and Timeline panel, add a TextBlock.
Set its Dock property to Right, its VerticalAlignment to Center, its right Margin to
10px, and its FontSize to 24px. Set the Text property to Back Home and the
Cursor to a Hand.

5. Right-click the TextBlock and select Navigate To, Start from the context menu.

6. In the Objects and Timeline panel, right-click the DockPanel and select Make Into
Component Screen from the context menu.

Building the UI 309

1
2

 From the Library of Wow! eBook

ptg

7. In the Make into Component Screen dialog, enter the name NavigationPanel from
the context menu. Then, click OK.

The SketchFlow Map now shows a new
screen named NavigationPanel. There
is a dotted line connecting this screen
to the TakeQuiz screen, as shown on
Figure 12.7. Notice also the navigation
line from the NavigationPanel back to
the Start screen.

The creation of the NavigationPanel
also caused a new XAML file named
NavigationPanel.xaml (and its code
behind) to be added to the project.
This is in fact a standard UserControl:

1. With NavigationPanel.xaml open in the design surface, select the UserControl root
and set the Width property to Auto.

2. Go back to the TakeQuiz screen. Notice that the NavigationPanel appears with an
orange border and a warning sign. This means that the project should be rebuilt, so
that the UserControl is added to the assembly properly. After you build, you should
see the NavigationPanel in place.

Adding a Component to a Screen
The NavigationPanel must appear on the CreateQuiz and the EditQuiz screens, too. To do
this, follow these steps:

1. In the SketchFlow map, drag the NavigationPanel onto the CreateQuiz screen. This
creates a dotted line between the CreateQuiz screen and the component.

2. Open the CreateQuiz screen. You should now see the NavigationPanel added to the
screen. Select this control in the Objects and Timeline panel and set its
VerticalAlignment to Bottom and HorizontalAlignment to Stretch.

3. Repeat the Steps 1 and 2 with the EditQuiz screen.

4. Run the application. You should now be able to navigate from the Start screen to
any other screen and back.

Using Sketch Controls
As you can understand from this chapter so far, the panels act exactly the same as in a
“classic” Silverlight application. The controls, on the other hand, have a different look
and feel, as if they were drawn by hand.

CHAPTER 12 Sketching the User Experience310

FIGURE 12.7 Map with component screen.

 From the Library of Wow! eBook

ptg

To create this look and feel, instead of creating new controls, the makers of SketchFlow
simply relied on Silverlight’s ability to use new styles and templates. For example, the
Button controls we added on the Start screen use a style named Button-Sketch. This style
can be found in the file named SketchStyles.xaml, which is automatically copied by
SketchFlow in every new prototype.

Deriving a New Style
Note that the sketch styles are not implicit; that is, they are stored with a key. The
Button-Sketch style is not automatically applied to all the buttons in the prototype. This
is great for two reasons:

. It makes it easier to add “classic-looking buttons” to the application. For example,
you might not want to use the sketch styles everywhere in the prototype. To add a
“classic button” to a screen, just select a Button (not Button-Sketch) from the Assets
library. This is also possible for all the other sketch controls.

. It is easy to define a new style based on a sketch style. Remember that we saw in
Chapter 11, “Mastering Expression Blend,” that styles cannot be based on implicit
styles in Silverlight 4 (in contrast to WPF).

For example, the three navigation buttons in the Start screens all look the same. It is easy
to define a common style for them as follows:

1. Open the Start screen.

2. Select the first button: Take Quiz.

3. Select Object, Edit Style, Create Empty.

4. In the Create Style Resource dialog, enter the name NavigationButtonStyle and
select a location. If similar buttons are used in other places in the application, place
the new style in the application (which means that it will be moved to App.xaml).
Otherwise, leaving the style in this document is fine. Of course, you can also choose
to create new resource dictionaries for your styles. In this case, select the current
document.

After the new style is created, the Button appears with the default Silverlight (“classic”)
look and feel and not with the sketch look and feel anymore. To solve this, we need to
specify that the new style derives from the sketch style. Unfortunately, there is currently
no way to do that visually in Blend. Instead, the following steps must be completed:

1. Open the design surface in split view so that you can visualize the XAML markup.

2. Edit the XAML as shown in Listing 12.1.

Building the UI 311

1
2

 From the Library of Wow! eBook

ptg

Listing 12.1 Setting a Derived Style

<Style x:Key=”NavigationButtonStyle”

TargetType=”Button”

BasedOn=”{StaticResource Button-Sketch}” />

Immediately after the BasedOn property is set, the appearance of the button in the
designer changes to the sketch look and feel. The style can now be modified as we want
with the following steps:

1. Select the style in the Objects and Timeline panel.

2. Click the small Advanced Options peg next to the Height property and select
Convert to Local Value from the context menu. This creates a setter for this prop-
erty in the style.

3. Do the same for the Margin property.

4. Set the FontSize property to 36 pixels.

CHAPTER 12 Sketching the User Experience312

T I P

Using Points or Pixels

Expression Blend can use points or pixels as unit of measure for font size. However,
Silverlight always uses pixels. This is why when you set a font size in points, the value in the
XAML markup is different (for example, 20pts = 26.667px).

To change the unit used, select Tools, Options, Units, Type Units and select points or pixels
depending on your preference.

5. Click the small button circled in red in Figure
12.8. This sets the scope back to the main page.

6. Select the second and the third buttons.

7. Reset the Height and Margin properties for these
two buttons by clicking the small Advanced
Options peg and selecting Reset from the context
menu.

8. Search for the Style property in
the Properties panel.

9. Click the Advanced Options peg
next to the Style property and
select Local Resource,
NavigationButtonStyle from the
context menu.

FIGURE 12.8 Setting the
scope back to the main page.

T I P

Applying a Style to Multiple Objects

Weirdly, Object, Edit Style, Apply Resource
cannot be used when more than one
element is selected. However, what we did in
Step 9 works with multiple elements, too,
which is convenient.

 From the Library of Wow! eBook

ptg

The three buttons should all look the same as before. However, changing all three of
them is much easier than before because it is enough to just modify the style to apply the
changes to all three controls simultaneously.

Exploring the Sketch Controls
By now, it is understood that there are no specific controls for SketchFlow, but only
sketch styles and templates that are applied to standard Silverlight controls. This is great
news because all these controls are well known by Silverlight developers: All the proper-
ties, events, and methods are strictly the same. In the current version of SketchFlow, the
controls shown in Figure 12.9 are available as sketch elements.

Building the UI 313

1
2

FIGURE 12.9 Sketch controls.

Should a control be missing in its sketch form, it is of course possible to modify a stan-
dard control’s style and template to make it look like wanted. To do this, the sketch
shapes described in the next section can prove useful.

Using Shapes
In addition to the controls we already talked about, Expression Blend 4 has a list of
shapes in the Assets library (in the Shapes category) that can be very useful when building
a user interface or a SketchFlow prototype. For SketchFlow, the shapes are also available
with a sketch look and feel, as shown on Figure 12.10. Note that they can also be
customized, for example, with different brushes, line thickness, and so forth.

 From the Library of Wow! eBook

ptg

FIGURE 12.10 Sketch shapes.

Exploring the Behaviors
The standard Expression Blend has a list of included behaviors, actions, and triggers
(elements discussed in Chapter 11). When working in a SketchFlow project, additional
items are available.

Note that, as previously mentioned, these elements are not part of the standard Silverlight
framework. The Blend behaviors are part of an external DLL named
Microsoft.Expression.Interactions.dll. The SketchFlow behaviors are part of
Microsoft.Expression.Prototyping.Interactions.dll. Should a behavior from one of these
DLLs be used by your Silverlight application, the corresponding DLL will be added to the
XAP file and downloaded to the web browser, which can be an issue in some cases (for
example, if the target audience has a very low bandwidth).

The Blend and SketchFlow behaviors, actions, and triggers are as follows:

Actions

. ActivateStateAction (SketchFlow): Sets a target screen in a given state. Note that
this behavior works only with screens, and not with controls (for which the
GoToStateAction should be used instead).

. CallMethodAction: Calls a method on a target object.

. ChangePropertyAction: Changes a property on a target object. Optionally, the
property can be animated to the desired value.

. ControlStoryboardAction: Plays, stops, pauses, resumes (and so on) a target story-
board.

. GoToStateAction: Places a control in a given state.

. HyperlinkAction: Navigates to a given URL in a given web browser window.

CHAPTER 12 Sketching the User Experience314

 From the Library of Wow! eBook

ptg

. InvokeCommandAction: Invokes a command on a target object.

. NavigateBackAction (SketchFlow): Navigates to the previous screen in the naviga-
tion history.

. NavigateForwardAction (SketchFlow): Navigates to the next screen in the naviga-
tion history.

. NavigateToScreenAction (SketchFlow): Navigates to a given screen.

. NavigationMenuAction (SketchFlow): Used to implement navigation menus
between the screens, in a manner that preserves the state of the component screen
used as the navigation menu.

. PlaySketchFlowAnimationAction (SketchFlow): Plays an animation in the current
screen.

. PlaySoundAction: Plays a sound.

. RemoveElementAction: Removes an element from the page.

. RemoveItemInListBoxAction (SketchFlow): Removes a list box item to simulate
how a user action modifies a list.

. SetDataStoreValueAction: Modifies the value of a property in a DataStore. For more
information about DataStores, see the “Using DataStores” note. The property change
can optionally be animated.

Building the UI 315

1
2

T I P

Using DataStores

In Chapter 7, “Understanding the Model-View-ViewModel Pattern,” and in other chapters, you
saw how to use the Data panel to include data into our Silverlight application in Blend. One
option that was not mentioned is the possibility to create one or more DataStores for the
application. These are a way to create and store small amounts of data (typically a few prop-
erties) and to reuse them throughout the application. Used together with the
SetDataStoreValueAction behavior, this can prove useful in certain scenarios (for instance
when building prototypes). In real-life applications, though, an object structure is used to
store data rather than a DataStore.

All the actions mentioned previously are triggered by default by an EventTrigger (that is,
an element that invokes its actions when a given event occurs). There are, however, other
kinds of triggers:

Triggers

. DataStoreChangeTrigger: Fires when a given property changes in a DataStore.

. DataTrigger: Very similar to a WPF DataTrigger, this element fires when a data
bound property reaches a given value.

. PropertyChangedTrigger: Fires when a data-bound property changes, regardless of
the property’s value.

 From the Library of Wow! eBook

ptg

. TimerTrigger: Fires once when a given event on a given element is raised, and then
fires again for a given number of times after a given period.

. KeyTrigger: Fires when a given key combination is typed. We used this trigger in
Chapter 11.

. StoryboardCompletedTrigger: Fires when a given storyboard is completed.

With a combination of triggers and actions, it is possible to compose a wide range of user
interaction in Blend without resorting to code, in SketchFlow prototypes but also in
Silverlight applications.

Expression Blend 4 also includes a few behaviors, as listed here:

Behaviors

. DataStateBehavior: Toggles an element between two states when a data-bound
property reaches a given value. Note that if you want to toggle between more than
two states, you should use a number of DataTrigger and GoToStateAction elements
instead.

. FluidMoveBehavior: Allows you to animate an element’s property between two
non-double values in a fluid manner. For example, you can change the Grid.Column
property on a UI element using a FluidMoveBehavior, which will cause the element
to move smoothly from one column to the other instead of “jumping” in place. You
can find more information about the FluidMoveBehavior at
http://www.galasoft.ch/sl4-fluidmove.

. FluidMoveSetTagBehavior: Used together with the FluidMoveBehavior, it allows
animating objects in special situations (for example, from a ListBox to a details
view). More information about the FluidMoveSetTagBehavior and dynamic layout
in general can be found at http://www.galasoft.ch/sl4-dynlayout.

. MouseDragElementBehavior: This behavior was already detailed in Chapter 11 and
is used to drag an element on the page.

Using Mockups
When creating a prototype, it is interesting to use mockup elements to rapidly simulate a
part of the user interface that is either out of the scope of the discovery process or not
precisely defined yet. Expression Blend 4 has an interesting sample with a list of mockup
controls and icons that can be reused in any Silverlight or SketchFlow application with
the following steps:

1. Open a new instance of Expression Blend 4.

2. Should you not see the Welcome screen (shown in Figure 2.14), you can reopen it
via Help, Welcome Screen.

3. Click the Samples tab and select the MockupDemonstration project.

CHAPTER 12 Sketching the User Experience316

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-fluidmove
http://www.galasoft.ch/sl4-dynlayout

ptg

Run the sample and familiarize yourself with the concept of mockups. To reuse the
mockups in your own Silverlight or SketchFlow application, the DLL named
Microsoft.Expression.Prototyping.MockupsSL.dll needs to be referenced into your applica-
tion, which you can do as follows:

1. In the MockupDemonstration project, select the Projects tab and right-click the
Solution.

2. Select Open Folder in Windows Explorer from the context menu.

3. In Windows Explorer, locate the folder
MockupDemonstration\Libraries\Silverlight\Debug.

4. Copy Microsoft.Expression.Prototyping.MockupsSL.dll and the Design folder to a
known location.

5. Reopen the solution Quiz.Prototype in Blend.

6. In the Projects folder, right-click the References folder under the project named
Quiz.PrototypeScreens.

7. Select Add Reference from the context menu.

8. In the Add Reference dialog, navigate to the location where you saved
Microsoft.Expression.Prototyping.MockupsSL.dll.

9. Select this DLL and click Open. This adds a reference to the DLL to the project. The
assembly will also be added to the XAP file the next time you build the prototype.

10. You should now see the mockups in the Assets library, under the SketchFlow cate-
gory. If you do not see them, build the application, and then search for the word
mockup in the Assets library Search box.

Building the UI 317

1
2

T I P

Distributing References Together with the Source Code

When you clean up the source code to publish it (for example, as an open source project on
CodePlex), the bin\Debug folder will be deleted. This can cause an issue, because any exter-
nal DLL (such as Microsoft.Expression.Prototyping.MockupsSL.dll) will be deleted, too, and
the next developer will be unable to build the application.

To avoid this, create a folder (for example, named External or References) at the root of your
project (where the SLN file is located). Copy all the external assemblies in this folder, and
point all the references from the project to the external assemblies located into this folder.
When the source code is published, make sure that this folder is also copied. Such assembly
references are relative and will work even when the source code is copied in a different
environment.

It is now possible to use the mockups in the prototype, as follows:

1. In the Quiz.Prototype application, open the TakeQuiz screen.

2. In the Assets library, locate the WebBrowserMockup and double-click it to add one
instance to the screen.

 From the Library of Wow! eBook

ptg

3. Resize the WebBrowserMockup so that it takes the whole width and height.

4. Select the NavigationPanel instance in the Objects and Timeline panel, and cut it
(using Ctrl+X).

5. Expand the WebBrowserMockup instance, select the Grid it contains, and press paste
(Ctrl+V). This places the NavigationPanel within the WebBrowserMockup, inside the
Grid panel.

6. Set the properties so that the NavigationPanel appears on the bottom of the mockup
web browser window, with a 0 pixels margin.

With these simple steps, we made our prototype look more realistic and added informa-
tion (in this case, that the application will work in the web browser) but are still using
sketch controls in the true spirit of sketching.

Creating States and Transitions
When a concept must be explained in a prototype, it is interesting to show exactly what
states and transitions a given screen goes through. Expression Blend assists you in this
task and makes the process very easy. For example, we will now start to implement the
TakeQuiz screen of our prototype, with the following steps:

1. In the TakeQuiz screen, select the Grid in the WebBrowserMockup control and add a
TextBlock to it.

2. Set the TextBlock’s FontSize property to 36 pixels.

3. Position the new TextBlock in the center of the screen, but set its bottom margin to
250 pixels.

4. Name the TextBlock Q1.

5. Copy the TextBlock Q1 and paste it in the Grid.

6. Name the copied TextBlock A1 and set its bottom margin to -50 pixels.

7. Copy the TextBlock Q1 again and paste it twice in the Grid. Name the copies Q2
and Q3.

8. Copy the TextBlock A1 and paste it twice in the Grid. Name the copies A2 and A3.

9. Enter a question of your choice for Q1 and the corresponding answer for A1. For
example, set the Text property of Q1 to What is 8 x 9? and A1 to 72. Note that the
screen gets messy with all the questions and answers overlapping, but you can use
the small Eye button in the Objects and Timeline panel to hide or show each
element.

10. Do the same for Q2, A2, Q3, and A3 with different questions and answers.

11. Select the LayoutRoot grid and open the States panel.

CHAPTER 12 Sketching the User Experience318

 From the Library of Wow! eBook

ptg

12. Click the button circled in red in Figure
12.11. This adds a new state group to the
Grid. Name this state group
QuestionAnswerStates. Note that states
always get added to the LayoutRoot grid,
even if another control or panel is selected
when the Add State Group button is
clicked!

13. Click the small button circled in blue in
Figure 12.12. This adds a new state to the
Grid. Name this state Normal.

14. Click the button again and name the new
state Q1State.

15. Repeat Step 14 five more times, and name
the states A1State, Q2State, A2State,
Q3State and A3State.

16. Select the Base state. Then select all the Q&A TextBlock elements in the Objects and
Timeline panel.

17. Open the Transform category in the Properties panel. Select the Scale tab and set the
ScaleX and ScaleY properties to 0.

18. Select the Q1State. Notice that Blend is now in recording mode, with a red border
around the designer space.

19. Select the TextBlock Q1 and set its ScaleX and ScaleY to 1.

20. Select A1State. Then select the TextBlock elements Q1 and A1 and set their ScaleX
and ScaleY properties to 1.

21. Select Q2State and set the TextBlock Q2’s ScaleX and ScaleY to 1.

22. Repeat the steps until you went through all the states. Then select the Base state to
exit the state recording mode.

All the states are ready now, but the transition needs to be defined. By default, the transi-
tion takes zero seconds, which is not a very good user experience. Change it with the
following steps:

1. Next to the Default Transition line in the States panel
(shown Figure 12.12), set the value to 1s.

2. Click the small EasingFunction button circled in green
in Figure 12.12. This opens a choice where you can
specify how the transition between the states should
be set. Select the Elastic Out transition as shown in
Figure 12.13.

Building the UI 319

1
2

FIGURE 12.11 States panel
buttons.

FIGURE 12.12 State buttons.

FIGURE 12.13
Setting the
EasingFunction.

 From the Library of Wow! eBook

ptg

3. Turn on the Transition Preview by pressing the small button circled in green in
Figure 12.11. Then, select the state Normal in the States panel, and then Q1State.
Observe how the transition is played. Then, select A1State, Q2State, and so on.

4. Select the Base state to exit the recording mode.

Switching the States at Runtime
The screen needs to get to the correct state when the user interacts with the application.
This is another good place to use a behavior. Follow these steps:

1. In the Assets library, select a GoToStateAction from the Behaviors category, and drag
it onto LayoutRoot.

2. With the GoToStateAction selected, set the Trigger’s EventName to Loaded in the
Properties panel, and then the StateName property to Q1State.

3. Make sure that the UseTransitions check box is checked.

4. Drag a new GoToStateAction on the LayoutRoot. Set the Trigger’s EventName to
MouseLeftButtonDown and the StateName to A1State. Here, too, the TargetObject
should be an ElementName binding to LayoutRoot.

We want the MouseLeftButtonDown event
of the Q1 TextBlock to be handled, not
of LayoutRoot. This can be done by
setting the SourceObject property of
the EventTrigger. This is easy to do with
the Artboard element picker shown in
Figure 12.14.

5. Drag the Artboard element picker onto the Q1 TextBlock in the Objects and
Timeline panel. This creates an ElementName binding to this TextBlock.
Alternatively, you can use the Advanced Options peg menu to create a DataBinding
to Q1.

6. Repeat Steps 4 and 5 for the TextBlock elements A1, Q2, A2, and Q3 with the corre-
sponding state name (that is, Q2State for A1, A2State for Q2, and so on).

7. Run the application and load the TakeQuiz screen. The first question should appear
when the screen is loaded. Then, click the first question to see the first answer, click
the first answer to see the next question, and so on.

Using FluidLayout
We already talked about a behavior named FluidMoveBehavior that enables smooth
movement even for non-double properties (such as Grid.Column, and so on). This is a
convenient behavior, but it is sometimes a little cumbersome to set up. Another simpler
way to enable smooth animation of non-double values is to use FluidLayout to toggle
between states. The following steps show you how:

CHAPTER 12 Sketching the User Experience320

FIGURE 12.14 Artboard element
picker.

 From the Library of Wow! eBook

ptg

1. Select the element named TwoButtonDialogMockup in the Assets library and add it to
the Grid within the WebBrowserMockup.

2. Position the mockup dialog in the middle of the web browser mockup window.

3. Click the OK button and set its content to Yes. Do the same with the Cancel button
and set the content to No.

4. Select the dialog question and set it to Your score is 4/8. Do you want to take the
quiz again?

5. Select the dialog explanation TextBlock and set its Visibility to Collapsed.

6. Select the DialogMockup and set its Visibility to Collapsed.

7. Add a new state named ContinueState to the QuestionAnswerStates group.

8. With the ContinueState selected and Blend in recording mode, select the
DialogMockup and set its Visibility to Visible.

The transition from collapsed to visible is a sudden transition and cannot normally
be animated. However, there is a way: Click the small button with the wave icon in
Figure 12.12. This switches on the FluidLayout, which will calculate smooth transitions
even for properties such as the visibility:

1. On the line of the A3State, click the small arrow with a plus sign (+) and the “Add
Transition” ToolTip. Select the transition A3State ➞ ContinueState from the context
menu. This adds a specific transition just for this particular state change.

2. Set the duration to 0.7s and set the EasingFunction to Circle InOut.

3. Click the Base state to exit the recording mode.

4. Add a GoToStateAction to the LayoutRoot grid. Set the SourceObject to A3, and the
StateName to ContinueState.

5. Run the application and take the quiz again. At the end, click the last answer. The
dialog appears with an animation.

Building an Animation
In addition to the standard way of building animations using storyboards, SketchFlow
also has the possibility to create animations in the Sketchflow Animation panel. The
following steps show you how:

1. In the TakeQuiz screen, expand the WebBrowserMockup in the Objects and Timeline
panel and then expand the NavBarContent.

2. Select the TextBox that is set within the NavBarContent and set its Text property to
http://www.myquiz.com.

3. Set the TextBox’s Opacity property to 0% and name it UrlTextBox.

Building the UI 321

1
2

 From the Library of Wow! eBook

http://www.myquiz.com

ptg

4. Set the Text property of the new TextBlock to http://www.myquiz.com.

5. Set the Opacity property of the new TextBlock to 0%.

6. In the SketchFlow Animation panel, click the + button that creates a new
SketchFlow animation.

In Figure 12.15, click the small clock button to display
the time editors.

7. Double click the name SketchFlowAnimation and
change the name to OpeningAnimation.

8. Set the duration of the transition between the Base
and the first frame to 3 seconds. The
EasingFunction is set to Cubic InOut by default,
but it can be changed if you want.

9. Select the first frame. Blend is set in recording mode.

10. Select the WebBrowserMockup element. In the Properties panel, expand the Transform
category. Click the Scale transform and set ScaleX and ScaleY to 2.

11. Select the Translate tab and set the X to 320 and the Y to 240.

12. Set the time inside the first frame to 0s.

13. Pass the mouse on the first frame, and click the small + button that appears. This
adds a second frame.

14. Set the transition between the first and the second frame to 1s.

15. Select the second frame and set the UrlTextBox’ Opacity property to 100%.

16. Add a third frame and set the transition to 3s. In the third frame, set the
ScaleTransform and the TranslateTransform back as in the Base state.

When the animation is done, click the Base frame to exit the recording mode. Then, test
by clicking the small play button shown in Figure 12.15.

The animation needs to be triggered now when the screen is loaded, and then the first
question must be shown when the animation is completed. This can be done with the
following steps:

1. In LayoutRoot, add a new behavior named PlaySketchFlowAnimationAction from
the Assets library.

2. With the PlaySketchFlowAnimationAction selected, set the Trigger’s EventName
property to Loaded. Set the SketchFlowAnimation property to the
OpeningAnimation that we just created.

3. Select the first GoToStateAction within the same grid. This is the one that was react-
ing on the Grid’s Loaded event.

CHAPTER 12 Sketching the User Experience322

FIGURE 12.15 SketchFlow
animation panel.

 From the Library of Wow! eBook

http://www.myquiz.com

ptg

4. In the Properties editor, click the New button next to the TriggerType.

5. In the Select Object dialog, select a SketchFlowAnimationTrigger and click OK.

6. Make sure that FiredOn is set to Completed, and select the OpeningAnimation as
the SketchFlowAnimation property. Leave the other properties as is.

Run the application and select the TakeQuiz screen. You will see the animation being
played, and then the application goes into the first state (as before).

Deploying the SketchFlow Application
Obviously, a lot more work needs to be done on the prototype. Because this is an iterative
process, it is interesting to show the prototype to the end user early to gather feedback.
Because this is, in fact, a Silverlight application, it is very simple to deploy:

1. In Blend, with the Quiz.Prototype solution open, select File, Package SketchFlow
Project.

2. In the Package SketchFlow Project dialog, enter a location for the files and click OK.

3. Windows Explorer opens with all the files that you need to deploy to your web
server.

Once the files are deployed, give the URL of the file Default.html to the end users who
will test the prototype and provide feedback.

Running the Prototype
The SketchFlow prototype runs into the SketchFlow player, which is a Silverlight applica-
tion shown in Figure 12.4. Even though this is a sketch-looking user interface, it is func-
tional and, with its states and animations, conveys the functionality of the final
application in a clear way. Note that because this is a Silverlight application, nothing
needs to be installed on the tester’s computer to see the prototype (apart, of course, from
the Silverlight runtime).

The SketchFlow player has a few functionalities that help the user to explore the proto-
type, even if it is not completed:

. Each screen can be refreshed using the small circular arrow button next to the name
of the screen above the Navigate tab. This is very useful to “replay a screen” and
understand the interaction better. For example, for the TakeQuiz screen, this will
reset the state and restart the OpeningAnimation.

. The Navigate tab has a list of all the screens that are accessible from the current
screen, according to the SketchFlow map. This helps for the navigation, in case the
developer of the prototype didn’t add all the buttons and links yet.

Running the Prototype 323

1
2

 From the Library of Wow! eBook

ptg

. The Map button displays the SketchFlow map to help understand the navigation.
Note that the map can be zoomed and also expanded to take the whole screen.

. Clicking screen names in the map navigates to the corresponding screen.

Giving Feedback
Maybe the most useful feature of the SketchFlow player is the ability to give feedback for
each screen and pass the feedback to the developer. For example, in the TakeQuiz screen,
the mouse needs to move too much to click the question, then the answer, and then the
question again. Instead, it would be nicer to have one single button to progress through
the questions and answer. Also, currently there is no way for the user to inform the appli-
cation to mark an answer as correct or wrong.

Entering feedback can be done with the following steps:

1. With the prototype running in the web browser, navigate to the TakeQuiz screen.

2. Select Ink Feedback in the My Feedback tab shown in
Figure 12.16 and select a color.

3. Draw a circle at the location where you would like to
have the Next Question button, for example, above the
Back Home link.

4. Click the Type Your Feedback Here text and enter feed-
back explaining what the button should do.

5. Click the small + button below the first feedback item to
add another item.

6. Enter feedback explaining that there is no way to mark an answer as correct or
wrong.

7. Press on the small folder icon in Figure 12.16 and select Export Feedback from the
context menu.

8. Enter a name and initials.

9. Click OK. In the Save As dialog, navigate to a location where you can save the feed-
back file, enter a name for it, and click Save.

The next step is to send the feedback file to the developer so that he can review it and
handle the suggestions.

CHAPTER 12 Sketching the User Experience324

FIGURE 12.16
Feedback tab.

 From the Library of Wow! eBook

ptg

Importing and Managing User Feedback
When the developer receives a feedback file, he can import it into the SketchFlow project
as follows:

1. Open the Quiz.Prototype solution.

2. Select the SketchFlow Feedback panel. If it is not visible, open it by selecting
Window, SketchFlow Feedback.

3. Click the small + button at the top of the panel.

4. Browse to the feedback file that you received, select it, and click Open.

Blend shows a list of revisions with information
about the tester and the date/time of the feedback
and the feedback items as shown in Figure 12.17.
Notice how the ink on the screen appears in Blend,
making it easy to understand where UI elements are
faulty or missing.

After corrections are made, the SketchFlow project
can be packaged again as explained earlier in this
chapter. This creates a new revision. When the
testers send their feedback again, the feedback panel
will clearly show which feedback items apply to
which revision, making it easy to iterate and
improve the prototype.

Note that the feedback files are imported into the project, in the folder named Feedback
Files. It is possible to keep these files in source control and have a full history of every
iteration.

Importing and Exporting 325

1
2

FIGURE 12.17 SketchFlow
Feedback panel.

T I P

Archiving Revisions

It is a good idea to archive exported revisions to be able to explore various paths and to
keep a history of the project. When you package the SketchFlow application, export the files
to a folder on the web server named (for example) Rev1, Rev2, and so on This way it is
immediately clear from the URL which version the tester is currently working with.

Importing and Exporting
Another interesting functionality is the ability to import graphics from Adobe Photoshop,
Adobe Illustrator, and from Microsoft PowerPoint, and to export a complete report about
the prototype to Microsoft Word. All these commands are available in the File menu.

 From the Library of Wow! eBook

ptg

Importing from Photoshop and Illustrator
Expression Blend (and not just SketchFlow) offers the possibility to import shapes,
brushes, texts, and so on from Adobe Photoshop and Adobe Illustrator directly in XAML.
For more information about this feature, refer to the presentation at
http://www.galasoft.ch/sl4-integrator and to the tutorials at http://www.galasoft.ch/
sl4-blendtutorial.

Importing from PowerPoint
This feature is available only in SketchFlow. It offers the possibility to load a series of
slides into SketchFlow. However, the feature has limited functionality:

. Each imported slide is converted into a new screen.

. The slide is converted into an image (PNG format).

. It is not possible to interact with the slide’s elements. It is, however, possible to
simulate interactivity by placing controls on top of the image.

Exporting to Word
In addition to the possibility to let the end user test the prototype “live,” it is also possi-
ble to create a Microsoft Word document with all the screens and their states, and then to
edit this document to add information. This is a very convenient way to pass additional
information to the user, as well as document an existing prototype.

To export to Microsoft Word, follow these steps:

1. Open the Quiz.Prototype solution in Blend.

2. Select File, Export to Microsoft Word.

3. In the Export to Word dialog, enter a name and a location for the new file. It is also
possible to export the user feedback to this file and to use a custom template (for
example, with your firm’s header). Then click OK. Note that the export process can
take a long time.

The generated file is very complete, with a table of contents and a table of figures. It
displays the SketchFlow map, each navigation screen with all its different states, the
component screens, and (optionally) the user feedback for each revision.

After the file has been generated, it can
be edited to add explanations, other
images, and so forth. Note, however,
that your changes will be overwritten if
you export to Word again using the
same document location and name.
Additions to the document must be
handled manually.

CHAPTER 12 Sketching the User Experience326

WA R N I N G

Documenting the Animations

The SketchFlow animations are not exported
to Microsoft Word, not even in a static form.
This can be an issue if you want to docu-
ment a specific animation for the end user.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-integrator
http://www.galasoft.ch/sl4-blendtutorial
http://www.galasoft.ch/sl4-blendtutorial

ptg

Integrating and Collaborating
Expression Blend and SketchFlow can be integrated into team collaboration tools to make
the collaboration easier.

Integrating into SharePoint
When multiple developers are collaborating on a SketchFlow prototype, it can be interest-
ing to use a collaboration tool such a SharePoint. SketchFlow in Expression Blend 4 can
be integrated with SharePoint (a part of Microsoft Office). In fact, publishing any
Silverlight application to a SharePoint site is very easy: Simply copy all the files to your
shared folders.

When the prototype is open into SketchFlow, it can be published as follows:

1. Select File, Publish to SharePoint.

2. In the Publish to SharePoint dialog, enter the path to the document library where
the prototype should be copied and a name for the folder. Note that if the files are
already available, they will be overwritten.

3. Click OK. The files are published, and then a dialog is displayed with a hyperlink
starting the SketchFlow player.

The integration is also extended to the tester: When the feedback button is clicked in the
SketchFlow player, an additional option allows copying the feedback to SharePoint
instead of saving it as a file.

Once feedback is saved into SharePoint, the developer can simply refresh the feedback tab
in SketchFlow (using the small refresh button visible in Figure 12.17) to see the new feed-
back available on SharePoint.

Integrating into Team Foundation Server
Expression Blend can handle source control integration in Team Foundation Server (TFS).
There is nothing special to be done: If you open a project that is under TFS source
control, Blend will automatically attempt to connect to the source server. When a file is
being edited, it will be checked out, and so forth.

A nice feature in relation to SketchFlow is that it is possible to convert an item of feed-
back into a work item in TFS. Just right-click the feedback item and choose from the
corresponding menu. This makes collaboration with other developers very easy.

Integrating and Collaborating 327

1
2

 From the Library of Wow! eBook

ptg

Summary
When SketchFlow was first presented to the public, it opened a wide range of new ideas
and processes to improve the discovery phase of an application. In Expression Blend 4,
SketchFlow has been improved and extended and is more useful than ever. It must be
underlined that it is not “just” a sketching tool, but that it helps to create mockups and
prototypes that are functional. It also enables iterative discovery by making it easy for
testers and end users to try the prototype and to deliver feedback.

This chapter concludes our incursion into Expression Blend and SketchFlow. In the next
chapter, you will see how a new framework called WCF RIA Services helps Silverlight
developers to build powerful business applications.

CHAPTER 12 Sketching the User Experience328

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. See what layers are typically
involved in a line-of-business
application, and how WCF RIA
Services helps to reduce the
complexity.

. Prepare a server-side service
and its database access.

. Create a Silverlight client that
is not connected to WCF RIA
Services, and then link the
client and the server together.

. Take a good look at the
DomainService class, a
server-side class that is very
important for WCF RIA
Services.

. Create a UI with the visual
designer and connect it auto-
matically to the services.

. Refactor the sample to use
the MVVM pattern instead,
and avoid the problems that
generated UIs can cause.

. Implement Create, Read,
Update, Delete (CRUD) opera-
tions.

. Talk about validation in the
context of WCF RIA Services.

. Create queries on the client
and execute them on the
server.

CHAPTER 13

Creating
Line-of-Business

Applications

In this chapter, we investigate a new way to create data-
oriented applications, also called line-of-business applica-
tions, or LOB. This kind of application works with a lot of
data, typically located in a database on a server, through
the means of various services. Because data is on the
server and then brought to the client, this involves a lot
of duplication. For example, consider the layers shown in
Figure 13.1

 From the Library of Wow! eBook

ptg

From the bottom up in Figure 13.1, we see
the following layers:

. The database in which the data is
persisted.

. A data access layer. Depending on the
database chosen and on the data
access framework, this layer itself can
be pretty complex (for example,
involving stored procedures, SQL
statements, and so on).

. A server-side object model with vali-
dation rules.

. A networking layer with server-side
services and client-side access. For
example, this can be a Windows
Communication Foundation (WCF) service with the corresponding proxy objects on
the client, or a thin REST service delivering an XML or JSON feed to the client, and
so forth.

. On the client, the data is often rearranged into a client-side model. This model is
similar to the server-side model previously mentioned.

. Validation rules are often available on the client, too, to avoid overloading the
network with invalid data that will be refused by the server-side validation rules.
The client-side rules are most often an exact match with the server-side rules.

. Silverlight applications often use the Model-View-ViewModel (MVVM) pattern
covered in Chapter 7, “Understanding the Model-View-ViewModel Pattern.” The
view-model layer is preparing the data for the user interface.

. Finally, the Silverlight pages have an XAML markup front end and code behind.

All these layers render the development and especially the maintenance of the application
complex and difficult. For instance, if the server-side validation rules are modified, the
client-side rules must be changed, too. Also, the network layers (server and client) involve
a lot of configuration, which can be difficult to handle.

The WCF RIA Services framework allows a great deal of simplification, as shown in
Figure 13.2.

. The data access layer and the model are now using the Entity Framework to access
the database. This greatly simplifies the data access by generating entities (data
objects) and access methods.

CHAPTER 13 Creating Line-of-Business Applications330

FIGURE 13.1 Layers in a traditional data
application.

 From the Library of Wow! eBook

ptg

. The network layers (server and
client) are taken care of by WCF
RIA Services. As the name
shows, Windows
Communication Foundation is
used under the covers, but the
developer does not need to
worry about that.

. The client-side model is gener-
ated automatically. It is a client-
side representation of the
server-side model. Changes to
the server-side model (for
example, creating a new query
or importing new tables) are
automatically reflected on the
client.

. The client-side validation rules
are automatically generated, too. They are a replica of the server-side rules. Here,
too, any change to the server-side rules is reflected automatically on the client.

. The top layers of the application remain, allowing us to work with the best practices
(design time data, Blendability, testability of the view-model) that were already
discussed in this book.

Visual Studio can also assist the developer to create the UI by dragging and dropping
controls on the design surface, configure them with a property panel and automate
connection to the data services. In this chapter, you will see how to do that; however this
is often considered as a bad practice, except maybe for very small applications. This is
why you will also see how to refactor such an application and use better patterns instead.

Preparing the Server-Side
A typical WCF RIA Service application gets its data from a SQL Server database, through
the Entity Framework (EF). This Object-Relational Mapper (ORM) developed by Microsoft
is in its version 4 nowadays, and has corrected many of the issues that plagued it in its
first version. In this chapter, we will use EF as data access layer, however note that other
data access technologies are also possible, such as LINQ-to-SQL.

Preparing the Server-Side 331

1
3

FIGURE 13.2 Layers in a WCF RIA Services
application.

 From the Library of Wow! eBook

ptg

Prerequisites
When you want to develop for WCF RIA Services, you need to install SQL Server 2008.
Note that an Express version is available for free. It is installed together with certain
versions of Visual Studio 2010 (if the corresponding option is chosen) or it can be
installed as standalone from http://www.galasoft.ch/sl4-sqlex.

A SQL Server database is also needed. This can be set up in SQL Server directly or made
available as a standalone MDF file. A sample file can be downloaded from
http://www.galasoft.ch/sl4-northwind. (This is the notorious Northwind database that
Microsoft created years ago.). To prepare for the rest of the chapter, download this file and
extract it to a known location on your hard drive.

Preparing the Server-Side Application
When a new WCF RIA Services application is created, the server side and the client side
are often created at the same time. This involves creating a web project to host the
Silverlight application and checking the Enable WCF RIA Services check box shown in
Figure 2.2. All the necessary assemblies are automatically referenced, and a link is estab-
lished between the client and the server.

In this chapter however, we show how to create a new Silverlight application only after
the server-side application has been prepared, which is a realistic scenario: This allows
adding a Silverlight application to an existing website with database access. Proceed with
the following steps:

1. Start Visual Studio and select File, New, Project.

2. In the New Project dialog, select Web, and then ASP.NET Empty Web Application.
Make sure that you select .NET Framework 4.0 in the combo box! WCF RIA Services is
not supported on .NET Framework 3.5 or earlier.

3. Enter a location and the name MyNorthwind.Web. Then click OK.

4. In Solution Explorer, right-click the MyNorthwind.Web project and select Add, New
Item from the context menu.

5. In the Add New Item dialog, select the Data category, and then ADO.NET Entity
Data Model. This is the Entity Framework ORM that we mentioned earlier. Enter the
name MyNorthwind.edmx and click OK.

6. In the Entity Data Model Wizard, select Generate from Database, and then click Next.

7. In the next screen, click the New Connection button. This opens the Connection
Properties dialog shown in Figure 13.3. Note that this step is needed only if you
cannot already see the northwnd.mdf connection in the wizard’s combo box. To
make sure that the connection is correctly set up (for example, that the authentica-
tion is configured properly), click the Test Connection button. Then click OK.

8. Click the Next button in the Entity Data Model Wizard. If the wizard asks whether
you want to copy the MDF file in the current project and modify the connection,
say you do.

CHAPTER 13 Creating Line-of-Business Applications332

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-sqlex
http://www.galasoft.ch/sl4-northwind

ptg

9. In the Choose Your DataBase Objects
dialog, select the tables, views, or
stored procedures that you want to
use in the application. Select the
tables Orders, Customers, and
Employees and make sure that the
two check boxes above the Model
Namespace are checked. Then click
Finish.

10. The Entity Framework takes a moment
to generate the data access layer, and
the model that will be used by the
services. When this is done, the three
tables and their relationships are
displayed in a diagram. Make sure that
everything looks okay and close the
diagram.

At this point, the data layer is ready and
could be used, for example, to create an
ASP.NET web application. After the
Silverlight application is created, we will connect the client and the server by the means of a
new WCF RIA Services layer on top of the data layer.

Creating the Silverlight Client
Creating the client-side Silverlight application is similar to what we already did many
times. Just follow these steps:

1. Right-click the MyNorthwind.Web solution in the Solution Explorer and select Add,
New Project from the context menu.

2. In the Add New Project dialog, select the category Silverlight, and then a Silverlight
application.

3. Name the new application MyNorthwind.Silverlight and click OK.

In the New Silverlight Application dialog, there are options to host the application
in the MyNorthwind.Web application (or in a new web application), and to enable
the WCF RIA Services. You can also create a test page for the Silverlight application
and enable Silverlight debugging. For now, however, we will not connect the
Silverlight and the web application, because we want to demonstrate how to do that
manually in a later step.

4. Uncheck the check box asking whether you want to host the Silverlight application
in the MyNorthwind.Web project, and then click OK.

The new Silverlight application is created. It is still completely independent from the web
application.

Creating the Silverlight Client 333

1
3

FIGURE 13.3 Connection Properties
dialog.

 From the Library of Wow! eBook

ptg

Bringing the Client and the Server Together
In this section, we link the client and the server applications, and create the WCF RIA
Services dependencies. Follow these steps:

1. Right-click the Silverlight project in the Solution Explorer, and select Properties from
the context menu.

2. In the Silverlight tab, set the WCF RIA Services combo box link to
MyNorthwind.Web. This adds a few references to WCF RIA Services assemblies in
the References folder.

3. Save the project properties and close the tab.

4. Right-click the web project in the Solution Explorer and select Properties from the
context menu.

5. Select the Silverlight Applications tab.

6. Click the Add button.

7. In the Add Silverlight Application dialog, make sure that the Use an Existing
Silverlight Project in the Solution radio button is checked, and that our Silverlight
application is selected in the corresponding combo box.

8. Check the Enable WCF RIA Services check box.

9. Make sure to check Add a Test Page That References the Control and Enable
Silverlight Debugging.

10. Click the Add button. This creates the well-known folder ClientBin in the web appli-
cation. Build the application to create all the necessary assemblies and objects.

Adding a Domain Service
The last step adds a Domain Service class to the server application. This class is very
important in WCF RIA Services because it creates a link between the client and the server.
Now that everything is configured, adding such a class is very easy with the following
steps:

1. Right-click the web project in the Solution Explorer and select Add, New Item from
the context menu.

2. In the Add New Item dialog, select the Web category and then a Domain Service
class. Enter the name MyNorthwindDomainService, and then click Add.

CHAPTER 13 Creating Line-of-Business Applications334

 From the Library of Wow! eBook

ptg

3. The Add New Domain Service Class
dialog opens as shown in Figure
13.4. Make sure that the Entities in
the list can be selected. If the check
boxes are disabled, follow the
instructions in the Enabling the
Domain Service Entities box in this
chapter.

4. Select the Customer, Employee, and
Order entities, and enable editing
for the Order entity only.

5. Make sure that Enable Client Access
is checked, as well as Generate
Associated Classes for Metadata. We
will use the metadata later for vali-
dation purposes.

6. Click OK. The Domain Service class
is generated.

Bringing the Client and the Server Together 335

1
3

FIGURE 13.4 Add New Domain Service
Class dialog.

WA R N I N G

Enabling the Domain Service Entities

If the check boxes in the Entities list of the Add New Domain Service Class dialog shown in
Figure 13.4 are disabled, it might be because you selected a wrong .NET version for the web
application. WCF RIA Services is available only for .NET 4.0 on the web server. You can
change the .NET version with the following steps:

1. Right-click the web project in the Solution Explorer and select Properties from the
context menu.

2. In the Application tab, set Target Framework combo box to .NET Framework 4.

3. Save the project properties. The project is converted to the correct version of the
framework.

Try again to add the Domain Service class.

Inspecting the Domain Service Class
A quick look reveals the methods that have been generated in the Domain Service class:
Open the file MyNorthwindDomainService.cs. The following methods for the Orders table
are available: GetOrders, InsertOrder, UpdateOrder, DeleteOrder. We get these methods
because the Orders table was marked as editable in the Add New Domain Service Class
dialog.

 From the Library of Wow! eBook

ptg

On the other hand, the Employees and Customers tables were not marked as editable, so
they are read-only from the service point of view, and only GetEmployees and
GetCustomers are generated.

Note that these methods all use a property of the Domain Service class named
ObjectContext, which is a proxy for the database. This object has properties named after
the three tables that we are importing: Orders, Employees, and Customers. Interacting with
the database happens only through the ObjectContext property. No SQL statements are
involved here.

Generated Class or Very Rich Template?
Even though a wizard is used to create the Domain Service class, it should not be consid-
ered as just another generated class. It is better to understand this file as a very rich
template that you should not hesitate to modify after it has been created. In fact, the very
first step done in most WCF RIA Services projects is to delete the generic data access
methods (such as the GetOrders method that simply returns all the available orders in the
database) and instead implement methods with more restricted criteria.

Inspecting the Metadata
In addition to the file MyNorthwindDomainService.cs, another file named
MyNorthwindDomainService.metadata.cs has also been created by Visual Studio. It was
created because we checked the Generate Associated Classes for Metadata check box in
the Add New Domain Service Class dialog.

Open the metadata class. It contains the three entity classes (Employee, Order, and
Customer) defined as partial classes. This keyword allows splitting a class definition
among multiple files. An internal metadata class is added (for example, OrderMetadata).
For each column of the database table, a property is available in this class. Later in this
chapter, we use this class to define validation rules for the data.

Creating a New Server-Side Query
SQL is historically the language that has been used most often to access databases. A
traditional approach would be to create SQL queries as strings, and then to pass this string
to the data access layer, which will execute the query on the database. Although well-
known and still widely used, this method is brittle and error prone: It is easy to mistype a
SQL statement, and difficult to modify it and test what happens when it is executed.

Instead, .NET proposes an alternative way to create queries: LINQ (Language Integrated
Query). We already talked about this language (or rather, this part of the C# language) in
Silverlight 2 Unleashed, in Chapter 22. However, the source that we were targeting was
different: We were talking about LINQ-to-XML. Later in Chapter 23, we used LINQ-to-
JSON, again the same query language but this time used against a JSON (JavaScript Object
Notation) formatted response returned by the popular photo service Flickr.

The variation of LINQ used to “talk” to the entity framework is called LINQ-to-Entities.
Note that Silverlight cannot execute LINQ queries against the database directly. It needs
to go through the web server, which is why we set up the WCF RIA Service.

CHAPTER 13 Creating Line-of-Business Applications336

 From the Library of Wow! eBook

ptg

To create a new query on the server, follow these steps:

1. Open the file MyNorthwindDomainService.cs.

2. Add a new method named GetOrdersByCity, as shown in Listing 13.1.

LISTING 13.1 Method GetOrdersByCity

1 public IQueryable<Order> GetOrdersByCity(string cityStart)

2 {

3 var orders = from o in ObjectContext.Orders

4 where o.ShipCity.StartsWith(cityStart)

5 select o;

6

7 return orders;

8 }

. On line 1, notice that the return type for the method is IQueryable<Order>. This
interface is specific to LINQ and must be implemented by the various data providers
(such as in LINQ-to-XML, LINQ-to-JSON, LINQ-to-Entities, and so on). Because
IQueryable inherits IEnumerable, the result can be enumerated. However, IQueryable
is special: The query will only be executed when the data is accessed.

. Lines 3 to 5 define the LINQ query that will be executed. The syntax is very similar
to the one we used in Silverlight 2 Unleashed to parse an XML file. Here, data from
the Orders table (accessed through the ObjectContext.Orders property) is filtered
according to the name of the city the order is shipped to. The big advantage of this
query versus a traditional SQL query is that the compiler checks the syntax when
you build the application. Also, you get full IntelliSense. For instance, when you
type a period after the variable o, all the properties of the Order entity are displayed
in the IntelliSense menu, and you can pick the correct one.

. On line 7, the query is returned. Note that as we mentioned earlier, the query will
not be executed before the result is accessed by the method’s caller.

This method is created on the web server, but Visual Studio automatically generated the
client-side equivalent, as you will see later in this chapter. The new method that was just
created is automatically available on the client, too. Calling the client-side method causes
the server-side query to be invoked. The developer does not have to worry about encod-
ing/decoding the call and the returned value; instead, WCF RIA Services perform these
tasks.

Bringing the Client and the Server Together 337

1
3

 From the Library of Wow! eBook

ptg

Working with the Visual Designer
One particularity of WCF RIA Services is that it is possible to create a fully functional
application (almost) without typing code, simply by dragging and dropping elements
from a designer onto the screen. Although this might seem attractive to some, such appli-
cations are notoriously difficult to maintain, extend and test. Drag-and-drop application
development can probably be justified in some scenarios, but this is hardly a best prac-
tice, and caution is advised.

For the sake of completeness, this section shows how to create a view in the designer,
with almost no source code, starting with the following steps. In the “Refactoring the
Application to MVVM” section, we move to a better mannered application with a clean
separation of concerns and Blendability.

1. Right-click the file MainPage.xaml in the Solution Explorer, and select View
Designer from the context menu.

2. If the XAML markup is shown, select the Design tab (see Figure 2.4).

3. If the Document Outline window is not visible in Visual Studio, select View, Other
Windows, Document Outline.

4. Select the UserControl in the Document Outline.

5. The small icon shown in Figure 2.13 appears in the lower-right corner. Make sure
that the icon meaning “Auto Size” is used. Then, resize the UserControl at roughly
700 pixels in width and 500 pixels in height so that we have more space for the
design. Note that this size is used only at design time. At runtime, the UserControl
will automatically fill the whole space available.

6. In the Document Outline window, select the LayoutRoot grid.

7. Pass the mouse over the blue border above the top of the grid. The cursor turns into
a cross. Position the cursor in the middle of the grid’s width, and click. This creates
two columns roughly of the same size.

8. Pass the mouse over the blue border on top of the right column. This displays a
choice with three size options: Fixed, Star, or Auto. We already met these options
when working with grids in Expression Blend. Select the Fixed option. The column
on the right will always take approximately 350 pixels, while the column on the left
will take the rest of the space. Note that if you need to be more precise, you can
select the ColumnDefinition element in the Document Outline window and set the
properties in the corresponding panel (or you can edit the XAML markup).

9. If the Data Sources window is not visible, open it with Data, Show Data Sources. You
should see an object named MyNortwindDomainContext in this window. If the
object is not visible, build the application.

10. Click the Order property below the MyNortwindDomainContext. This displays a
combo box that you can expand as shown in Figure 13.5. In this pop-up, you can
select if the table should be represented as a DataGrid or as a DataForm. We talked

CHAPTER 13 Creating Line-of-Business Applications338

 From the Library of Wow! eBook

ptg

about the DataForm control in Chapter 8, “Using
Data Controls.” For the moment, select the DataGrid.
Note that other controls can be selected using the
Customize menu.

11. Expand the Order in the tree. For each property, you
can select if it should appear in the DataGrid, and
with which control it should be represented. For
example, click CustomerID, open the menu, and
select None. Do the same for the EmployeeID prop-
erty.

12. Similarly, click OrderDate and open the menu. Select
a TextBlock for this property. The date will be
displayed in the DataGrid, but won’t be editable.

13. Drag the Order property from the Data Sources window onto the LayoutRoot grid in
the designer. This creates a DataGrid on the designer surface.

14. Right-click the DataGrid in the designer and select Reset Layout, All from the
context menu. Then, with the DataGrid selected, select the property Grid.Column in
the Properties panel and set it 0. Set the property Grid.ColumnSpan to 1.

15. In the Solution Explorer, make sure that the web application is set as StartUp
project. Then right-click the file MyNorthwind.SilverlightTestPage.html and select
Set as Start Page from the context menu.

16. Run the application. The main page is shown with the DataGrid. After a short wait
(due to the asynchronous loading of data), all the data rows are shown.

Understanding the DomainDataSource
Open MainPage.xaml in the XAML editor. Notice the presence of a DomainDataSource
element. Even though it is placed on the user interface, it is invisible. This is the object
responsible for interacting with the Domain Service class. Having this element in the UI
makes its properties visible in the Properties Editor, which allows setting its parameters
without typing C# code. However, as mentioned before, linking the user interface to the
services in that manner is not a very good practice because it is a tight coupling that is
not easy to maintain, test, or design.

Calling a Query with Parameter
Using the DomainDataSource, it is also possible to execute queries with parameters with the
following steps:

1. Open MainPage.xaml in the Visual Studio Designer.

2. Select the LayoutRoot grid in the Document Outline window.

Working with the Visual Designer 339

1
3

FIGURE 13.5 Configuring
the data source.

 From the Library of Wow! eBook

ptg

3. Add a new row on top of the grid
by passing the mouse over the
blue border on the left of the grid
and clicking. Make this row 40
pixels high.

4. Open the Toolbox. If this panel is
not visible in Visual Studio, select
View, Toolbox.

5. Select a TextBox in the Toolbox and draw it in the top-right cell, as shown on Figure
13.6. Set the Width property of the TextBox to 300, the Height to Auto and the
Margin property to 0. Set the HorizontalAlignment and the VerticalAlignment to
Center.

6. In the Properties Editor, change the name of the TextBox to CityStartTextBox. You
can change the name by clicking the name textBox1 next on top of the Properties
editor.

7. Select the DomainDataSource in the Document Outline.

8. In the Properties editor, enter the word query in the Search box. You should see
QueryName and QueryParameters.

9. Modify the QueryName to GetOrdersByCityQuery. This is the name of the query
targeting the method that was created in Listing 13.1. Note that if you mistype the
name of the query, Visual Studio will display an error.

10. Click the button with the three dots in the QueryParameters field.

11. In the Collection Editor dialog, click the Add button to add a new query parameter.

12. Expand the Other section in the Properties and set the parameter’s ParameterName
property to cityStart. Here, too, an error is shown if you mistype the parameter
name.

13. Click the small Advanced Properties sign (similar to Figure 6.4) in the Value field.
Select Apply Data Binding from the menu.

14. Click ElementName and select the CityStartTextBox.

15. Click Path and select the Text property.

16. Then, close the Collection Editor dialog.

17. Run the application and enter the letter L in the TextBox. After a short delay
(needed to send a new request and get the response), all orders shipped to a city
starting with L are displayed. Note that the query is executed automatically, but
only after a short delay when the text is modified, to avoid sending too many
requests.

CHAPTER 13 Creating Line-of-Business Applications340

FIGURE 13.6 Drawing a TextBox.

 From the Library of Wow! eBook

ptg

Sorting the Data
The DomainDataSource can also be used to sort the data according to sorting criteria, as
follows:

1. Select the DomainDataSource in the Document Outline window.

2. In the Properties editor, find the SortDescriptors property.

3. Click the button with the three dots to open the Collection Editor.

4. In this dialog, click the Add button. Set the Direction to Ascending, and the
PropertyPath to ShipCity. This is the property after which the data will be sorted.

5. Click OK to close the dialog and run the application. The data is now sorted accord-
ing to the ShipCity.

Adding a Pager
When working with many rows of data, transmitting the items over the Internet and
displaying them can take a very long time. The Silverlight controls are optimized to speed
up the display of a large number of items by using so-called UI virtualization. You’ll learn
more about this in Chapter 21, “Optimizing Performance.” However, this does not solve
the delay needed to load huge numbers of data rows.

To make the application snappier, a good strategy is to add paging to the data controls.
They will request only a small amount of data and keep track of which rows were loaded.
The perfect element to handle this is the DataPager control that we already covered in
Chapter 8. To add a DataPager to our application, follow these steps. Note that the paging
operation will fail if the DomainDataSource does not have at least one SortDescriptor like
we added in the previous section.

1. With MainPage.xaml open in the Visual Studio designer, add a row at the bottom of
the page. Set this row’s height to Auto.

2. Select the DataGrid in the Document Outline window. Then set the Grid.RowSpan
property to 2.

3. Open the Toolbox and look for the DataPager. If you find it, skip to Step 7.

4. If you cannot find the DataPager, you must add it to the Toolbox. To do this, right-
click the Toolbox and select Choose Items from the context menu.

5. Select the Silverlight Components tab in the Choose Toolbox Items dialog. Wait
until all the components are loaded, and then scroll down to the DataPager control.
If this element cannot be found, you need to install the Silverlight Toolkit first, as
described in Chapter 4, “Investigating Existing Controls.”

6. Select the DataPager and click OK. This control should now appear in the Toolbox.

7. Double-click the DataPager control in the Toolbox. This adds one instance to the
page. Set the Grid.Row to 2, Grid.RowSpan to 1, Grid.Column to 0, and
Grid.ColumnSpan to 2.

Working with the Visual Designer 341

1
3

 From the Library of Wow! eBook

ptg

8. Then right-click the DataPager control and select Reset Layout, All from the context
menu.

9. Locate the Source property for the DataPager in the Properties editor. Use the data
binding editor to bind this property to the Data property of the DomainDataSource
(named orderDomainDataSource).

10. With the DataPager element selected in the page, find the PageSize property in the
Properties editor. It is set to 10 by default. Increase this number to 20.

11. Run the application again. Only 20 rows of data are loaded. The DataPager shows
the current page number as well as the number of pages available. Using the
controls, you can navigate to a different page, which will send a new request to the
server.

Many other operations are possible using the visual designer and the Properties editor.
At this point, however, we will move to a code-oriented approach and refactor the
application.

Refactoring the Application to MVVM
Having the user interface tightly coupled to the service through the DomainDataSource is
not very good practice. Instead, WCF RIA Services allow calling methods on the Domain
Context class directly, which allows an intermediary layer: the view-model layer that we
discussed in Chapter 7.

Adding a View-model
To refactor the application, follow these steps:

1. In the Solution Explorer, right-click the Silverlight project and select Add, New
Folder from the context menu. Name this folder ViewModel.

2. Right-click the ViewModel folder and select Add, Class from the context menu.
Name the new class MainViewModel.cs.

3. Implement the MainViewModel class as shown in Listing 13.2. This is a standard
implementation of the INotifyPropertyChanged interface that we discussed in
Chapter 7.

LISTING 13.2 MainViewModel Class

public class MainViewModel : INotifyPropertyChanged

{

public event PropertyChangedEventHandler PropertyChanged;

public void RaisePropertyChanged(string propertyName)

{

if (PropertyChanged != null)

CHAPTER 13 Creating Line-of-Business Applications342

 From the Library of Wow! eBook

ptg

{

PropertyChanged(this,

new PropertyChangedEventArgs(propertyName));

}

}

}

4. Add a property named IsBusy that raises the PropertyChanged event as shown in
Listing 13.3. We will use this property later to inform the user when an asynchro-
nous operation is running.

LISTING 13.3 IsBusy Property

public const string IsBusyPropertyName = “IsBusy”;

private bool _isBusy = false;

public bool IsBusy

{

get { return _isBusy; }

set

{

if (_isBusy == value)

{

return;

}

_isBusy = value;

RaisePropertyChanged(IsBusyPropertyName);

}

}

5. Add another property as shown in Listing 13.4. This is the collection of Order
instances to which we will bind the DataGrid’s ItemsSource property. We use a
PagedCollectionView class which is particularly well suited to work with WCF RIA
Services, and add a SortDescription to make sure that the collection is always
conveniently sorted.

LISTING 13.4 Orders Collection

private PagedCollectionView _orders;

public PagedCollectionView Orders

{

get

{

Refactoring the Application to MVVM 343

1
3

 From the Library of Wow! eBook

ptg

if (_orders == null)

{

_orders = new PagedCollectionView(_context.Orders);

_orders.SortDescriptions.Add(

new SortDescription(

“ShipCity”, ListSortDirection.Ascending));

}

return _orders;

}

}

Finally, add the code in Listing 13.5 to the MainViewModel class.

LISTING 13.5 MainViewModel Constructor, Attributes, and Load Method

1 private MyNorthwindDomainContext _context;

2 private EntityQuery<Order> _currentQuery;

3 private int _numberOfOrders = -1;

4 private int _pageNumber = 0;

5 private const int PageSize = 20;

6

7 public MainViewModel()

8 {

9 if (DesignerProperties.IsInDesignTool)

10 {

11 var list = new List<Order>

12 {

13 new Order { OrderID = 1234, ShipCity = “Zurich”, Freight = 123 },

14 new Order { OrderID = 3456, ShipCity = “Lausanne”, Freight = 42 },

15 new Order { OrderID = 4567, ShipCity = “Basel”, Freight = 56 }

16 };

17 _orders = new PagedCollectionView(list);

18 }

19 else

20 {

21 _context = new MyNorthwindDomainContext();

22 LoadAllOrders();

23 }

24 }

25

26 public void LoadAllOrders()

27 {

28 IsBusy = true;

29 _pageNumber = 0;

30 _context.Orders.Clear();

CHAPTER 13 Creating Line-of-Business Applications344

 From the Library of Wow! eBook

ptg

31 _currentQuery = _context.GetOrdersQuery().OrderBy(o => o.ShipCity);

32 _context.Load(_currentQuery, LoadAllOrdersCompleted, null);

33 }

34

35 private void LoadAllOrdersCompleted(LoadOperation<Order> op)

36 {

37 IsBusy = false;

38 }

. Line 1 saves an instance of the Domain Context class named
MyNorthwindDomainContext. This class gives us access to the server-side functionality
without having to worry about the network layers.

. Line 2 saves the current query. We will use this attribute later for paging, as well as
the attributes and the constant declared on lines 3 to 5.

. Lines 11 to 17 are executed only when the code runs into the designer tool (either
Expression Blend or the Visual Studio designer). In this sample, we only create three
rows of design-time data and assign dummy values to some of the columns.

. Lines 21 and 22 are executed when the code runs in runtime. A new instance of the
Domain Context is created and stored. Then, we call the LoadAllOrders method.
This method is defined on lines 26 to 32.

. On line 31, the query is prepared and requests all orders sorted according to the
city’s name.

. On line 32, the Load method is executed with the _currentQuery. Note that this last
method returns only a query that will be executed on the server.

. The two other parameters of the Load method are a callback (executed when the
data returns) and a state object. This can be useful to store information during an
asynchronous request, as we already did before. In this case, we just leave it null.

. When the data returns, on line 37, we simply set the busy state to false. Note that
thanks to the usage of the PagedCollectionView, we do not need to perform any
additional step to update the UI.

Adapting the XAML Markup
1. Build the application, and then open MainPage.xaml in the Visual Studio designer.

2. In the UserControl tag, add a new xmlns prefix set to xmlns:vm=”clr-
namespace:MyNorthwind.Silverlight.ViewModel”.

3. Open the XAML tab and add the markup shown in Listing 13.6 to the UserControl.
This creates a new instance of the MainViewModel class in the resources. Note that a
better option is to use a ViewModelLocator like we did in Chapter 7.

Refactoring the Application to MVVM 345

1
3

 From the Library of Wow! eBook

ptg

LISTING 13.6 Creating the MainViewModel in the Resources

<UserControl.Resources>

<vm:MainViewModel x:Key=”MainViewModel”

xmlns:vm=”clr-namespace:MyNorthwind.Silverlight.ViewModel” />

</UserControl.Resources>

4. Select the Design tab. Click the DomainDataSource element in the Document Outline
window. Then, right-click this selected element in the designer view and select
Delete from the context menu.

5. Select the LayoutRoot grid in the Document Outline window. Locate the DataContext
property in the Properties editor. Apply a data binding. In the data binding editor,
select StaticResource, UserControl.Resources, MainViewModel. This binds the grid’s
DataContext property directly to the MainViewModel in the resources.

6. With the DataGrid selected, in the Properties editor, locate the ItemsSource property.
Use the Apply a Databinding menu option for that property to open the data
binding editor.

7. In the data binding editor, under Source, select DataContext. Notice that it is
already set to the MainViewModel. This value is inherited to all the children of the
LayoutRoot grid. Under Path, select the Orders property.

8. Remove the DataPager from the page. We will handle paging manually later.

Customizing the Columns
Because we took care of creating design time data in Listing 13.5, three rows of partially
initialized data can be seen in the designer. This makes the process of designing the page
more realistic. For example, the columns of the DataGrid can be customized by selecting
the Columns property in the Properties editor. For each column, it is possible to specify a
large range of properties, as follows:

1. Select the DataGrid’s Columns property in the Properties editor and click the button
with the three dots to open the collection editor.

2. In the dialog, select the OrderIDColumn and move it on top of the other columns, to
make it the first column.

3. Uncheck the check box in the CanUserReorder property for this column. This
ensures that the OrderIDColumn is always the first column. Note that you can also
prevent the user from sorting after a column or of resizing the column, should you
want this.

4. Select the ShipCityColumn and move it after the OrderIDColumn. Notice that the
change is reflected in the designer.

5. Select the FreightColumn and move it after the ShipCityColumn if needed. In the
Properties, expand the Text section and set the FontWeight to Bold.

CHAPTER 13 Creating Line-of-Business Applications346

 From the Library of Wow! eBook

ptg

6. Expand the Layout section and set the Width property to SizeToCells. This ensures
that the content of the cells is always visible. Note that other options are available
(for example, SizeToHeader, Auto, entering a value in pixels, Star).

7. Click the Binding property for the FreightColumn and select Apply Data Binding
from the context menu.

8. In the data binding editor, expand the Options.

9. Set the StringFormat to {0:c} (currency format). Then close the window.

Refactoring the Application to MVVM 347

1
3T I P

Setting a Star Width for a DataGrid Column

Star width is a new feature in the DataGrid for Silverlight 4. Just as for a Grid panel, a star
width column will take the rest of the available width. If two columns have, respectively, 0.3*
and 0.7*, the first will take 30% of the available space and the second 70% of that space.
This allows a much more flexibly column layout than in the earlier version of the DataGrid.

Localizing the User Interface
Note that the currency format used for the FreightColumn is U.S. based. To change this, a
property can be added in the UserControl:

1. Select the UserControl in the Document Outline window.

2. Open the XAML editor. Unfortunately, this property cannot be set in the Properties
editor.

3. In the UserControl tag, add the following property: Language=”fr-FR”.

4. Build the application. The format of the FreightColumn should now display the euro
currency sign.

Having to use the Language property on each page is annoying, but this can also be done
in code. For example, the code in Listing 13.7 sets the application’s and the page’s culture
to fr-FR (French in France). However, values set in the code behind are not applied in the
visual designer.

LISTING 13.7 Setting the Application and Page Culture

public MainPage()

{

Thread.CurrentThread.CurrentUICulture

= Thread.CurrentThread.CurrentCulture

= new CultureInfo(“fr-FR”);

Language = XmlLanguage.GetLanguage(“fr-FR”);

InitializeComponent();

}

 From the Library of Wow! eBook

ptg

We will talk more in details about localization in Chapter 22, “Advanced Development
Techniques.”

Adding a RelayCommand Class
In the next sections, we will bind a few commands from the view to the view-model. To
make things easier, we will use the RelayCommand class that we already used in Chapter 7.
To add this class to the project, follow these steps:

1. Download the file RelayCommand.zip from
http://www.galasoft.ch/sl4-relaycommand and extract the content to a folder on
your hard drive.

2. In the Solution Explorer, right-click the Silverlight project and select Add, New
Folder from the context menu. Name the new folder Helpers.

3. From Windows Explorer, drag the two files RelayCommand.cs and
RelayCommandGeneric.cs to the new Helpers folder. This adds the two files to the
project.

In the next section, these classes are used to facilitate the creation of commands.

Executing the CRUD Operations in Code
In the world of business applications, CRUD stands for create, read, update, and delete,
the four basic operations that one can perform against a database. Of course, these opera-
tions are supported by WCF RIA Services.

We already saw in Listing 13.5 how to read orders from the Domain Service class using
the GetOrdersQuery method that is generated on the client.

Updating an Order
Updating an order can be done with the following steps:

1. Open MainViewModel.cs.

2. Add a property of type RelayCommand to the view-model, as shown in Listing 13.8. A
using statement needs to be added on top of the page for the namespace
GalaSoft.MvvmLight.Command.

LISTING 13.8 Adding a SaveCommand

public RelayCommand SaveCommand

{

get;

private set;

}

3. In the MainViewModel constructor, in the section executed during runtime (not
design time), add the code in Listing 13.9.

CHAPTER 13 Creating Line-of-Business Applications348

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-relaycommand

ptg

LISTING 13.9 Creating the SaveCommand

SaveCommand = new RelayCommand(SaveChanges);

4. Finally, implement the delegate method that will be executed when the command is
invoked, as shown in Listing 13.10.

LISTING 13.10 Executing the SaveCommand

public void SaveChanges()

{

IsBusy = true;

_context.SubmitChanges(SaveChangesCompleted, null);

}

private void SaveChangesCompleted(SubmitOperation op)

{

IsBusy = false;

}

5. Build the application.

6. Open MainPage.xaml in the designer.

7. Add a StackPanel from the toolbox into the bottom-right column next to the
DataGrid.

8. Right-click the StackPanel and select Reset Layout, All from the context menu.

9. Add a Button to the StackPanel and set its Height to 30, Margin to 10, Width to Auto
and Content to Save.

10. Select the Command property in the Properties editor and select Apply a Binding.

11. In the Path section, select the SaveCommand. This command will be executed when
the button is clicked. Should it not be visible in the data binding editor, build the
application first.

12. Run the application and click the Order ID column header to filter all the orders in
ascending sequence.

13. Edit the Freight value of the first order. Then, click the Save button.

14. In Visual Studio, select the window named Server Explorer. (If this window is not
visible, open it with the menu View, Server Explorer.)

15. Expand the Data Connections tree and then the connection that your application is
using (which should be northwnd.mdf1). This shows the tables and objects in the
server-side database.

16. Expand the Tables folder.

Refactoring the Application to MVVM 349

1
3

 From the Library of Wow! eBook

ptg

17. Right-click the Orders table and select Show Table Data from the context menu.

18. Check the Freight column for the very first order. The cell should show the value
that you just saved from the Silverlight application.

Creating an Order
New orders can also be added to the list and saved with the following steps:

1. Open MainViewModel.cs and add a using directive on top of the file to import the
namespace System.Linq. This namespace defines extension methods that are very
useful when dealing with collections of data.

2. Add a new RelayCommand named AddCommand to the MainViewModel, as in Listing
13.11.

LISTING 13.11 Adding an AddCommand

public RelayCommand AddCommand

{

get;

private set;

}

3. In the MainViewModel constructor, create the command as in Listing 13.12, just
below the SaveCommand creation.

LISTING 13.12 Creating the AddCommand

AddCommand = new RelayCommand(AddOrder);

4. Implement the AddOrder method as shown in Listing 13.13.

LISTING 13.13 Adding an Order

1 private void AddOrder()

2 {

3 var lastOrder = _context.Orders.OrderBy(o => o.OrderID).Last();

4

5 var newOrder = new Order

6 {

7 CustomerID = “ALFKI”,

8 EmployeeID = 1,

9 Freight = 10,

10 OrderID = lastOrder.OrderID + 1

CHAPTER 13 Creating Line-of-Business Applications350

 From the Library of Wow! eBook

ptg

11 };

12

13 _context.Orders.Add(newOrder);

14 _numberOfOrders++;

15 }

. On line 3, we use LINQ extension methods to retrieve the last order of the list after
sorting them by the OrderID property.

. Then, a new Order is created on lines 5 to 11. Notice that the CustomerID and the
EmployeeID are set to hard-coded value. If these properties were missing, the data-
base would throw an exception when the Order is saved! In this sample, the values
are hard-coded, but in a real application, the user would need to enter the values
(for example, with a ComboBox in the DataGrid).

. On line 13, the new Order is added to the Orders table in the Domain Context class.
This will cause the PagedCollectionView to be updated automatically, as well as
the UI.

5. Build the application.

6. Add a new button below the Save button in the StackPanel in MainPage.xaml. Just
as we did before, give it the same size, and set the Content property to Add. Data
bind the Command property to the AddCommand on the view-model.

Run the application now and add a new order. Fill the columns in the DataGrid, and then
click the Save button. To check whether everything went well, reopen the Order table in
the Server Explorer and scroll down until you see the new row and the value that were
entered.

Displaying Messages from the View-model
Before we proceed, the application needs to be modified slightly to display messages to
the user. This is a common problem when using the MVVM pattern because the view-
model does not know anything about the view and should not be in charge of displaying
dialog boxes. Instead, an abstraction should be offered, for example, with the following
steps:

1. Right-click the ViewModel folder in the Silverlight project, and select Add, Class
from the context menu.

2. Instead of a class, what is really needed is an interface, representing an abstraction
of the functionality. Name the new item IDialogService.cs.

3. Replace the class’s code with Listing 13.14.

Refactoring the Application to MVVM 351

1
3

 From the Library of Wow! eBook

ptg

LISTING 13.14 Adding an Interface

public interface IDialogService

{

void ShowMessage(string message);

bool AskConfirmation(string message);

}

4. The MainViewModel class needs to call the ShowMessage or the AskConfirmation
method, but it should only know the IDialogService interface, to ensure a clean
separation. Add a property of this type in the MainViewModel class, as shown in
Listing 13.15.

LISTING 13.15 Adding an IDialogService in the MainViewModel Class

public IDialogService DialogService

{

get;

set;

}

public void ShowMessage(string message)

{

if (DialogService != null)

{

DialogService.ShowMessage(message);

}

}

private bool AskConfirmation(string message)

{

if (DialogService != null)

{

return DialogService.AskConfirmation(message);

}

return true;

}

5. A class needs to implement this interface. In this simple example, the view can
provide the functionality to display a message. Open MainPage.xaml.cs and modify
the class declaration as shown in Listing 13.16.

LISTING 13.16 Modifying the MainPage

public partial class MainPage : UserControl, IDialogService

CHAPTER 13 Creating Line-of-Business Applications352

 From the Library of Wow! eBook

ptg

6. Implement the interface by adding the method shown in Listing 13.17 to the
MainPage.

LISTING 13.17 Implement the IDialogService

public void ShowMessage(string content)

{

MessageBox.Show(content);

}

public bool AskConfirmation(string message)

{

var result = MessageBox.Show(

message,

“Are you sure?”,

MessageBoxButton.OKCancel);

return result == MessageBoxResult.OK;

}

8. Finally, set the DialogService property on the MainViewModel from the MainPage
class. The MainViewModel is the LayoutRoot’s DataContext, so the code in Listing
13.18 can be used.

LISTING 13.18 Setting the DialogService

public MainPage()

{

InitializeComponent();

var vm = LayoutRoot.DataContext as MainViewModel;

if (vm != null)

{

vm.DialogService = this;

}

}

The MainViewModel class is now able to display messages without having to worry about
the actual way that the message is shown. If the designer decides to use a ChildWindow
control rather than a MessageBox, the view-model does not need to change anything to its
implementation. We have achieved a nice separation of concerns.

Refactoring the Application to MVVM 353

1
3

 From the Library of Wow! eBook

ptg

Deleting an Order
Deleting an order is a little more complex than creating or updating an order because of
the dependencies between tables. The Northwind database has a table that was not
imported in the application, named Order_Details. One Order can have multiple
Order_Details; these are the products that were ordered by the customer. If an order is
deleted, the application must take care of deleting the corresponding Order_Detail rows,
too; otherwise, an exception will be thrown by the server. To retrieve the corresponding
data, the Order_Details table needs to be imported in the application.

Another way to handle this would be to use a cascaded delete operation in the database.
This is a more efficient way, but requires to understand quite well how the database
works, which is out of scope here.

Modifying the Server-Side Model
To add the new table to the model, follow these steps:

1. In the Solution Explorer, expand the web project and double-click the
MyNorthwind.edmx.

2. Right-click the diagram window and select Update model from DataBase in the
context menu.

3. In the Update Wizard, select the Order Details table. Make sure that the two check
boxes below the tree are checked, and click Finish.

The new schema is displayed, with a 1..n relation between the Order entity and the new
Order_Detail entity.

Adding Queries
In this sample, it is not necessary to add queries to the Domain Service class. Should that,
however, be needed after a modification to the EDMX model, the class
MyNorthwindDomainService cannot be regenerated, or else all our changes would be lost.
Adding new queries or metadata is a frequent operation when working on real-life appli-
cations. There are two ways to handle this issue:

. Generate a new, different Domain Service class and copy/paste the generated
methods to the original Domain Service class. For clarity, it is even possible to use
the partial keyword to split the original Domain Service class into multiple files.
This option is detailed at http://www.galasoft.ch/sl4-domainservice.

. Adding the new queries and metadata manually. This is probably the easiest way for
small changes.

Deleting the Order_Detail Instances
When an Order instance is deleted, the corresponding Order_Detail instances need to be
found and deleted too. Follow these steps:

CHAPTER 13 Creating Line-of-Business Applications354

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-domainservice

ptg

1. Open MyNorthwindDomainService.cs.

2. Find the DeleteOrder method and modify it as shown in Listing 13.19. This method
now looks for and deletes all the Order_Detail objects corresponding to the Order
instance that must be deleted.

LISTING 13.19 Modifying the Server-Side DeleteOrder Method

public void DeleteOrder(Order order)

{

var orderDetails = from detail in ObjectContext.Order_Details

where detail.OrderID == order.OrderID

select detail;

foreach (var detail in orderDetails)

{

ObjectContext.Order_Details.DeleteObject(detail);

}

if ((order.EntityState == EntityState.Detached))

{

this.ObjectContext.Orders.Attach(order);

}

this.ObjectContext.Orders.DeleteObject(order);

}

Deleting the Selected Order from the Client
Now that the server-side infrastructure is in place, the client-side application can be modi-
fied with the following steps to delete the order that is currently selected in the DataGrid:

1. Open MainViewModel.cs and add a new RelayCommand to this class. This time, the
generic version of the class is used: RelayCommand<Order>. The CommandParameter
will be set to the selected Order in the DataGrid. The command is shown in
Listing 13.20.

LISTING 13.20 Adding a DeleteOrderCommand

public RelayCommand<Order> DeleteOrderCommand

{

get;

private set;

}

2. In the MainViewModel constructor, create the command as in Listing 13.21 below
SaveCommand and AddCommand.

Refactoring the Application to MVVM 355

1
3

 From the Library of Wow! eBook

ptg

LISTING 13.21 Creating the DeleteOrderCommand

DeleteOrderCommand = new RelayCommand<Order>(DeleteOrder);

3. Finally, implement the client-side DeleteOrder method as shown in Listing 13.22.

LISTING 13.22 Implementing the DeleteOrder Method on the Client

1 private void DeleteOrder(Order order)

2 {

3 if (!_context.Orders.Contains(order))

4 {

5 return;

6 }

7

8 var confirmation = string.Format(

9 “Do you want to delete the order # {0}?”,

10 order.OrderID);

11

12 if (AskConfirmation(confirmation))

13 {

14 IsBusy = true;

15 _context.Orders.Remove(order);

16 _context.SubmitChanges(DeleteOrderCompleted, order);

17 }

18 }

19

20 private void DeleteOrderCompleted(SubmitOperation op)

21 {

22 _numberOfOrders--;

23 IsBusy = false;

24 }

. On line 12, we use the AskConfirmation method that was implemented before (from
the IDialogService interface).

. When SubmitChanges is called on line 16, the current Order is passed to the method
as the user state. Later, when the asynchronous operation is completed, we can
retrieve this object and finish handling it.

. The DeleteOrderCompleted callback is only executed when the operation on the
server is finished.

4. Build the application.

5. Open MainPage.xaml in the designer and add a third button to the StackPanel on
the right of the page, below the Save and Add buttons. Set the Content property to
Delete.

CHAPTER 13 Creating Line-of-Business Applications356

 From the Library of Wow! eBook

ptg

6. With the Delete button selected, locate the Command property in the Properties editor
and apply a data binding to the DeleteOrderCommand on the view-model.

7. The DeleteOrderCommand expects a parameter of type Order. Select the
CommandParameter property of the Delete button and open the data binding editor.

8. In the Source section of the data binding editor, select ElementName and then the
orderDataGrid.

9. In the Path section, select the SelectedItem property.

10. Run the application, select an item in the grid and click the Delete button. Then,
load the Orders table data in the Server Explorer again, and check that the Order
you just deleted is gone from the table indeed.

With this last method, the CRUD operations are implemented for the Orders table. In the
remaining sections of the chapter, we add some features demonstrating various functions
of WCF RIA Services, such as validation and client-side queries.

Validating the Values
The current state of the application allows entering invalid values. For example, try enter-
ing a negative amount in the Freight columns and clicking Save. The value is saved in
the database, which is not acceptable. To solve this, validation rules should be added to
the columns.

WCF RIA Services has an advanced validation mechanism that is also very easy to use
thanks to the automatic duplication of the rules on the server and the client. To add
range validation to the Freight column, follow these steps:

1. In the Solution Explorer, expand the MyNorthwind.Web project and open the file
named MyNorthwindDomainService.metadata.cs. This file was generated when the
Domain Service class was created, because we selected the corresponding option in
the dialog shown at Figure 13.4.

2. Locate the class named OrderMetadata and the property named Freight. This value
is a Nullable<decimal>, which means that it can take any value in the decimal range
as well as the null value.

3. Modify the property by adding an attribute as shown in Listing 13.23.

LISTING 13.23 Adding a Validation Rule to the Freight Column

[Range(0, 10000)]

public Nullable<decimal> Freight { get; set; }

4. In addition, the ShipCity column should be compulsory. To do that, modify this
property by adding a Required attribute, as shown in Listing 13.24.

Refactoring the Application to MVVM 357

1
3

 From the Library of Wow! eBook

ptg

LISTING 13.24 Adding a Validation Rule to the ShipCity Column

[Required]

public string ShipCity { get; set; }

5. Run the application and try setting a negative value in the Freight column of one
of the orders. A validation error appears as shown in Figure 13.7.

CHAPTER 13 Creating Line-of-Business Applications358

FIGURE 13.7 Validation error.

6. Correct the error. Then try deleting the ShipCity value. Another validation error is
displayed.

Validation rules can easily be added on each property as needed, and combined. (For
example, a Required attribute can be combined with a Range attribute.) Other validation
rules exist, and custom ones can be added, as shown in the “Creating Custom Validation
Rules” section of this chapter.

Detecting Errors When Saving
Even though the validation rules are active and detect errors, they do not prevent faulty
Order instances from being saved. However, attempting to save faulty objects will cause
an exception to occur on the server. To prevent this, it is necessary to check the entities
and prevent saving if an invalid state is detected. The SaveChanges method that was
implemented in the MainViewModel class in Listing 13.10 can be modified as shown in
Listing 13.25.

LISTING 13.25 Checking Before Saving

public void SaveChanges()

{

foreach (var entity in _context.Orders)

{

if (entity.HasChanges

&& entity.HasValidationErrors)

{

ShowMessage(“Impossible to save”);

return;

}

}

IsBusy = true;

_context.SubmitChanges(SaveChangesCompleted, null);

}

 From the Library of Wow! eBook

ptg

To test this, run the application and set the Freight column of one of the orders to a
negative value, and then click the Save button. The message should appear and the value
is not saved to the server.

Providing More Validation
The following validation rules are available “out of the box.” Remember that you saw
some of them already in Chapter 8:

. Required: The property marked with this attribute must be present.

. StringLength: Specifies the length of a string property. This attribute can be used to
specify the maximum and (optionally) the minimum length of a string.

. Range: For numeric values, specifies the minimum and maximum value for the prop-
erty.

. RegularExpression: For string properties, allows specifying a regular expression that
the value is checked against. Regular expressions are very versatile (and rather
complex) expressions and allow for a large range of usage.

All the validation attributes can provide additional information to the user, in case the
built-in error text is not satisfying. To do this, in the validation attribute, use the named
parameter ErrorMessage, as shown in Listing 13.26.

LISTING 13.26 Providing a Custom Error Message

[Required(ErrorMessage=”Please enter a name for the city”]

public string ShipCity { get; set; }

Creating Custom Validation
The built in validation attributes allow for a wide range of scenarios, especially the
RegularExpression attribute for string values. Should your scenario not be covered by the
built-in attributes, it is also possible to create your own. For more information about
custom validation, check the following resources:

. Nikhil Kothari has a Silverlight TV interview about this specific topic at
http://www.galasoft.ch/sl4-validationtv.

. Also by Nikhil Kothari, a very complete blog post about validation in WCF RIA
Services is available at http://www.galasoft.ch/sl4-validationblog.

Generated Validation (Database Rules)
Even if no validation rules are entered explicitly, the WCF RIA Services import rules from
the database and create the corresponding client-side rules. To see an example, follow
these steps:

Refactoring the Application to MVVM 359

1
3

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-validationtv
http://www.galasoft.ch/sl4-validationblog

ptg

1. Start the MyNorthwind Silverlight application.

2. In the first row, try to change the ShipCity to any name with more than 15 letters
and tab out of the field.

3. A validation error mentions that the field ShipCity may not be longer than 15 char-
acters.

4. This validation rule is defined in the Domain Context class. To verify this, in the
Solution Explorer, select the Silverlight project and then click the “Show All Files”
ToolTip button in the Solution Explorer toolbar.

5. In the Generated_Code folder, open MyNorthwind.Web.g.cs. This is the client-side
Domain Context class.

6. Find the Order class and the ShipCity property and notice that it has a StringLength
attribute.

This attribute was generated because it is defined in the database, as shown by the follow-
ing steps:

1. In Visual Studio, open the Server Explorer again.

2. Expand the northwnd.mdf1 connection, the Tables folder and the Orders table.

3. Click the ShipCity field and click F4 to display the Properties. The Length for this
field is set to 15 characters.

Having the rules generated on the client helps to improve the user experience by mini-
mizing the amount of data that must be transmitted to the server. By catching the error
early, before the database rejects the value, the stability and the responsiveness of the
application is improved.

At this point, the validation rules are defined on the server (and generated on the client
in the data model). We will talk about displaying these errors in Chapter 14, “Enhancing
Line-of-Business Applications and Running Out of the Browser.”

Filtering the Data
An interesting feature of the WCF RIA Services is the ability to create a query on the
client and to run it on the server. We can use this feature to refine the server-side query
named GetOrdersByCity with additional criteria with the following steps:

1. Reopen the Northwind.Web solution that was created in earlier in this chapter, and
then open MainViewModel.cs.

2. Add the method shown in Listing 13.27.

CHAPTER 13 Creating Line-of-Business Applications360

 From the Library of Wow! eBook

ptg

LISTING 13.27 LoadAllOrdersByCity Method

1 public void LoadAllOrdersByCityAndShip(string cityStart)

2 {

3 IsBusy = true;

4 _pageNumber = 0;

5 var query = from o in _context.GetOrdersByCityQuery(cityStart)

6 where o.ShipName.StartsWith(“V”)

7 orderby o.ShipCity

8 orderby o.OrderID

9 select o;

10

11 _currentQuery = query;

12 _context.Load(query, LoadAllOrdersCompleted, null);

13 Orders.Filter = o =>

14 {

15 var order = o as Order;

16 return order.ShipCity.StartsWith(cityStart)

17 && order.ShipName != null

18 && order.ShipName.StartsWith(“V”);

19 };

20 }

. On lines 5 to 9, we create a new client-side query that leverages the server-side
query implemented earlier. Note that this query is not executed yet, it is only
defined. The query code will be sent to the server and executed there. No data is
loaded until the Load method is called.

. On line 12, we call the well-known Load method on the service, and provide the
query as parameter. Note that we reuse the LoadAllOrdersCompleted event handler to
update the DataGrid.

. Lines 13 to 19 update the Filter property on the Orders PagedCollectionView. An
alternative would be to clear the Domain Context before executing the query, but
that is not a very good option, because the state of the data controls will be lost.
Instead, using the Filter (while repeating the query’s criteria) is a cleaner way to
proceed.

3. Open MainPage.xaml in the Visual Studio designer.

4. Select the CityStartTextBox in the top-right corner.

5. In the Properties editor, click the Events tab.

6. Double-click in the LostFocus event. This adds an event handler in the code behind.

7. Modify the event handler as shown in Listing 13.28.

Refactoring the Application to MVVM 361

1
3

 From the Library of Wow! eBook

ptg

LISTING 13.28 Handling the LostFocus Event

private void CityStartTextBox_LostFocus(

object sender, RoutedEventArgs e)

{

var vm = LayoutRoot.DataContext as MainViewModel;

if (vm != null)

{

vm.LoadAllOrdersByCityAndShip(CityStartTextBox.Text);

}

}

8. Run the application, enter a search string in the CityStartTextBox (for example, L),
and then tab out of the box. After a short delay, orders for cities starting with L and
whose ship name starts with the letter V should be displayed.

CHAPTER 13 Creating Line-of-Business Applications362

T I P

Using Commands

Having to resort to code behind to handle the LostFocus event is not a big issue, but it
would be even preferable to use a command on the view-model. Unfortunately, this is not
possible out of the box in Silverlight because commands can only be placed on elements
deriving from ButtonBase (Button, CheckBox, and so on), and the command will only be
invoked when the element is clicked.

There is a way to use commands with any element and any event by the way of a Blend
behavior. We talk about this in Chapter 19, “Authentication, Event to Command Binding,
Random Animations, Multitouch, Local Communication, and Bing Maps Control.”

Showing Feedback While Processing
To enhance the user experience, showing feedback to the user when an asynchronous
operation is performed is a great idea. The view-model class already has a property named
IsBusy that is set to true when an asynchronous operation is in progress. The
BusyIndicator control can use this property to show feedback with the following steps:

1. With MainPage.xaml open in the visual designer, select the BusyIndicator control in
the Toolbox. Should that control not be present, you must add it using the steps
that are described earlier in this chapter, in the “Adding a Pager” section.

2. Make sure that the LayoutRoot is selected in the Document outline, and then drag
the BusyIndicator on the main page.

3. Right-click the BusyIndicator and select Reset Layout, All from the context menu.

4. Set the Grid.Column to 0, Grid.ColumnSpan to 2, Grid,Row to 0, Grid.RowSpan to 3.

 From the Library of Wow! eBook

ptg

5. Using the data binding editor, bind the BusyIndicator’s IsBusy property to the
MainViewModel’s IsBusy property.

6. Run the application. The BusyIndicator is now visible when an asynchronous opera-
tion is in progress.

Sharing Code
Before we move on to the next chapter, let’s mention an interesting feature of WCF RIA
Services allowing sharing code between the server and the client. This is especially useful
if you have utility classes that are used on the server and want to include this code in the
client application, too.

To share code in a WCF RIA Services application, just change the server-side code file’s
extension to .shared.cs. This will automatically force WCF RIA Services to generate the
corresponding client-side file. However, note the following:

. It is a bit confusing that the shared file is not visible in the Solution Explorer. If not
carefully documented, the shared feature is not immediately discoverable by the
developer who uses it. A better way to share code is to use the linked files feature of
Visual Studio: Select Add, Existing Item from the context menu, and then click the
small arrow to the right of the Add button and select Add as Link. This creates a
link to the physical file and appears as such in the Solution Explorer.

. Because the source code is shared between the server (.NET) and the client
(Silverlight), only features available in both frameworks can be used.

Summary
WCF RIA Services went from interesting experiment to powerful framework before it was
even officially released. It is also a framework that benefited from a lot of feedback from
the developer community, and has been continuously improved since its inception.
Although the information in this chapter will get you up to speed and allow you to build
LOB applications, it is not possible to show all the framework’s features in only one
chapter.

In this chapter, we demonstrated some of the visual designer’s features and the
DomainDataSource element that allows creating data application with almost no code.
Although this feature sounds very attractive at first and allows for very rapid application
development, the experience shows that such tightly coupled applications are very hard
to test, maintain, and extend. For this reason, the decoupled pattern shown in the second
half of the chapter is preferable.

In the next chapter, we continue to enhance the application and see how we can also
take it out of the browser and run it in a very similar fashion to a normal desktop
application.

Summary 363

1
3

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Continue our discussion of
line-of-business applications
with WCF RIA services.

. Add server-side paging to our
LOB application.

. Display errors when they
occur.

. Talk about scenarios where
multiple clients access the
data and reconciling them.

. Show that Silverlight supports
copy-paste operations.

. Implement printing in our
application.

. Install, uninstall, debug and
setup the application
out-of-the-browser (OOB).

. Show how to check for
updates and install them in
OOB.

. Save files in isolated storage
and in the My Documents
folder.

. Run the application offline
and check network
connectivity.

CHAPTER 14

Enhancing
Line-of-Business

Applications and
Running Out of the

Browser

In this chapter, we continue to work on the line-of-busi-
ness application that we created in Chapter 13, “Creating
Line-of-Business Applications.”

In the second part of this chapter, we talk about taking
Silverlight out of the browser and creating standalone
applications that are very similar to the programs that we
use every day on Windows and Macintosh.

Enhancing LOB Applications
The MyNorthwind application created in Chapter 13 is
already able to connect to the WCF RIA Service to get and
save data from and into the database. This is a nice start,
but it needs to be enhanced to be more functional, with
features such as server-side paging and printing.

Adding Paging
In Chapter 8, “Using Data Controls,” we used the
PagedCollectionView to page through large sets of data. In
that case, the data was already available in the client appli-
cation. In this section, we will see how to implement
server-side paging with WCF RIA Services. The big differ-
ence is that instead of preloading all the data on the client
and then paging through it, the pages will be fetched on
demand from the server.

 From the Library of Wow! eBook

ptg

In the beginning of this chapter, we already implemented paging with a control called the
DataPager working together with the DomainDataSource. After the DomainDataSource was
removed, though, paging must be done in code.

There are two steps involved in creating a paging function in this application:

. Getting the total numbers of rows that a query is returning

. Using the current query, skip a number of rows (depending on the page which is
currently displayed) and then taking a number of rows (depending on the page size)

Getting the Number of Rows
To get the total number of rows, a server-side method is added to the
MyNorthwindDomainService class as shown in Listing 14.1.

LISTING 14.1 Server Side Method to Get the Numbers of Rows

public int GetNumberOfOrders(string cityStart)

{

return GetOrdersByCity(cityStart).Count();

}

Once the method is added to the server, it can be called on the client in an asynchronous
manner, as you will see in Listing 14.5.

Paging from the Client
To wire up buttons or menus to the page controls (back and forward), the best way is to
declare commands in the MainViewModel class as shown in Listing 14.2, just as we did
before for the Add, Delete, and Save operations. We also declare a Boolean flag named
_isFilterApplied that we will use later to disable paging.

LISTING 14.2 Declaring the GoBackCommand and GoForwardCommand

public bool _isFilterApplied;

public RelayCommand GoForwardCommand

{

get;

private set;

}

public RelayCommand GoBackCommand

{

get;

private set;

}

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

366

 From the Library of Wow! eBook

ptg

These commands are created in the MainViewModel constructor as shown in Listing 14.3.
(These lines are placed right after the SaveCommand, AddCommand, and DeleteCommand are
created.)

LISTING 14.3 Initializing GoBackCommand and GoForwardCommand

1 GoForwardCommand = new RelayCommand(

2 GoForward,

3 () => !_isFilterApplied

4 && (_pageNumber + 1) * PageSize < _numberOfOrders);

5

6 GoBackCommand = new RelayCommand(

7 GoBack,

8 () => !_isFilterApplied

9 && _pageNumber > 0);

. On line 2, we assign a method named GoForward (defined in Listing 14.4 below) to
the Execute delegate of the GoForwardCommand. Similarly, the method GoBack is
assigned to the GoBackCommand’s Execute delegate.

. The CanExecute delegate of the GoForwardCommand is calculated according to the
current page number, the page size, the number of orders and if a filter (by city
name) has been applied. Paging is only enabled when no filter is applied to the
data. (These attributes and constant have been defined in Listing 13.5.) This will
disable/enable the button using this command accordingly. The number of orders
for the current query will be fetched from the server in Listing 14.5

. The CanExecute delegate of the GoBackCommand is easier to calculate (on line 7): This
command can be executed if the page number is bigger than 0.

Finally, the GoForward and GoBack methods are shown in Listing 14.4.

LISTING 14.4 GoBack and GoForward Methods

1 public void GoForward()

2 {

3 var query = _currentQuery.Skip(++_pageNumber * PageSize)

4 .Take(PageSize);

5

6 _context.Orders.Clear();

7 _context.Load(query, LoadAllOrdersCompleted, null);

8 }

9

10 public void GoBack()

11 {

12 var query = _currentQuery.Skip(--_pageNumber * PageSize)

13 .Take(PageSize);

14

Enhancing LOB Applications 367

1
4

 From the Library of Wow! eBook

ptg

15 _context.Orders.Clear();

16 _context.Load(query, LoadAllOrdersCompleted, null);

17 }

. On line 3, we get the current query (depending on which method was executed,
LoadAllOrders or LoadOrdersByCity). The query is extended by the Skip and Take
methods, which “jump” to the correct page.

. On line 6, the current Orders table on the client is cleared.

. Line 7 loads the query, using the same LoadAllOrdersCompleted event handler that
all other queries are using.

. The same happens for the GoBack method on lines 10 to 17.

The LoadAllOrders and LoadAllOrdersByCity methods used to perform the initial query on
the data must also be modified as shown in Listing 14.5. The code in this listing replaces
the original code in the existing application.

LISTING 14.5 Calling the Server-Side Method

1 public void LoadAllOrders()

2 {

3 IsBusy = true;

4 _pageNumber = 0;

5 _isFilterApplied = false;

6 _context.Orders.Clear();

7 _currentQuery = _context.GetOrdersQuery().OrderBy(o => o.ShipCity);

8 _context.GetNumberOfOrders(string.Empty, GetNumberOfOrdersCompleted, null);

9 _context.Load(_currentQuery.Take(PageSize), LoadAllOrdersCompleted, null);

10 }

11

12 public void LoadAllOrdersByCityAndShip(string cityStart)

13 {

14 IsBusy = true;

14 _pageNumber = 0;

16 _isFilterApplied = false;

17 var query = from o in _context.GetOrdersByCityQuery(cityStart)

18 where o.ShipName.StartsWith(“V”)

19 orderby o.ShipCity

20 orderby o.OrderID

21 select o;

22

23 _currentQuery = query;

24 _context.GetNumberOfOrders(cityStart, GetNumberOfOrdersCompleted, null);

25 _context.Load(_currentQuery.Take(PageSize), LoadAllOrdersCompleted, null);

26 }

27

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

368

 From the Library of Wow! eBook

ptg

28 private void LoadAllOrdersCompleted(LoadOperation<Order> op)

29 {

30 Orders = new ObservableCollection<Order>(_context.Orders);

31 GoForwardCommand.RaiseCanExecuteChanged();

32 GoBackCommand.RaiseCanExecuteChanged();

33 IsBusy = false;

34 }

35

36 public void GetNumberOfOrdersCompleted(InvokeOperation<int> op)

37 {

38 _numberOfOrders = op.Value;

39 GoForwardCommand.RaiseCanExecuteChanged();

40 }

. Lines 7 and 24 have been added and require the current number of orders corre-
sponding to the current query.

. Whenever a query is completed, the GoBackCommand and GoForwardCommand’s
CanExecuteChanged event is raised. This ensures that the state (enabled/disabled) of
the command is recalculated, and the controls that are bound to these commands
are enabled or disabled accordingly.

. Lines 36 to 40 are the callback for the asynchronous GetNumberOfOrders method. On
line 38, the number of orders corresponding to the current query is saved in an
attribute.

. On line 39, the GoForwardCommand’s CanExecuteChanged is raised. This is necessary
because the state of the command (enabled/disabled) depends on the number of
orders, according to the calculation in Listing 14.3, lines 3 and 4.

To try paging, open MainPage.xaml and add two buttons (Prev and Next) below the Save,
Add, and Delete buttons. Bind their Command property to the GoBackCommand and
GoForwardCommand, respectively, on the MainViewModel.

The sample in this chapter is not the most sophisticated. To improve it, it would be nice
to always preload one page in advance, and to cache the data. This way, the paging action
would be faster. Another nice implementation is the endless scrolling already mentioned
in Chapter 8.

Showing Errors
Many issues can occur between the client and the server. For example, it is possible that
the server is down or that the client is not connected. In case an error occurs while data is
fetched or saved, showing an error message to the client is absolutely necessary to avoid
any confusion.

When an asynchronous operation is executed in WCF RIA Services, the callback receives
one parameter with all the information about the result and (in case this is needed) what
went wrong. We can use this information with the following steps:

Enhancing LOB Applications 369

1
4

 From the Library of Wow! eBook

ptg

1. Add a new method to the MainViewModel class as shown in Listing 14.6. This method
uses the IDialogService to show the error to the user. Notice that the method
MarkErrorAsHandled is called on the OperationBase parameter. If this is omitted, the
application will crash.

LISTING 14.6 ShowError Method

private void ShowError(OperationBase op)

{

IsBusy = false;

if (op == null

|| op.Error == null)

{

ShowMessage(“Unknown error”);

return;

}

ShowMessage(

“There was an error:”

+ Environment.NewLine

+ op.Error.Message);

op.MarkErrorAsHandled();

}

2. Modify the existing callbacks as shown in Listing 14.7.

LISTING 14.7 Modifying the Callbacks

private void LoadAllOrdersCompleted(LoadOperation<Order> op)

{

if (op.HasError)

{

ShowError(op);

return;

}

GoForwardCommand.RaiseCanExecuteChanged();

GoBackCommand.RaiseCanExecuteChanged();

IsBusy = false;

}

private void SaveChangesCompleted(SubmitOperation op)

{

if (op.HasError)

{

ShowError(op);

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

370

 From the Library of Wow! eBook

ptg

return;

}

IsBusy = false;

}

private void DeleteOrderCompleted(SubmitOperation op)

{

if (op.HasError)

{

ShowError(op);

return;

}

_numberOfOrders--;

IsBusy = false;

}

Reconciling Data
A common scenario with client/server applications is that two or more clients access the
data simultaneously. In this case, it is very important to prevent putting the database in
an inconsistent state. For example, if the first client deletes a row of data, the second
client should not be allowed to modify this entry after it has been removed from the
database. WCF RIA Services watches the data for us and raises errors if an inconsistent
operation is attempted. The following steps demonstrate this:

1. Start the application.

2. Copy the application’s URL from the web browser’s location bar.

3. Start a second window of the web browser (or another supported web browser) on
the same computer and paste the address you copied in Step 2. This loads a second
instance of the Silverlight application.

4. In the first Silverlight application, select the first row in the DataGrid and change
the Freight column to 55. Then click the button Save.

5. Note that the display on the second application is not automatically updated.
However, click the Next button (bound to the GoForwardCommand) to navigate to the
next page, and then the Prev button (bound to the GoBackCommand). Notice that the
Freight cell has now been updated to 55 as entered in Step 4.

This case was not creating a conflict, and didn’t leave the database in an inconsis-
tent state. This is why it didn’t raise an error. Of course, it would be nice if all the
clients were notified when a row is modified. This doesn’t occur automatically, but
must be implemented manually (for example, with duplex polling, as you will see in
Chapter 18, “Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling,
Notification Windows, and Splash Screens”).

Enhancing LOB Applications 371

1
4

 From the Library of Wow! eBook

ptg

6. In the first client, select the first row of data. Remember the Order ID, and then
click the Delete button.

7. In the second client, try to change the Freight value in the order you just deleted
(the row with the same Order ID). Then click the Save button.

This last step causes an error to be displayed. To identify precisely which entities are
causing the issue, the EntitiesInError collection should be examined. For example, the
SaveChangesCompleted method can be modified as shown in Listing 14.8.

LISTING 14.8 Detecting Conflicts and Refreshing the Data

private void SaveChangesCompleted(SubmitOperation op)

{

if (op.HasError)

{

if (op.EntitiesInError != null

&& op.EntitiesInError.Count() > 0)

{

var ordersError = string.Empty;

foreach (Order order in op.EntitiesInError)

{

ordersError

= string.Join(“ “, ordersError, order.OrderID);

}

ShowMessage(string.Format(

“Refreshing because of inconsistent data:{0}”,

ordersError));

op.MarkErrorAsHandled();

_context.Orders.Clear();

_context.Load(

_currentQuery.Take(PageSize),

LoadAllOrdersCompleted,

null);

}

else

{

ShowError(op);

}

return;

}

IsBusy = false;

}

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

372

 From the Library of Wow! eBook

ptg

Copying and Pasting Rows
Silverlight 4 supports Clipboard access for the controls that have it enabled. For example,
the DataGrid allows selecting rows and copying them to the Clipboard, as shown with the
following steps:

1. Run the MyNorthwind Silverlight application and load some rows.

2. Select the rows that you want to copy. The DataGrid allows multiple selections by
pressing the Ctrl key while the mouse is clicked. Contiguous rows can also be
selected by pressing the Shift key while clicking the rows.

3. Press Ctrl+C on the keyboard. This causes a prompt to appear. Note that the user
can choose to save the permission, so that he will be prompted only once for the
current application.

4. Open a new text file in a text editor (for example, Notepad) and paste the rows.

Copying and Pasting Without Prompt (Elevated Permissions Only)
If the application runs with elevated permissions (as it will later in this chapter), the
Clipboard can be accessed without the user having to confirm the action.

Revoking the Clipboard Access
Should the user decide to deny Clipboard access after he had allowed it, the Permissions
tab in the Microsoft Silverlight Configuration dialog shown in Figure 14.5 further in this
chapter can be used. In this tab, the permissions for each application can be removed (in
which case subsequent attempts will have to be confirmed again) or even denied (in
which case any subsequent attempt will fail).

Next to the Clipboard access, the user is asked for permission when the application wants
to stay open in full-screen mode even when it does not have the focus (for example,
when multiple monitors are used) and when the webcam and microphone are activated.
You’ll learn more about these features in Chapter 16, “Using Effects and Recording
Media.”

Printing
Silverlight 4 introduces printing in a very customizable way. It allows creating a print
view from scratch in XAML. It is thus possible to create a completely different view of the
same data for the printer. In this section, we will modify our MyNorthwind application to
add a friendly dialog, load a data set from the WCF RIA Service, and create a printed
report.

Of course, printing is not just limited to data; any XAML tree can be sent to the printer.
Note, however, that the output is bitmap based, which explains why the process is rela-
tively slow. (One page represents a large number of pixels, and of kilobytes.) This will
certainly be improved in further versions of Silverlight.

Enhancing LOB Applications 373

1
4

 From the Library of Wow! eBook

ptg

Adding a Child Window
The following steps add a new ChildWindow to the application and use it to load a differ-
ent set of data from the service. We need a different set because paging on the printer is
done in a different way than in the online application. The whole data set is needed on
the client, and pages are created on demand, in an asynchronous manner. For large
number of data rows, this can obviously last quite a long time. Also, the application is
blocked while printing is processed. To add a new ChildWindow follow these steps:

1. Open the Northwind.Web application in Visual Studio.

2. In the Silverlight project, add a new item. From the Silverlight category in the Add
New Item dialog, select a Silverlight Child Window and name it PrintWindow.xaml.

3. In PrintWindow.xaml, set the Title property to Printing, and then add the markup
in Listing 14.9 to the LayoutRoot Grid.

LISTING 14.9 Adding a Message

<TextBlock HorizontalAlignment=”Center”

Margin=”0,30,0,0”

x:Name=”MessageTextBlock”

Text=”Initializing...”

VerticalAlignment=”Top” />

4. In PrintWindow.xaml.cs, modify the PrintWindow constructor as shown in Listing
14.10. The constructor receives the filter with which the query will be executed, and
loads the orders accordingly.

LISTING 14.10 Constructing the ChildWindow

private OperationBase _operation;

private bool _cancel;

private int _printedItems;

private IEnumerable<Order> _ordersToPrint;

public PrintWindow(string cityStart)

{

InitializeComponent();

OKButton.IsEnabled = false;

if (string.IsNullOrEmpty(cityStart))

{

MessageTextBlock.Text = string.Format(

“Loading all orders”,

cityStart);

}

else

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

374

 From the Library of Wow! eBook

ptg

{

MessageTextBlock.Text = string.Format(

“Loading orders for {0}”,

cityStart);

}

LoadOrders(cityStart);

}

5. Implement the LoadOrders method and its callback LoadOrdersCompleted as shown
in Listing 14.11.

LISTING 14.11 Loading the Orders

private void LoadOrders(string cityStart)

{

var context = new MyNorthwindDomainContext();

_operation = context.Load(

context.GetOrdersByCityQuery(cityStart),

LoadCompleted,

null);

}

private void LoadCompleted(LoadOperation<Order> op)

{

MessageTextBlock.Text = string.Format(

“{0} orders loaded, ready to print”,

op.Entities.Count());

_ordersToPrint = op.Entities;

OKButton.IsEnabled = true;

}

6. Modify the CancelButton_Click event handler as shown in Listing 14.12. If a long-
lasting operation (loading a large number of rows) is conducted, clicking this button
cancels the operation and closes the ChildWindow.

LISTING 14.12 Canceling the Operation

private void CancelButton_Click(object sender, RoutedEventArgs e)

{

_cancel = true;

if (_operation != null

&& _operation.CanCancel)

{

Enhancing LOB Applications 375

1
4

 From the Library of Wow! eBook

ptg

_operation.Cancel();

}

DialogResult = false;

}

Opening the Print Window
To open the print window from the main page, follow these steps:

1. In the ViewModel folder, select Add, Class from the context menu and name the
new class IPrintService.cs. (Here, too, this is actually an interface, but there is no
Add, New Interface dialog.) Implement this new interface as shown in Listing 14.13.

LISTING 14.13 IPrintService Interface

public interface IPrintService

{

void PrintOrders();

}

2. In MainViewModel.cs, copy the GoBackCommand declaration, paste it and rename the
pasted copy PrintCommand.

3. Copy the DialogService declaration and paste it; change the copy’s type to
IPrintService, and rename it from DialogService to PrintService.

4. In the MainViewModel constructor, below the GoBackCommand instantiation, create a
new PrintCommand with the code shown in Listing 14.14.

LISTING 14.14 Creating the PrintCommand

PrintCommand = new RelayCommand(

() =>

{

if (PrintService != null)

{

PrintService.PrintOrders();

}

});

5. In MainPage.xaml.cs, add IPrintService next to the UserControl and
IDialogService declarations (where the public partial class MainPage is declared).

6. In the MainPage constructor, below the line where the vm.DialogService is set to
this, do the same for vm.PrintService.

7. In MainPage.xaml.cs, implement the PrintOrders method as shown in Listing 14.15.
Then build the application.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

376

 From the Library of Wow! eBook

ptg

LISTING 14.15 PrintOrders Method

public void PrintOrders()

{

var printWindow = new PrintWindow(CityStartTextBox.Text);

printWindow.Show();

}

8. In MainPage.xaml, below the Delete button in the StackPanel on the right side, add
a button with the same properties; set the Content to Print and bind its Command
property to the PrintCommand property on the MainViewModel.

9. Build and run the application. Click the Print button. This opens the PrintWindow
and after a short delay shows a message indicating that a number of orders have
been loaded. Click the Cancel button to close the window.

Printing the Loaded Orders
We will now prepare an XAML document to be sent to the printer. Note that this could
be done completely in code. However, creating a separate UserControl as we do here has
the huge advantage to allow editing the XAML markup in the Visual Studio designer or in
Blend, which is a very convenient way to customize what will be sent to the printer. To
do this, follow these steps:

1. Add a new item to the Silverlight project and select a Silverlight User Control from
the Silverlight category. Name it PrintedReport.xaml.

2. In PrintedReport.xaml, add a DataTemplate in the UserControl.Resources as shown
in Listing 14.16. This is the element that will used to render each Order that must
be printed. Note that Expression Blend can be used to customize this template visu-
ally. (However, the Visual Studio designer cannot do this at this time.)

LISTING 14.16 Creating a DataTemplate

<UserControl.Resources>

<DataTemplate x:Key=”OrdersTemplate”>

<StackPanel Margin=”10”>

<StackPanel Orientation=”Horizontal”>

<TextBlock Text=”Order ID: “

FontWeight=”Bold” FontSize=”14” />

<TextBlock Text=”{Binding OrderID}”

FontSize=”14” />

<TextBlock Text=” To: “

FontWeight=”Bold” FontSize=”14” />

<TextBlock Text=”{Binding ShipCity}”

FontSize=”14” />

</StackPanel>

<TextBlock Text=”{Binding Freight, StringFormat=\{0:C\}}”

Enhancing LOB Applications 377

1
4

 From the Library of Wow! eBook

ptg

FontSize=”36” />

<Rectangle Fill=”Blue” Height=”2” />

</StackPanel>

</DataTemplate>

</UserControl.Resources>

3. Modify the LayoutRoot Grid as shown in Listing 14.17.

LISTING 14.17 Setting Up the PrintedReport Markup

<Grid x:Name=”LayoutRoot”

Background=”White”>

<Grid.RowDefinitions>

<RowDefinition Height=”50” />

<RowDefinition Height=”*” />

<RowDefinition Height=”50” />

</Grid.RowDefinitions>

<TextBlock HorizontalAlignment=”Center”

TextWrapping=”Wrap”

Text=”Printed Orders Report”

VerticalAlignment=”Center”

FontWeight=”Bold” />

<TextBlock HorizontalAlignment=”Center”

TextWrapping=”Wrap”

Text=”Placeholder”

x:Name=”FooterTextBlock”

VerticalAlignment=”Center”

Grid.Row=”2” />

<StackPanel Grid.Row=”1”

x:Name=”OrdersPanel” />

</Grid>

4. Open MainPage.xaml.cs and implement the method PreparePage and the property
NumberOfOrders as shown in Listing 14.18. This is a very important part of the print-
ing process.

LISTING 14.18 Implementing the PreparePage Method

1 public int NumberOfOrders

2 { get; private set; }

3

4 public void PreparePage(

5 IEnumerable<Order> orders,

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

378

 From the Library of Wow! eBook

ptg

6 int startIndex, Size pageSize)

7 {

8 OrdersPanel.Children.Clear();

9 UpdateLayout();

10

11 foreach (var order in orders.Skip(startIndex))

12 {

13 var content = new ContentPresenter

14 {

15 Content = order,

16 ContentTemplate = Resources[“OrdersTemplate”] as DataTemplate

17 };

18

19 OrdersPanel.Children.Add(content);

20 UpdateLayout();

21

22 if (DesiredSize.Height >= pageSize.Height)

23 {

24 OrdersPanel.Children.Remove(content);

25 break;

26 }

27 }

28

29 NumberOfOrders = OrdersPanel.Children.Count;

30 FooterTextBlock.Text = string.Format(

31 “Orders {0} to {1}”,

32 startIndex + 1,

33 startIndex + NumberOfOrders);

34

35 UpdateLayout();

36 }

. Lines 1 and 2 declare a property that will be used later to know how many orders
are being printed on one page. This number depends on the size of the page, the
height of one order, the height of the header and footer, and so forth.

. On line 8, the OrdersPanel is cleared. This is a StackPanel that was prepared in
Listing 14.17.

. On line 9, the UpdateLayout method is called. This method is available on each
UIElement and forces it to recalculate its size. Note that calling this method in code
can lower the application’s performance, especially for complicated elements, and
should be used only where needed, like in this listing.

. On lines 11 to 27, each Order (after the orders already rendered were skipped) is
rendered by a ContentPresenter using the DataTemplate declared in Listing 14.16.

Enhancing LOB Applications 379

1
4

 From the Library of Wow! eBook

ptg

. Line 20 calls UpdateLayout again. This is needed because we want to know the exact
size of the document and decide when we stop adding orders to avoid being larger
than a physical page.

. Lines 22 to 26 perform this check. The pageSize is received from the method’s caller
and compared to the UserControl’s DesiredSize (another property available on every
UIElement). If the DesiredSize is too large, the last added element is removed, and
the loop is interrupted.

. Line 29 sets the NumberOfOrders property before the page’s footer is prepared on
lines 30 to 33. This shows how the XAML markup can be customized on each differ-
ent page.

. Finally, UpdateLayout is called one last time to ensure that the UserControl will be
rendered properly.

. Open PrintWindow.xaml.cs and modify the OKButton_Click event handler as shown
in Listing 14.19. The PrintDocument class is raising events when needed to obtain
new pages from the application.

LISTING 14.19 Preparing the PrintDocument

private void OKButton_Click(object sender, RoutedEventArgs e)

{

var printDoc = new PrintDocument();

printDoc.BeginPrint += BeginPrint;

printDoc.PrintPage += PrintPage;

printDoc.EndPrint += EndPrint;

printDoc.Print(“OrdersReport”);

}

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

380

WA R N I N G

Opening Dialogs

Calling the Print method on the PrintDocument class triggers the client computer to display
the print dialog. For security reasons, this operation must be initiated by the user (for
example, in response to a click event, as shown in Listing 14.19). If too many intermediary
operations are performed before the Print method is called, a SecurityException is thrown.

5. Implement the BeginPrint, PrintPage, and EndPrint events as shown in Listing
14.20. Note that a reference to the namespace System.Windows.Printing must be
added to the using directives.

 From the Library of Wow! eBook

ptg

LISTING 14.20 Handling the Print Events

1 private void BeginPrint(object sender, BeginPrintEventArgs e)

2 {

3 _printedItems = 0;

4 }

5

6 private void PrintPage(object sender, PrintPageEventArgs e)

7 {

8 var printedReport = new PrintedReport();

9 e.PageVisual = printedReport;

10

11 printedReport.PreparePage(

12 _ordersToPrint,

13 _printedItems,

14 e.PrintableArea);

15

16 _printedItems += printedReport.NumberOfOrders;

17 e.HasMorePages = _printedItems < _ordersToPrint.Count();

18 }

19

20 private void EndPrint(object sender, EndPrintEventArgs e)

21 {

22 DialogResult = true;

23 }

. Lines 1 to 4 are called when the Print button is clicked on the computer’s print
dialog. It signals the application that the print operation is started.

. Lines 6 to 18 are called every time that a new page is needed by the printer.

. Lines 8 and 9 create a new instance of the PrintedReport UserControl and assign it
to the PageVisual property on the PrintPageEventArgs parameter. The PrintDocument
will render this element and send it to the printer.

. Lines 11 to 14 call the PreparePage method on the PrintedReport control. Note the
use of e.PrintableArea, which is the Size of the page available on the printer, after
the margins have been removed.

. After the page has been prepared, the NumberOfOrders is retrieved and saved for later.

. Finally, line 17 checks whether additional pages are needed to render all the orders
and sets the HasMorePages property accordingly.

. Lines 20 to 23 are called when the printing operation is finished, and simply close
the PrintWindow.

Enhancing LOB Applications 381

1
4

 From the Library of Wow! eBook

ptg

To test this feature, run the application and click the Print button. To avoid killing trees
while testing, use the Microsoft XPS Document Writer or a PDF writer if available. This
will reproduce the printing experience digitally instead of using paper.

Printing is very useful for data applications, but it is of course also available for any other
Silverlight application thanks to the PrintDocument class, inside or outside of the browser
and without elevated permissions. Because the print dialog must be user initiated, and
because the print operation cannot be started without the user explicitly giving his
consent, security is respected.

Taking Silverlight Out of the Browser
Since Silverlight 3, it has been possible to install a Silverlight application on the user’s
hard drive and to run it in standalone mode, out of the browser (OOB), with or without
an internet connection. This creates an experience very similar to running a standard
Windows application. However, it has a few advantages:

. If the target PC does not have Silverlight installed, the setup experience is the same
as for Silverlight in the browser. The same framework is used! The install experience
is very fast and smooth, better than if the user had to install the full .NET frame-
work.

. The framework is the same in the browser and out of the browser. If the application
is installed with elevated permissions, additional features are available out of the
browser, but generally speaking it is exactly the same framework, and what you
already learned applies to this new kind of applications, too.

. The application can be run out of the browser on Apple computers, too. If the
computer supports Silverlight, your application can be installed and run. This is the
first time that standalone .NET applications can be installed on a Mac.

On the other hand, a Silverlight OOB application has fewer features than a Windows
Presentation Foundation (WPF) application. For example, there is no true 3D framework
in Silverlight (though the projection transform that we discuss in Chapter 17, “New
Transforms, Right Click, HTML Browser, WebBrowserBrush, and Isolated Storage” allows
some 3D-like effects), access to the host computer is limited, there is no real document
presentation framework, and so on.

The decision to go Silverlight OOB or
full WPF for a new application is not a
very easy one. Generally speaking, if
there is no “killer feature” that is
unavailable on Silverlight, it is easier to
start with a Silverlight OOB application,
even if it needs to be converted to WPF
later. Note, however, that the conversion
mechanism is not completely straight-
forward and requires some effort.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

382

WA R N I N G

Updating the OOB application

Unlike in browser applications, OOB applica-
tions are not updated automatically when a
new version is available. This can be a little
confusing at first. Further in the “Updating
the Application” section, you will see how the
application’s version can be checked and an
update triggered if needed.

 From the Library of Wow! eBook

ptg

Setting Up the Application
Installing the application out of the browser must be user initiated and requires addi-
tional settings. By default, your Silverlight application will not be installable out of the
browser. To check whether the application is set up for this kind of installation, just right-
click the application surface while it is running in the browser. If a context menu shows
“Install [name] out of the browser” as shown in Figure 14.1, the application is ready for
installation.

If this is not the case, however, the project properties need to be modified as follows:

1. Reopen the WCF RIA Services application that we created in Chapter 13 and modi-
fied in the first half of this chapter. This will be our basis for the next exercises. If
you want to avoid changing this application, copy the folder containing it to
another location before opening it.

2. In the Solution Explorer, right-click the Silverlight project and select Properties from
the context menu.

3. Select the Silverlight tab. Then, check Enable Running the Application Out of the
Browser check box.

4. Run the application and right-click the page. Note that you must make sure that
you click the Silverlight surface, and not on the HTML page. For the sample applica-
tion created in Chapter 13, the whole surface is filled by the Silverlight application,
so there is no confusion possible.

5. In the context menu shown in
Figure 14.1, select Install
MyNorthwind.Silverlight onto
this Computer.

6. In the Install application dialog
shown in Figure 14.2, check both
check boxes confirming the
shortcut locations: Start menu
and Desktop. Then click OK.

The application opens in standalone
mode, in its own window. The web
browser remains open, but you can
now close it. The DataGrid and the rest
of the UI that was created in Chapter
13 are visible, and the data is loaded in
the grid: Even though the application is running out of the browser, it connects to the
WCF RIA server and offers exactly the same functionality as before.

One major difference is immediately visible though: the web browser’s chrome (with the
location bar, the back and forward buttons, the bookmarks, and so on) is gone. Instead,

Taking Silverlight Out of the Browser 383

1
4

FIGURE 14.1 Installing the Silverlight applica-
tion out of the browser.

FIGURE 14.2 Install Application dialog.

 From the Library of Wow! eBook

ptg

the application looks like a standard Windows or Mac application, with a title bar and
borders. The icon in the title is also different, and looks like the one in the Install
Application dialog shown in Figure 14.2.

Another difference is that a shortcut is now available on the desktop and also in the Start
menu. Double-click the shortcut on the desktop to start the application again. The same
application is started, and after a short delay the data appears again.

Making Sure That the WCF Server Is Running
The Silverlight application is now decoupled from the web server. However, it uses WCF
RIA Services to connect and fetch data. This is obviously only possible if the server is up
and running. To verify whether the development server is running while testing, follow
these steps:

1. Open the web application’s properties in Visual Studio.

2. On the Web tab, in the Servers section, write down the number appearing next to
the Specific Port radio button.

3. In the Windows notification area, check whether a small icon
similar to the one shown in Figure 14.3 is visible. If it is, pass the
mouse over it and check whether the port displayed is the same
than the one you wrote down in Step 2.

If such an icon is available for the port you are looking for, the
development web server is already running and the WCF service is
available. If that is not the case, use the following checklist:

4. Open the web application in Visual Studio.

5. Right-click Default.aspx and select View in
Browser from the context menu.

This last step starts the development web server
integrated in Visual Studio 2010, which displays the
message shown in Figure 14.4.

Uninstalling the Application
Should the application need to be uninstalled, two ways are possible:

. With the application running, right-click its surface and select Remove This
Application from the context menu.

. Open the Programs and Features control panel. Locate the application named
MyNorthwind.Silverlight and click the Uninstall button.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

384

FIGURE 14.3
Development
web server
icon.

FIGURE 14.4 Starting the devel-
opment web server.

 From the Library of Wow! eBook

ptg

Deleting the Isolated Storage
When the application is uninstalled, all the associated files are deleted, except the files
saved in the isolated storage. (We talked about the isolated storage in Silverlight 2
Unleashed, Chapter 10.) To delete the isolated storage, the user has the possibility to use
the following steps:

1. Right-click any Silverlight application and select Silverlight from the context menu.

2. In the Microsoft Silverlight Configuration dialog, select the Application Storage tab
shown in Figure 14.5.

Taking Silverlight Out of the Browser 385

1
4

FIGURE 14.5 Microsoft Silverlight Configuration dialog.

3. Locate the application whose files you want to delete and click the Delete button.
Alternatively, it is possible to delete all isolated stores, for example, to clean the host
computer.

Debugging the OOB Application
Normally, the application is hosted into an HTML page:

. If no web application was created to host the Silverlight application, an HTML page
is generated, and the Silverlight application runs within it. The HTML test applica-
tion is created in the folder bin\Debug.

. If a web application was created as a separate project in the Solution, this web appli-
cation should be set as start project, and the test HTML (or ASPX) page within it as
start page.

In both cases, when the application is started from Visual Studio (by pressing the F5 or
Ctrl+F5 keys), the HTML page is displayed in the web browser. To debug the application
in OOB mode, the following steps are needed:

 From the Library of Wow! eBook

ptg

1. In the Solution Explorer, right-click the Silverlight project and select Properties from
the context menu.

2. Select the Debug tab.

3. Set the Start Action to MyNorthwind.Web. It is a little confusing that to debug the
OOB application MyNorthwind.Silverlight the choice must be set to
MyNorthwind.Web. In most cases, however, there is only one choice in the combo
box anyway.

4. Make sure that the Silverlight project is set as startup project in the Solution
Explorer. The project name should appear in bold. If that is not the case, right-click
the project name in the Solution Explorer and select Set as StartUp Project from the
context menu.

5. Click F5 to run the application.
If the dialog shown in Figure
14.6 appears, click the Yes
button.

6. The OOB window appears and
breakpoints can be placed
within the code.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

386

FIGURE 14.6 Warning dialog.

T I P

Accessing Third-Party Web Servers

The OOB application is subject to the same restrictions as a Silverlight application running
within the browser when it comes to cross-domain access: If the third-party server does not
have a cross-domain file in place (as explained in Chapter 9, “Connecting to the Web”), the
call will fail.

Note, however, that applications with elevated permissions may access any server without
restrictions.

Looking Under the Hood
Even though the Silverlight application runs in a standalone window, it is in fact hosted
by a process, just like when it was running inside the web browser. This process is called
sllauncher.exe and appears in the task manager when the OOB application is running.
This is different from when you create a WPF application, where the process name is
different for each application because it is not running into a host. This means that the
Silverlight OOB application is not completely standalone.

Accessing the Host
When the application is running in OOB mode, there is no possibility for it to access its
host like we did in Silverlight 2 Unleashed, Chapter 14. Access to the host computer is

 From the Library of Wow! eBook

ptg

possible through specific APIs (and with the corresponding permissions, as you will see
later in this chapter). For the Silverlight developer, it appears as if the application was
completely independent.

Locating the Application Files
Another interesting fact about OOB applications is that, even though they appear in the
list of installed applications in the Programs and Features control panel, the application
files are not copied into C:\program files like for standard standalone applications. Most
of the time, it is not relevant where the Silverlight OOB application is in fact copied, but
do not get confused when looking for these files. Note that the application itself has no
ways to know where its files are installed. This would be a security violation (revealing
information about the directory structure of the host computer).

Should you however need to find the applications files, look into
C:\Users\[name]\AppData\Local\Microsoft\Silverlight\OutOfBrowser, where [name] is
your Windows user name. The files are installed there in subfolders with encoded names
such as 1246460991.localhost.

Changing the Settings
A number of settings change the way that the OOB application behaves. To modify the
settings, open the Silverlight project properties as we did before in this chapter. Then
select the Silverlight tab and click the button labeled Out-of-Browser Settings.

Taking Silverlight Out of the Browser 387

1
4

WA R N I N G

Making Sure That Changes Are Applied

Because of the way that the Silverlight OOB applications are cached, it is possible that
changes to the application’s properties (or even to the application in general) sometimes do
not immediately appear when the application is run. To improve this behavior, try the following
steps:

1. Run the application using the web project as the startup project.

2. Right-click and uninstall the OOB application.

3. Right-click the solution in the Solution Explorer and select Clean Solution from the
context menu.

4. Click the Silverlight project and then on the second button from the left (the “Show All
Files” button). This displays the folders that are not included in the project. Make sure
that the folders named bin, obj, and Generated_Code are deleted.

5. Expand the web application in the Solution Explorer and delete the XAP file in the
ClientBin folder.

6. Right-click the solution and select Rebuild Solution from the context menu.

7. Run and reinstall the application

Unfortunately, even these steps sometimes fail to refresh the changes. In that (rather rare)
case, rebooting your computer is the last resort.

 From the Library of Wow! eBook

ptg

Setting the Window’s Title, Shortcut Name, and Description
The Out-of-Browser Settings dialog allows entering a title, shortcut name, and a descrip-
tion for the application.

. The title will appear in the title bar and in the Windows application bar when the
application is running.

. The shortcut name is used in the context menu shown in Figure 14.1 and in the
dialog shown in Figure 14.2. It is also the name of the shortcut that is placed on the
user’s desktop and in his Start menu. Note that like with normal Windows applica-
tion shortcuts, this name can be changed by the user.

. The description is shown when the user passes his mouse over the application short-
cut on the desktop and in the Start menu. It is also shown in the comments of the
Programs and Features control panel.

Setting the Window’s Size and Position
The Out-of-Browser Settings dialog also allows setting the OOB window’s initial size and
position. These values are used every time that the user starts the application.

A better user experience strategy would be to save the window’s current position and size
when the user quits the application (for example, in the isolated storage). This must be
done in code, however.

Setting Different Icons
Still in the Out-of-Browser Settings dialog, the icons for the application can be defined.
Note that, in contrast to normal Windows applications, the icons are expected in the
PNG format. ICO files will not work, because of the cross-platform compatibility needs.
This is actually a good thing, because PNGs are easier to create than ICOs and have all the
necessary features, such as transparency. You need, however, four different files (instead of
having all four sizes embedded into one single ICO file).

To create icons for your application, follow these steps:

1. (If the application is already installed) Uninstall the application as explained in the
“Uninstalling the Application” section of this chapter.

2. Create four different PNG files with dimensions 16 x 16, 32 x 32, 48 x 48, and
128 x 128 (in pixels). You need all four dimensions! To create the files, most
drawing applications will work just fine. If you don’t have a drawing application
already, the free Paint.NET (running on the .NET framework) is a great drawing tool.
For best results, make sure that your icons have a transparent background.

3. In the Solution Explorer, create a folder in the Silverlight project and name it
Resources (or Icons, or any relevant name you prefer).

4. Right-click the new folder and select Add, Existing Item from the context menu.

5. Select the four PNG files and add them to the folder.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

388

 From the Library of Wow! eBook

ptg

6. Open the Out-of-Browser Settings dialog and select the four icons files in the corre-
sponding fields from the folder that was just created.

7. Click OK and install the application.

The icons are used in multiple places in the application: in the dialog shown in Figure
14.2, on the user’s desktop and in his Start menu, in the application’s title bar (and in the
Windows taskbar). This is a great way to differentiate your application and to give it a
specific identity.

Debugging the Icons
If the icons do not work as expected, check that all four PNG files are included correctly
with the following steps:

1. In the Solution Explorer, click one of the PNG files and press F4 to show the
Properties panel (or select the menu View, Properties Window).

2. Check that the Build Action is set to Content, and the Copy to Output property is
set to Copy if Newer.

3. Repeat Steps 1 and 2 for all four PNG files.

Adding an element with the Content build action copies it into the XAP file but does not
place it inside the DLL. If you rename the XAP file with a .zip extension, and open this
file in a zip application, you can see that it contains the Resources folder and the four
PNG files. On the other hand, a build action of Resource places the element inside the
assembly. Although this is desired in some cases, if even just one of the four PNG icons
has the wrong build action, the icons will not show properly in your application.

Using the Wrong Size
If an icon has the wrong size (for example, if you use a 64 x 64 PNG file for the 48 x 48
icon), it will be resized for the display. Note, however, that the icon may appear heavily
pixilated in this case. It is better to use the correct sizes.

Using GPU Acceleration
Checking the corresponding check box in the Out-of-Browser Settings dialog enables GPU
acceleration for the OOB application. For more information about the GPU acceleration,
check the corresponding section in Chapter 21, “Optimizing Performance.”

Show the Install Menu

The Show Install Menu check box controls what is displayed in the context menu when
the user right-clicks the Silverlight application. By default, the context menu is set up as
shown in Figure 14.1. You can, however, remove the Install menu item by unchecking
this check box. This can be desired if you only want the user to install in certain circum-
stances or with a specific user experience. In that case, check the “Installing from the
Code” section, later in this chapter.

Taking Silverlight Out of the Browser 389

1
4

 From the Library of Wow! eBook

ptg

Installing with Elevated Trust
Another check box allows to install with elevated
permissions (elevated trust). This enables additional
features in the application, as you will see in the
“Running with Elevated Trust” section. The style
of the host window can be set here, too: Default
(with standard title bar and borders), No Border
(without title bar or borders, with square corners),
and Borderless Rounded Corners, as shown in
Figure 14.7.

Note that even if the main UserControl’s back-
ground is set to Transparent, the Silverlight applica-
tion will get a white background. Unlike in WPF, it
is not possible to make transparent windows.

When an application is installed with elevated
permissions, a different prompt is shown to the user
(see Figure 14.8), similar to the Windows UAC (User
Account Control) prompts. This signals the user
that his action implies a security risk. Note that the
dialog can be made much friendlier (as shown in
Figure 14.9) by signing the Silverlight XAP file with
a certificate such as the ones sold by Verisign and
other firms. For more information
about signing XAP files, check
http://www.galasoft.ch/sl4-xapsign.

The following features are available
with elevated permissions:

. Saving and reading documents
in the user’s folders such as My
Documents, My Pictures, My
Videos, and so forth. For more
information, see the “Saving on
the Hard Drive” section, later
in this chapter.

. Accessing cross domain servers
(even if they do not have a
cross-domain access file).

. Accessing the Clipboard
without prompt.

. Interoperability with COM.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

390

Figure 14.7 Window with borders,
borderless, borderless rounded
corners.

Figure 14.8 Security warning for unsigned
application.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-xapsign

ptg

. Hosting HTML in the Silverlight
application.

. Displaying notification windows.

These three last features are detailed in
Chapter 18.

Editing the Settings
The out-of-browser settings can also be
seen in the file named
OutOfBrowserSettings.xml in the
Properties folder. This file’s content is
copied to the application manifest
(AppManifest.xaml), which is enclosed in the XAP file. When the application is started,
the Silverlight plug-in reads all the settings from this file and configures the out-of-
browser application correspondingly.

Updating the Application
When Silverlight applications run within the web browser, they go through the exact
same caching mechanisms as all other web materials: When the browser receives the
order to load an element (web page, image, video, Silverlight XAP file, and so on), it
checks first if the element is available in the cache. If it is found, a request is sent to the
server to ask what is the last modified date of the server version. If a newer version is
available on the server, the element is downloaded. If not, the cached version is used.

For the developer, it makes publishing a new version of a Silverlight application very easy:
Just copy the XAP file to the web browser, and it will be downloaded by the web browser
the next time that the application is run on the client computer.

With OOB applications, it is not as simple anymore: All the files are copied locally to a
folder on the hard drive, and there is no automated way to check on the server whether a
newer version exists. The application must perform the check manually. This can be trig-
gered by the user when he clicks a Check Update button, for example, or even when the
application starts, as shown in Listing 14.21 (to be placed in App.xaml.cs).

LISTING 14.21 Checking and Downloading an Update

1 private void Application_Startup(object sender, StartupEventArgs e)

2 {

3 if (IsRunningOutOfBrowser

4 && MessageBox.Show(

5 “Do you want to check for an update?”,

6 “Check update?”, MessageBoxButton.OKCancel)

7 == MessageBoxResult.OK)

8 {

9 CheckAndDownloadUpdateCompleted += UpdateCompleted;

Taking Silverlight Out of the Browser 391

1
4

Figure 14.9 Security warning for signed applica-
tion (from the Silverlight documentation).

 From the Library of Wow! eBook

ptg

10 CheckAndDownloadUpdateAsync();

11 }

12 else

13 {

14 RootVisual = new MainPage();

15 }

16 }

. On line 3, we check whether the application runs outside of the browser. There is
no point checking for an update if the application runs inside of the browser!

. On lines 4 to 7, we ask for confirmation from the user. Because a restart of the appli-
cation is required to load the update, it is good practice to request confirmation
before the download is initiated. Note, however, that it is not strictly required.

. On line 10, the check and update is initiated. The callback is the UpdateCompleted
method defined in Listing 14.22.

. If the user chooses not to check for an update, the MainPage is loaded in the
RootVisual, which starts the application with the normal UI.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

392

WA R N I N G

Checking at Every Occasion

Unfortunately, there is no way currently to check for a new version without automatically
downloading and installing the updated version. Asking for the user’s confirmation every time
that the application starts is not very satisfying for the user experience. Another option is to
let the user initiate the action by clicking a button, but there is a risk that the user never
updates the application.

Another, perhaps more interesting solution is to let the application check for a new update
(for example, by downloading a text file with the version number), and only asking the user to
download the new application if there is a new version.

LISTING 14.22 UpdateCompleted Callback

1 private void UpdateCompleted(

2 object sender,

3 CheckAndDownloadUpdateCompletedEventArgs e)

4 {

5 if (e.UpdateAvailable)

6 {

7 var grid = new Grid

8 {

9 Background = new SolidColorBrush(Colors.Red)

10 };

11

 From the Library of Wow! eBook

ptg

12 var text = new TextBlock

13 {

14 Text = “An update has been downloaded, restart the application”,

15 FontSize = 40,

16 TextWrapping = TextWrapping.Wrap,

17 Foreground = new SolidColorBrush(Colors.White),

18 VerticalAlignment = VerticalAlignment.Center,

19 HorizontalAlignment = HorizontalAlignment.Center

20 };

21

22 grid.Children.Add(text);

23 RootVisual = grid;

24 }

25 else

26 {

27 if (e.Error != null

28 && e.Error is PlatformNotSupportedException)

29 {

30 MessageBox.Show(

31 “You need a new version of Silverlight for the update”

32 + “Visit the application’s homepage to upgrade”);

33 }

34

35 RootVisual = new MainPage();

36 }

37 }

. Line 5 checks in the EventArgs if an update was available. If the UpdateAvailable
variable is true, the update has been downloaded already. There is, however, no way
to restart the application automatically, which is why an ad hoc UI is prepared on
lines 7 to 23. This is a good example of how the RootVisual property can be set
manually.

. If UpdateAvailable is false, it can be because the update requires a new version of
the Silverlight framework. In that case, the user is warned that he should visit the
website from where the application was installed.

. Finally, the application is started on line 35.

Installing from the Code
In addition to the Silverlight context menu shown in Figure 14.1, it is also possible to
trigger the installation of the application from the code. This must be in response to a
user interaction, such as a button click. In addition, the call to the Install method must
happen as soon as possible after the first operation after the button is clicked. For
example, consider the code in Listing 14.23.

Taking Silverlight Out of the Browser 393

1
4

 From the Library of Wow! eBook

ptg

LISTING 14.23 Installing the Application in Code

1 private void Button_Click(object sender, RoutedEventArgs e)

2 {

3 try

4 {

5 // MessageBox.Show(“Installing now”);

6

7 if (App.Current.IsRunningOutOfBrowser)

8 {

9 MessageBox.Show(“Already installed”);

10 return;

11 }

12

13 App.Current.Install();

14 }

15 catch (InvalidOperationException)

16 {

17 MessageBox.Show(“The application is already installed”);

18 }

19 }

. On line 7, we check whether the application is already running out of the browser,
in which case a message is displayed. An even better user experience would be to
check the state of the application when it starts, and to hide or disable the install
button accordingly.

. On line 13, the application is installed.

. If the application is already installed on the current machine, an
InvalidOperationException is thrown. This can happen if the user is unaware that
the application is already installed, runs the Silverlight application from the website,
and tries to install it again. In that case, the exception is caught on line 15, and an
error message is shown.

. If line 5 is uncommented and made active, the installation will fail. No exception is
thrown, but the application is not installed. This happens because the call to
App.Current.Install occurs too late in the function.

Displaying a Custom UI Requiring the
User to Install the Application
If the application makes sense only out
of the browser (for example, if every
operation requires elevated permissions),
a custom UI can be displayed to require
that the user installs before he proceeds.
This is very similar to the steps we took

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

394

WA R N I N G

Setting the RootVisual

Through the RootVisual, you have control
over what your application displays. Note,
however, that the RootVisual can be set only
once!

 From the Library of Wow! eBook

ptg

in Listing 14.22, lines 7 to 23. The custom UI will be shown if IsRunningOutOfBrowser is
false. In this case, construct a Grid with a TextBlock and a Button, and wire the Button’s
Click event to the event handler defined in Listing 14.23.

Saving Files
Silverlight 4 provides more possibilities to save documents on the client machine than
ever. Saving locally can be done in the isolated storage, in the user’s local folders. It is also
possible to save to new documents created through COM automation (Windows only, as
we will see in Chapter 18) or with the SaveFileDialog that we will discover in Chapter 16,
“Using Effects and Recording Media.”

Saving in the Isolated Storage
We already saw how to use the isolated storage in Silverlight 2 Unleashed, Chapter 10. In
this book, Chapter 17, we talk more about new features implemented in the isolated
storage in Silverlight 4.

When the application is running out of the browser, the isolated storage default quota is
set to 25MB rather than 1MB in the browser. Note, however, that additional storage can
be requested, as you will see in Chapter 17.

Saving in My Documents (Elevated Permissions Only)
The isolated storage is very convenient to save documents that are used internally by the
application (for example, settings, temporary documents, and so on) but it is not very
user friendly. It is not very convenient for the user to go and look for files in this rather
hidden location.

Instead, Silverlight 4 applications with elevated permissions may save and read docu-
ments in the user’s folders (My Documents, My Videos, My Music and My Pictures).

For example, the current page of data in the Northwind application can be saved to a text
file using the following steps:

1. Reopen the Northwind.Web application in Visual Studio.

2. In the MainViewModel class, add a new command next to the existing SaveCommand,
AddCommand, DeleteOrderCommand, GoForwardCommand, GoBackCommand and PrintCommand,
as shown in Listing 14.24

LISTING 14.24 SaveToFileCommand

public RelayCommand SaveToFileCommand

{

get;

private set;

}

. In the MainViewModel constructor, initialize the SaveToFileCommand with the code
shown in Listing 14.25, to be placed below the other commands’ initialization.

Taking Silverlight Out of the Browser 395

1
4

 From the Library of Wow! eBook

ptg

LISTING 14.25 Creating the SaveToFileCommand

SaveToFileCommand = new RelayCommand(

SaveToFile,

() => App.Current.IsRunningOutOfBrowser

&& App.Current.HasElevatedPermissions);

. The Execute delegate is set to a method named SaveToFile, which is defined in
Listing 14.26 below.

. The CanExecute delegate only returns true if the application is running out of the
browser with elevated permissions. If that is not the case, the control bound to the
command will be disabled.

3. Implement the SaveToFile method as shown in Listing 14.26.

LISTING 14.26 SaveToFile Method

1 public void SaveToFile()

2 {

3 if (!App.Current.IsRunningOutOfBrowser

4 || !App.Current.HasElevatedPermissions)

5 {

6 ShowMessage(“Unavailable”);

7 return;

8 }

9

10 var filePath = System.IO.Path.Combine(

11 Environment.GetFolderPath(

12 Environment.SpecialFolder.MyDocuments),

13 “NorthwindFiles\\Northwind.txt”);

14

15 var fileInfo = new FileInfo(filePath);

16 if (!fileInfo.Directory.Exists)

17 {

18 fileInfo.Directory.Create();

19 }

20

21 if (fileInfo.Exists)

22 {

23 fileInfo.Delete();

24 }

25

26 using (var writer = new StreamWriter(fileInfo.FullName))

27 {

28 foreach (var order in _context.Orders)

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

396

 From the Library of Wow! eBook

ptg

29 {

30 writer.WriteLine(string.Format(

31 “Order {0} to {1}, shipped on {2}”,

32 order.OrderID,

33 order.ShipCity,

34 order.ShippedDate));

35 }

36 }

37 }

. On lines 3 to 8, we make sure that the application is running out of the browser and
has elevated permissions. Even though the command that invokes this method will
be disabled if that is not the case, the method is public and could be called by other
means. It needs to be protected, to avoid a SecurityException to be thrown.

. On lines 10 to 13, the path to My Documents folder is retrieved with a call to the
method Environment.GetFolderPath, with the argument
Environment.SpecialFolder.MyDocuments. Note that all other special folders (such as
the Desktop folder, the ApplicationData folder, and so on) are available in this
enumeration. However, attempting to get any other value than MyDocuments,
MyVideos, MyPictures, and MyMusic throws a SecurityException.

. The new file named Northwind.txt will be saved into a folder named
NorthwindFiles within the My Documents folder.

. On line 15, a new instance of the FileInfo class is created. This class (as well as the
DirectoryInfo class) in the System.IO namespace are very helpful to manipulate files
and directories.

. On lines 16 to 19, the NorthwindFiles directory is created, in case it was not already
existing.

. Lines 21 to 24 delete the file in case it was already existing.

. On line 26, a StreamWriter is created. There are multiple readers and writers depend-
ing on the type of file you want to read or save. The StreamWriter class is ideal to
save text files. Note the usage of the using statement, which will automatically take
care of closing and disposing the StreamWriter when the save operation is
completed.

. Finally, on lines 28 to 35, we loop through all the orders in the Orders table of the
Domain Context class (corresponding to the page currently displayed by the
DataGrid) and save their OrderID, ShipCity, and ShippedDate.

4. To test the functionality, open MainPage.xaml in the Visual Studio designer; add a
button below the Save, Add, and Delete buttons; and bind its Command property to
the SaveToFileCommand property we added in Listing 14.24.

Taking Silverlight Out of the Browser 397

1
4

 From the Library of Wow! eBook

ptg

To check the result, open Windows Explorer and navigate to the My Documents folder.
The folder NorthwindFiles should be present and contain one file named
NorthwindFile.txt, with the list of saved orders.

Working Offline
A Silverlight application can detect the state of the network connectivity by using the
code in Listing 14.27.

LISTING 14.27 Testing Network Connectivity

1 public MainPage()

2 {

3 InitializeComponent();

4 NetworkChange.NetworkAddressChanged += NetworkChanged;

5 CheckApplicationState();

6 }

7

8 private void NetworkChanged(object sender, EventArgs e)

9 {

10 CheckApplicationState();

11 }

12

13 private void CheckApplicationState()

14 {

15 if (NetworkInterface.GetIsNetworkAvailable())

16 {

17 // Online

18 }

19 else

20 {

21 // Offline

22 }

23 }

. Line 4 assigns an event handler to the NetworkChange.NetworkAddressChanged event
that is raised every time that the network connectivity changes.

. The CheckApplicationState method calls the
NetworkInterface.GetIsNetworkAvailable method. This returns true if network
connectivity is available, false otherwise.

To enable a pure offline mode, the following features must be implemented:

. The application must be able to save data to the isolated storage.

. A synchronization mechanism must be implemented.

CHAPTER 14 Enhancing Line-of-Business Applications and
Running Out of the Browser

398

 From the Library of Wow! eBook

ptg

At the time of this writing, there is no officially available synchronization framework for
Silverlight. However, Microsoft is perfecting its Sync Framework and modifying it to work
with Silverlight. When it is available, it will allow applications to store data in the isolated
storage, go offline, modify this data while being offline, and then to synchronize the
changes back to the server when the application goes back online.

You can find more information about the Sync Framework and its application to
Silverlight at http://www.galasoft.ch/sl4-sync.

Summary
This chapter and the previous showed how to develop applications that are not necessar-
ily associated with Silverlight by people discovering the technology. Although the media
and animation features are very enticing, having the possibility to develop rich business
applications with Silverlight, in or out of the browser, is an exciting prospect for a large
number of enterprise developers.

Even after so many pages, only some aspects of WCF RIA Services were covered. For
example, we didn’t talk yet about authentication and authorization, which will be
handled in Chapter 19, “Authentication, Event to Command Binding, Random
Animations, Multitouch, Local Communication, and Bing Maps Control.” However, these
pages should already get you started to handle a wide range of data scenarios!

In the second half of this chapter, we talked about taking Silverlight out of the browser
and running the application standalone, in a manner very similar to any standard
Windows or Mac application. Finally, you saw how elevated permissions can be given to
the application, to allow operations that can present a security risk.

In the next chapter, we talk about Silverlight navigation applications and about the
Windows Phone 7 applications running on Silverlight, another exciting usage of the
Silverlight framework.

Summary 399

1
4

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-sync

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Manually implement a simple
application with pages, and
understand why this is not
ideal.

. Discover the concept of navi-
gation built into Silverlight,
and discuss when you should
use it.

. Build a sample navigation
application and talk about
features such as routes, deep
linking and the navigation
service.

. Discover the brand new
Silverlight for Windows Phone
7.

. Talk about the phone experi-
ence and default styles.

. Install the Windows Phone 7
tools.

. Develop a connected MVVM
application in Silverlight for
the desktop and for Windows
Phone 7.

CHAPTER 15

Developing Navigation
Applications and

Silverlight for Windows
Phone 7

So far in this book, we’ve always started by creating a
“standard” Silverlight application in Visual Studio or
Expression Blend’s New Project dialog (shown in Figure
2.1). Although this project template covers many require-
ments, this chapter talks about another application
template called the Silverlight navigation application that
is especially well suited to create applications where the
web browser’s Back and Forward buttons should be enabled
or when a link (as a bookmark or copied and pasted in a
document or an email) should lead the user directly to a
specific screen in the application (commonly referred to as
“deep linking”).

In the second part of this chapter, we take an early look at
the Windows Phone 7 devices and the way to develop
applications for this mobile platform using Silverlight.
Although the tools, framework, and devices for Windows
Phone 7 are still in beta stage at the time of this writing, it
is very interesting to see how Silverlight is used on this
platform, allowing us to leverage what we learned to
develop mobile applications.

Navigating with Silverlight
One big issue with rich application frameworks such as
Silverlight or Flash is that they are difficult to navigate and
not well integrated with the web browser history journal.
For example, try the following steps:

 From the Library of Wow! eBook

ptg

1. Create a new “standard” Silverlight application in Visual Studio.

2. Edit the XAML markup of the LayoutRoot grid as shown in Listing 15.1. This creates
two “pages” (implemented as Grid panels) on top of each other.

LISTING 15.1 Grid with Two “Pages”

1 <Grid x:Name=”LayoutRoot”

2 Background=”White”>

3

4 <Grid x:Name=”Page1”

5 Background=”Red”>

6 <TextBlock Text=”Page 1” />

7

8 <Button Content=”Forward”

9 VerticalAlignment=”Bottom”

10 Click=”ForwardButton_Click”

11 Margin=”10”

12 Height=”100”

13 Width=”200”/>

14 </Grid>

15

16 <Grid x:Name=”Page2”

17 Background=”Blue”

18 Visibility=”Collapsed”>

29 <TextBlock Text=”Page 2” />

20

21 <Button Content=”Back”

22 VerticalAlignment=”Bottom”

23 Click=”BackButton_Click”

24 Margin=”10”

25 Height=”100”

26 Width=”200” />

27 </Grid>

28 </Grid>

3. Right-click the event handler name ForwardButton_Click on line 10 of Listing 15.1,
and select Navigate to Event Handler from the context menu. This creates the corre-
sponding event handler in the code behind.

4. Select the MainPage.xaml again, and right-click the event handler name
BackButton_Click on line 23 of Listing 15.1. Again, select Navigate to Event Handler
from the context menu.

5. In MainPage.xaml.cs, implement both event handlers as shown in Listing 15.2.

CHAPTER 15 Developing Navigation Applications and Silverlight for
Windows Phone 7

402

 From the Library of Wow! eBook

ptg

LISTING 15.2 Navigating Back and Forth

private void ForwardButton_Click(

object sender,

RoutedEventArgs e)

{

Page2.Visibility = Visibility.Visible;

Page1.Visibility = Visibility.Collapsed;

}

private void BackButton_Click(

object sender,

RoutedEventArgs e)

{

Page1.Visibility = Visibility.Visible;

Page2.Visibility = Visibility.Collapsed;

}

6. Run the application and click the button marked Forward in the red page. This
displays the blue page. Then click the button marked Back on the blue page to get
back on the red page.

This very simple example implements a primitive navigation system. By putting the
content of the pages in external UserControl files, we could even achieve separation of
concerns, and have a fairly simple navigation application. However, there are two major
issues:

. Depending on your web browser’s history before you started the application, the
browser’s Back button might not be enabled at all. Or, if it is enabled, clicking it will
stop the application, unload the whole Silverlight application and instead load the
previous page (probably HTML) that was visible in the browser before you started
the Silverlight application. There is no integration with the web browser’s history.

. Sometimes you want a user to start directly on the blue page instead of having to go
through the red page. In theory, you could add a query string to the HTML page’s
address, and implement custom parsing to load the correct “page” when the appli-
cation starts. However, this is not straightforward; also, the URL with query string
has a rather cumbersome format, not very user readable.

These issues are crippling most rich applications and breaking the model of the World
Wide Web in which each Unique Resource Locator (URL) should lead to a unique
resource, and each different resource (for example, Page1 and Page2) should have a differ-
ent URL.

To solve these issues, the Silverlight framework has a different application template
named the Silverlight Navigation Application that provides the initial plumbing to create
an application that follows these navigation patterns, fully integrated with the web
browser’s journal and supporting deep linking.

Navigating with Silverlight 403

1
5

 From the Library of Wow! eBook

ptg

Should You Always Use a Navigation Application?
Because of the advantages of the Silverlight navigation application, it is tempting to
always use this kind of application. However, it is not always the best suited for the job.

By studying the requirements you need to implement, it should be possible to decide
yourself for one or the other type. Note that switching from a standard application to a
navigation application (or the reverse) involves some manual work (as shown in the
“Adding Navigation to a Non-Navigation Application” section, later in this chapter). If
possible, this decision should be taken before the start of the development.

. For applications that are more like a website, with multiple pages and defined navi-
gation between the pages, a navigation application is the better choice.

. If you need to start the application on a specific page, the navigation application
will help you by automatically displaying the page corresponding to a unique URL.

. On the other hand, if the
Silverlight application is more like
well-known desktop applications
such as Microsoft Word or Excel,
starting with a standard Silverlight
application is better. This doesn’t
mean that standard applications
cannot navigate between screens
(for example like a wizard with a
flow of content), but this might
not be their main intent.

Creating a New Navigation
Application
To create a new navigation application,
select the corresponding template in
Visual Studio, as shown with the following steps:

1. In Visual Studio, select File, New, Project.

2. In the New Project dialog, under the category Silverlight, select a Silverlight
Navigation Application.

3. Enter the name NavigationSample for the application and select a location, then
click OK.

4. A website to host the application is not needed; simply uncheck the corresponding
check box in the New Silverlight Application dialog and click OK.

5. In the Solution Explorer, notice that two folders that we never saw before can be
found: Assets and Views. To understand what these folders and the documents that
they contain do, press Ctrl+F5 to run the application. The Home page is opened, as
shown in Figure 15.1.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

404

WA R N I N G

Handling Multiple Points of Entry

For certain applications, it can be a disad-
vantage to have multiple points of entry, like
the navigation applications offer. For
example, sometimes the user must go
through a login page before entering the
application. Every time that a different page
is accessed, the application must check
whether the credentials have been entered
correctly. This is not very complicated, but
requires more manual work than with an
application with a single point of entry.

 From the Library of Wow! eBook

ptg

FIGURE 15.1 Navigation application with Home and About pages.

6. Click the About link on the top right of the application. The About page is
displayed.

7. Click the web browser’s Back button. The Home page is displayed again, and the
browser’s Forward button is enabled. Clicking this button now would show the
About page again.

This small sample shows that the navigation between the Home and the About pages is
integrated into the web browser’s history. This makes the Silverlight navigation application
very similar to a standard website for the end user, while providing all the comfort of
development that the Silverlight tools provide.

Understanding the Structure
Open the file MainPage.xaml. This is the navigation host where all other pages are
displayed. This page consists of well-known Silverlight controls, with one exception: the
navigation:Frame and its content shown in Listing 15.3. (The prefix navigation represents
the namespace System.Windows.Controls in the assembly
System.Windows.Controls.Navigation.dll. Note that this assembly is not part of the core
Silverlight framework, and it will be added to your XAP file.) This component is responsi-
ble for the whole navigation in the application, and for the integration with the web
browser’s navigation.

LISTING 15.3 Navigation Frame Element

1 <navigation:Frame x:Name=”ContentFrame”

2 Style=”{StaticResource ContentFrameStyle}”

3 Source=”/Home”

4 Navigated=”ContentFrame_Navigated”

5 NavigationFailed=”ContentFrame_NavigationFailed”>

6 <navigation:Frame.UriMapper>

7 <uriMapper:UriMapper>

8 <uriMapper:UriMapping Uri=””

9 MappedUri=”/Views/Home.xaml” />

10 <uriMapper:UriMapping Uri=”/{pageName}”

11 MappedUri=”/Views/{pageName}.xaml” />

Navigating with Silverlight 405

1
5

 From the Library of Wow! eBook

ptg

12 </uriMapper:UriMapper>

13 </navigation:Frame.UriMapper>

14 </navigation:Frame>

. On line 3, the Source property defines which page will be displayed first in the host.
This is a URI that will be resolved using the entries in the URI mapper.

. On lines 4 and 5, two important events are handled: Navigated and
NavigationFailed. We will talk about navigation events in the “Handling Navigation
Events” section.

. On lines 6 to 13, the URI mapper is defined. This very important element is
mapping all the URIs entered in the navigation bar of the web browser to the corre-
sponding page. We talk about the mapping in the “Deep Linking to Pages” section.

Another interesting section is the LinksStackPanel shown in Listing 15.4. This panel
contains two HyperlinkButton elements that can be clicked for navigation. The
NavigateUri property will be set in the web browser’s navigation bar, which causes the
UriMapper to display the corresponding page in the host.

LISTING 15.4 Navigation with a HyperlinkButton Control

<StackPanel x:Name=”LinksStackPanel”

Style=”{StaticResource LinksStackPanelStyle}”>

<HyperlinkButton x:Name=”Link1”

Style=”{StaticResource LinkStyle}”

NavigateUri=”/Home”

TargetName=”ContentFrame”

Content=”home”/>

<Rectangle x:Name=”Divider1”

Style=”{StaticResource DividerStyle}”/>

<HyperlinkButton x:Name=”Link2”

Style=”{StaticResource LinkStyle}”

NavigateUri=”/About”

TargetName=”ContentFrame”

Content=”about”/>

</StackPanel>

Note that other elements can also be used for the navigation, such as the Hyperlink
control, as shown in Listing 15.5.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

406

 From the Library of Wow! eBook

ptg

LISTING 15.5 Navigation with a Hyperlink Control

<RichTextBox IsReadOnly=”True”>

<Paragraph>

Click here to go to

the <Hyperlink NavigateUri=”/About”>About

page</Hyperlink>

</Paragraph>

</RichTextBox>

Navigating with Silverlight 407

1
5

T I P

Using a TargetName

Note that even though the HyperlinkButton elements in Listing 15.4 are using the
TargetName property, this is not strictly needed. The code also works without this property
because there is only one Frame on the page. If you have multiple Frame elements, the
TargetName property should be set to specify which host must display the page.

Deep Linking to Pages
The UriMapper element also allows deep linking; that is, the ability to navigate directly to
a given page by clicking on a hyperlink (for example, embedded in an email) or a book-
mark. To understand how this works, let’s observe the URL that the web browser’s naviga-
tion bar displays. Depending how your environment is configured, it could look
something like this:

file:///C:/Code/NavigationSample/Bin/Debug/NavigationSampleTestPage.html#/Home

Or if the application is executed from a web server (and not in debug mode in Visual
Studio), it could be something like this:

http://www.mypage.com/NavigationSampleTestPage.html#/Home

The important part here is what comes after the # character: The string /Home will be
mapped by the UriMapper. In this case, the expression defined on line 10 of Listing 15.3 is
used. The parameter pageName is replaced in the URI on line 11, and the page
Views/Home.xaml is displayed in the host.

Note that another mapping is defined: If the page name parameter is missing from the
URL, the expression on line 8 of Listing 15.3 is used and the page Views/Home.xaml is
displayed, too.

Creating New Pages
Adding new pages to the application is fairly easy as shown with the following steps:

1. With the NavigationSample application open in Visual Studio, right-click the Views
folder in the Solution Explorer, and select Add, New Folder from the context menu.
Name this new folder Shop.

 From the Library of Wow! eBook

http://www.mypage.com/NavigationSampleTestPage.html#/Home

ptg

2. Right-click the Shop folder and select Add, New Item from the context menu.

3. In the Add New Item dialog, select the Silverlight category and add a new Silverlight
Page named Catalog.xaml.

The new page is a navigation:Page. The rest of the XAML markup looks very similar to a
standard Silverlight page (which is a UserControl as we saw before). Adding elements and
styling the UI works exactly as for a normal page.

To define the mapping, follow these steps:

1. Reopen the file MainPage.xaml.

2. Change the HyperlinkButton elements as shown in Listing 15.6.

LISTING 15.6 Changing the HyperlinkButton Elements

<StackPanel x:Name=”LinksStackPanel”

Style=”{StaticResource LinksStackPanelStyle}”>

<HyperlinkButton Style=”{StaticResource LinkStyle}”

NavigateUri=”/Shop/Beds/King”

Content=”King Size Beds”/>

<Rectangle Style=”{StaticResource DividerStyle}”/>

<HyperlinkButton Style=”{StaticResource LinkStyle}”

NavigateUri=”/Shop/Beds/Queen”

Content=”Queen Size Beds” />

</StackPanel>

In the UriMapper, add a mapping as shown in Listing 15.7.

LISTING 15.7 New URI Mapping

1 <uriMapper:UriMapper>

2 <uriMapper:UriMapping Uri=””

3 MappedUri=”/Views/Home.xaml” />

4 <uriMapper:UriMapping Uri=”/Shop”

5 MappedUri=”/Views/Shop/Catalog.xaml” />

6 <uriMapper:UriMapping Uri=”/Shop/{category}/{filter}”

7 MappedUri=”/Views/Shop/Catalog.xaml?cat={category}&filter={filter}” />

8 <uriMapper:UriMapping Uri=”/{pageName}”

9 MappedUri=”/Views/{pageName}.xaml” />

10 </uriMapper:UriMapper>

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

408

 From the Library of Wow! eBook

ptg

. Two URIs were added to the list: If the user navigates to /Shop, the page named
Catalog.xaml will be displayed without specific information, as mapped on lines 4
and 5.

. If the user navigates for example, to /Shop/Beds/QueenSize, the URI will be mapped
into /Views/Shop/Catalog.xaml?cat=Beds&filter=QueenSize as mapped on lines 6
and 7. The URI entered by the user is much shorter and less cryptic than the one it
is mapped to. Also, the mapping helps reorganizing the application: It is easy to
move the file Catalog.xaml to a different folder; the bookmarks saved by the user
must not be updated; only the URI mapping needs to be changed.

. The order in which the mappings are placed in the list is very important. Some
mappings are greedier than others. For example, the mapping on lines 4 and 5 is
included in the mapping in line 8 and 9. If the /{pageName} mapping was placed
before the /Shop mapping, the latter would never be called because the /Shop URI
would be caught by the more generic one.

The concept of mapping a URI to another also exists in other frameworks such as ASP.NET
MVC. In this framework, they are referred to as “routes.”

Working with Query String Parameters
The page named Catalog.xaml needs to retrieve the query string parameters named cat
and filter, and to display the corresponding information, for example, after a call to a web
service. Retrieving the query string parameter can be done with the following steps:

1. Open the file Catalog.xaml.cs.

2. Modify the method OnNavigatedTo as shown in Listing 15.8. Note that this method
(called when the Catalog page is loaded into the navigation host) is actually imple-
mented on the Page class (which is the base class of all our navigation pages) and
overridden in Catalog.xaml.cs. Of course, instead of showing a MessageBox, the final
implementation must set the user interface in the state corresponding to the
request. Note the use of the NavigationContext class, which provides handy access
to the parsed QueryString parameters neatly arranged in a key-value dictionary.

LISTING 15.8 Method OnNavigatedTo

protected override void OnNavigatedTo(NavigationEventArgs e)

{

if (!NavigationContext.QueryString.ContainsKey(“cat”)

|| !NavigationContext.QueryString.ContainsKey(“filter”))

{

MessageBox.Show(“This is the Shop page”);

}

else

{

MessageBox.Show(

Navigating with Silverlight 409

1
5

 From the Library of Wow! eBook

ptg

string.Format(“You want the category {0}”

+ “ and the product {1}”,

NavigationContext.QueryString[“cat”],

NavigationContext.QueryString[“filter”]));

}

base.OnNavigatedTo(e);

}

3. Run the application and click one of the links in the top-right corner. The Catalog
page is loaded, and the corresponding MessageBox is shown.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

410

WA R N I N G

Decoding the Error Messages

Unfortunately, the error messages in Silverlight 4 are sometimes confusing. For instance, if
an Exception is raised in the OnNavigatedTo method, the error window tells you that the
page “/Shop” was not found. In fact, the page was found, but an error occurred in the code
behind. If you are not sure what the cause of the error is, try commenting out the code in the
OnNavigatedTo method, and add code to it gradually until the error occurs again.

Another method is to temporarily mark the error as not handled. To do this, open
MainPage.xaml.cs and remove the first line of the method ContentFrame_NavigationFailed
(saying e.Handled = true;). This will cause a much better error description to be displayed
in the error window. Do not forget to mark the error as handled again before releasing the
application, to avoid having it crash.

Navigating to a Fragment
In addition to page-level navigation and to the query string, Silverlight supports fragment
navigation. A fragment is whatever comes after the # character in the XAML URI (for
example, http://www.mypage.com/Shop/Catalog.xaml#Overview).

Note, however, that, in contrast to navigation applications in WPF, the fragment does not
have a specific meaning for the user interface, and does not have to be a named UI
element. The fragment can be anything, and must be decoded by the application before
an action is executed.

To retrieve the fragment and execute code, follow these steps:

1. In the NavigationSample application, open MainPage.xaml.

2. Remove the Source property of the navigation:Frame. This will ensure that the appli-
cation starts with an empty XAML URI.

3. Modify the UriMapping for the empty URI as shown in Listing 15.9.

 From the Library of Wow! eBook

http://www.mypage.com/Shop/Catalog.xaml#Overview

ptg

LISTING 15.9 Adding a Fragment to the URI

<uriMapper:UriMapping Uri=””

MappedUri=”/Views/Home.xaml#Welcome” />

4. Open Home.xaml.cs

5. Add an override for the method OnFragmentNavigation as shown in Listing 15.10.

LISTING 15.10 Overriding OnFragmentNavigation

protected override void OnFragmentNavigation(

FragmentNavigationEventArgs e)

{

if (e.Fragment == “Welcome”)

{

MessageBox.Show(“Welcome to our site!!”);

}

base.OnFragmentNavigation(e);

}

6. Run the application. The empty UriMapping is executed, the page Home.xaml is
loaded, and because the fragment is set to “Welcome”, the welcome message is
shown.

This simple sample shows fragment navigation in Silverlight. Unfortunately, this feature is
less advanced than in Windows Presentation Foundation (WPF), where a named element
can be targeted and will be brought into view. The fragment in Silverlight has only a
symbolic meaning, and must be decoded by the application.

Theming the Application
Another thing that is special in the application shown in Figure 15.1 is the theme that it
uses by default. This is not the default look and feel for a Silverlight application.

The theme is provided in the file named Styles.xaml, located in the Assets folder. There
are styles for the main page (the host) and styles for the pages. The XAML markup can be
modified at will, either in the Visual Studio XAML editor, the Visual Studio Silverlight
designer (as shown in Figure 15.2) or in Expression Blend. This makes changing the look
and feel of a navigation application very easy. A lot of work has been put into theming by
the Silverlight theme, and more information (as well as additional themes) are available at
http://galasoft.ch/s14-themesdownload.

Navigating with Silverlight 411

1
5

 From the Library of Wow! eBook

http://galasoft.ch/s14-themesdownload

ptg

FIGURE 15.2 Silverlight navigation application in the Visual Studio designer.

Accessing Navigation Information
The navigation is handled by a navigation service, which in most applications is provided
by default by the Frame control. Normally, you should be able to handle all the navigation
scenarios simply by using this control.

Handling Navigation Events
Controlling the navigation can happen in two places: the host element (the Frame) and
the hosted element (the Page).

For the Frame control, the following events can be handled (in the order in which they
can occur):

. FragmentNavigation: Fired when navigation to a fragment occurs within the current
page.

. Navigating: This event is fired before the content changes. Note that the event is
fired even if the target Page does not exist.

. NavigationFailed: Fired when the target Page is not found, or when it throws an
error before it is loaded. In the default navigation application, this event is used to
display an error (using a ChildWindow control named ErrorWindow, and found in the
Views folder).

. NavigationStopped: This event is fired when the application executes the
Frame.StopLoading method (for example, in reaction to the user clicking a button to
cancel the navigation). It is also fired when the user starts a new navigation before
the previous one was completed.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

412

 From the Library of Wow! eBook

ptg

. Navigated: This event is fired when the content changes, after the target Page has
been found.

For the Page control, these events are not available directly, but the following methods
can be overridden (shown in the order in which they can be called):

. OnFragmentNavigation: Called when a fragment navigation is taking place.

. OnNavigatedTo: Called when a Page becomes active in a Frame. This could be a good
place to start an animation to show the Page’s content, for example.

. OnNavigatingFrom: Called before a Page is unloaded from a Frame, just before is stops
being active. This would be a good place to execute an animation before the page
changes, for example.

. OnNavigatedFrom: This method is called when the Page is unloaded from a Frame and
is not active anymore. This is a good place to save the Page’s state to a file or a
service, for example.

Using the Page’s NavigationService
In addition to the methods exposed in the previous section, the NavigationService itself
is exposed to the Page in the property of the same name. Useful information about the
navigation can be found in this object:

. CanGoBack and CanGoForward: These Boolean properties can be used to enable/disable
custom navigation buttons, for example.

. CurrentSource: Returns the URI of the Page that is currently displayed in the host.

. Source: This property can be set to force the navigation to a different Page.

. GoBack, GoForward, Navigate: These three methods can be used to navigate from a
Page to another one.

. Refresh: This method reloads the current Page.

. StopLoading: This method cancels an ongoing navigation programmatically.

Finally, the same events already mentioned for the Frame class are available on the
NavigationService. However, it is recommended to use the OnXXX methods on the Page
class instead. This removes the need to unhook the event handlers when the Page is
unloaded, which prevents potential memory leaks.

Providing Custom Navigation
Custom navigation can be useful if some special tasks need to be executed before or after
the navigation is executed. Such scenarios can sometimes be enabled by handling the
Navigating and the Navigated events. However, in some cases, these events are not
enough, for example, if an asynchronous task must be fulfilled before the navigation can
take place. One such example is the desire to navigate to pages that are not loaded in the

Navigating with Silverlight 413

1
5

 From the Library of Wow! eBook

ptg

application yet, but will be downloaded using the Managed Extensibility Framework
(MEF). (We will talk about MEF and on-demand downloading in Chapter 20, “Building
Extensible and Maintainable Applications.”)

Custom navigation involves implementing the INavigationContentLoader interface in a
custom class and providing an instance of this class to the Frame.ContentLoader property.
By default, the Frame provides an INavigationContentLoader instance out of the box.

Should you need to implement a custom INavigationContentLoader, you can find more
information in the Silverlight documentation, in the “Navigation Overview” section
under Extending the Navigation System.

Adding Navigation to a Non-Navigation Application
You can add navigation to a non-navigation application as follows:

1. Open the non-navigation application in Visual Studio.

2. (If not available already) Add a reference to the DLLs System.Windows.Controls.dll
and System.Windows.Controls.Navigation.dll. These two DLLs are found in the Add
Reference dialog, in the .NET tab. On the hard drive, they are installed into the
folder C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client. On
Windows 64 bits, the folder is in Program Files (x86).

3. Place a Frame in the Silverlight screen in which the navigation must take place.

4. Define the navigation by adding one or more UriMapping elements to the
Frame.UriMapper property, as shown in Listing 15.3.

5. Move the content into one or more new Page elements that are loaded inside the
Frame.

Integrating with the Web Browser Navigation
The integration with the web browser is given when you create a new Silverlight naviga-
tion application out of the box, but if you are looking to add navigation to an existing
application, you need to pay attention to the following points:

. In Windows Explorer, locate the NavigationSample application’s project files, and
open the Bin\Debug folder. Open the file named NavigationSampleTestPage.html in
a text editor. Near the bottom of the page, notice the presence of an HTML iframe
element with the id set to _sl_historyFrame. Due to the semantic differences in
browser history implementation, this iframe is used in some web browsers by the
Silverlight application to integrate with the browser’s navigation. If you are convert-
ing from a non-navigation application, you must add this iframe to the HTML page
hosting the Silverlight application.

. Web-browser integrated navigation is only possible with a top-level Frame. If your
application has nested Frame elements, their navigation will not be integrated.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

414

 From the Library of Wow! eBook

ptg

. The Frame element shown in Listing 15.3 has a property named JournalOwnership
(not shown in Listing 15.3). By default, the property is set to Automatic. This value
means that, for a top level Frame (as opposed to a nested Frame) the navigation is
integrated in the web browser’s navigation. By setting the property to OwnsJournal,
you can force the Frame to ignore the browser’s navigation and instead have its own
navigation journal.

. Browser-integrated navigation obviously doesn’t work with out-of-the-browser appli-
cations, because the browser chrome is not visible.

Developing with Silverlight for Windows Phone 7
In February 2010, Microsoft’s CEO Steve Ballmer gave the very first presentation of the
new phone operating system Windows Phone 7. For quite some time already, leaks and
rumors had been propagated on the Web, and it was interesting to follow the announce-
ment and finally see whether these phones were going to hold their promise.

This first presentation was extremely well received by the observers. It is a groundbreak-
ing change from existing Windows Mobile phones. The user interface and its design
(codenamed “Metro”) offer a welcomed alternative to existing smart phones such as
iPhone, Nokia, Android, or BlackBerry devices. Metro is remarkably different and puts a
lot of emphasis on typography and pictures, as shown in Figure 15.3. Heavily hardware
accelerated, the animations displayed are very smooth and natural, and the multitouch-
enabled capacitive screen responds very fast to the user’s input.

Developing with Silverlight for Windows Phone 7 415

1
5

FIGURE 15.3 Metro design, Zune, and Office applications.

 From the Library of Wow! eBook

ptg

Getting Hardware
At the time of this writing, some developers have started to receive actual phone devices
to develop on. Prototypes have also been available at conferences and the user experience
on these devices is excellent. If the stability and battery life of the commercial devices live
up to the expectations, the first version (expected between October and November 2010)
should encounter a great success.

If you are a developer and do not have access to a Windows Phone 7 device, the best way
is to contact your local Microsoft Developer Platform Evangelist (DPE). Most of them have
devices and can help you to get access.

Targeting a Specific Audience
Obviously, Windows Phone 7 is arriving in a market that is quite crowded already. To
carve a piece of the market for themselves (and for the application developers), Microsoft
is targeting a specific audience: active people in their late 30s who want to simplify their
life by using a very powerful phone, but easy to use and intuitive. This phone is not
primarily targeted at teenagers, for instance. Knowing the target audience will help you to
develop successful applications.

Developing for Windows Phone 7
For Silverlight developers, probably the most exciting news is that Silverlight is a first-class
citizen on the Windows Phone 7. In fact, application developers can choose between two
frameworks: XNA (rather suited for games) and Silverlight (rather suited for applications).

Silverlight developers with experience on the desktop became phone application develop-
ers overnight. The learning curve will be less steep for existing Silverlight developers than
for existing Windows Mobile developers. But don’t fret if you are a Windows Mobile
developer now, because learning Silverlight is a great adventure, and this book helps you
in the task.

Silverlight for Windows Phone 7 is developed primarily in Visual Studio and in
Expression Blend. The environment is well known, and the development experience is
unsurpassed, including a very lifelike emulator running on the PC, and debugging on the
device directly.

One interesting fact to mention is that it
is possible to develop applications in
Silverlight for Windows Phone 7 at no
cost: The tools are available for free.
There is a small fee to be paid to publish
the applications on the Windows Phone
marketplace, as you will see in the
“Selling Your Applications” section, but
it is reasonable. Anyone can become a
Windows Phone 7 developer (if they
know Silverlight or XNA, of course).

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

416

WA R N I N G

Disclaimer

The Silverlight tools for Windows Phone 7
are a work in progress and evolve very fast.
It is possible that a version of the tools
published after the time of this writing
breaks some of the code in this chapter.

 From the Library of Wow! eBook

ptg

Developing for a Uniform Hardware Platform
Traditionally, developing for a mobile platform has given headaches to testers. With a
large number of devices, all with their own features and incompatibilities, it was
extremely difficult to make sure that the code was working consistently on every platform
targeted.

Apple with the iPhone solved the problem in their own way, by locking down the hard-
ware and forbidding any non-proprietary device to run the iPhone operating system. Of
course, this is not very satisfactory. For example, some people prefer to have a phone with
a hardware keyboard rather than the virtual on-screen keyboard. Others may want to
spend more money to get a better camera, and so forth. Every customer has different
needs and desires, and that is especially true when it comes to such a personal device as a
mobile phone.

For Windows Phone 7, Microsoft is putting quite a lot of constraints on the device
makers. For example, each phone running the Windows Phone 7 operating system must
come with (at least) the following:

. A capacitive touch screen with 800 x 480 pixels. The screen must be able to recog-
nize four touch points.

. Hardware acceleration built in. On the Windows Phone 7, Silverlight animations are
always hardware accelerated to guarantee smooth movement.

. GPS, accelerometer, compass, location sensors.

. At least 5-megapixels digital camera.

. Start button, Back button, Search button as hardware buttons.

. Data connectivity with wireless networks and cellular networks.

. At least 256MB RAM and 8GB Flash storage.

Having this common set of features across all Windows Phone 7 devices facilitates the
development of new applications. The developer knows exactly what to expect in his
application. On the other hand, device makers are free to add a hardware keyboard, for
example, a better camera with a flash, additional storage space, and so forth. This is an
open platform with a minimum set of requirements.

Developing with Silverlight for Windows Phone 7 417

1
5

 From the Library of Wow! eBook

ptg

Designing for the Phone
The Windows Phone 7 comes with a
screen 480 pixels wide and 800 pixels
high. A built-in accelerometer detects
the orientation of the phone. If the
application supports it, the screen will
be rotated to display the application in
portrait or landscape mode, as shown
in Figure 15.4.

Built-in default styles propose a consis-
tent experience using the Metro design.
This is leveraging the fact that
Silverlight controls do not have a stan-
dard look and feel as you saw in Chapter 10, “Creating Resources, Styles, and Templates,”
but use styles and templates. On the desktop, the default styles and templates are differ-
ent from those on the phone, which allows achieving a different look and feel without
any design effort. For instance, the markup shown in Listing 15.11
is rendered differently as shown in Figure 15.5.

LISTING 15.11 UI elements in Windows Phone 7 and on the desktop

<StackPanel>

<TextBlock Text=”This is a label” />

<TextBox Text=”Enter some text here” />

<StackPanel Orientation=”Horizontal”>

<Button Content=”Save” />

<Button Content=”Cancel” />

</StackPanel>

<RadioButton Content=”I agree” />

<RadioButton Content=”I disagree” />

<RadioButton Content=”I don’t know” />

<Slider Minimum=”0” Maximum=”10” Value=”5” />

<CheckBox Content=”Save results” />

</StackPanel>

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

418

FIGURE 15.4 Web browser in portrait and
landscape mode in the emulator.

 From the Library of Wow! eBook

ptg

FIGURE 15.5 Default look and feel in Windows Phone 7 and on the desktop.

Nothing forces the developer or the designer to use the default styles and templates. If
desired, a customized experience can be developed. However, be aware that designing for
the phone is very different from designing for a desktop application. Because fingers are
the main input “device,” all the controls should be larger, with more space between them.
Also, some controls are not available on the phone because they would be too difficult to
handle with fingers (such as the combo box control).

To get a more realistic experience, it is recommended to zoom out in Expression Blend
until the device has approximately the same size as a real phone. (For example, 66%
zoom works quite well on a 1920 x 1200 screen.) Similarly, when the emulator is running,
you can reduce the size on the screen using the Settings button in the side bar (circled in
red in Figure 15.5).

Installing the Tools
The Windows Phone tools need to be installed separately from Visual Studio 2010. Note
that these tools are currently in beta state, and not as stable as a production release. Also,
a new version is released from time to time, and the developers should make sure to run
the latest version of the tools.

To download the latest, go to http://developer.windowsphone.com and click the Get the
Free Tools link. The beta version of the tools include all you need to create and run the
samples in this chapter, including the Windows Phone Developer Tools for Visual Studio
2010 and the Microsoft Expression Blend for Windows Phone beta.

Using Multitouch in the Emulator
A good surprise for phone application developers owning a multitouch-enabled computer
is that the Windows Phone 7 emulator supports gestures on multitouch screens. This
enables a more lifelike testing for your applications before pushing them to the phone for
real-life testing.

Developing with Silverlight for Windows Phone 7 419

1
5

 From the Library of Wow! eBook

http://developer.windowsphone.com

ptg

Developing in XNA
In addition to Silverlight, it is also possible to develop applications using the XNA
framework, which is specialized for games but can also be used for other tasks.
For more information about developing Windows Phone 7 applications with XNA, refer
to http://www.galasoft.ch/sl4-wp7xna.

Selling Your Applications
To distribute his applications to users
(against a fee or for free), a developer
must be registered for the Windows
Phone marketplace. This is the only way
to install applications on a Windows
Phone 7 device.

Registering as a Developer
To publish applications, the developer
must register on the Windows Phone
developer site at
http://developer.windowsphone.com.
On this page, click the Register for the
Marketplace link and follow the instruc-
tions. The registration costs $99 per year. This is, in fact, the only cost associated with
Windows Phone 7 development, since the tools are free.

Registering for the marketplace involves registering with the Internal Revenue Service
(IRS), which will tax the income from the sold applications. Note, however, that if you are
a resident of a country other than the United States, and if your country has a tax treaty
with the United States, you can apply for an Individual Tax Identification Number (ITIN),
which can reduce or even lift the tax that the U.S. government will get. For more infor-
mation, check the IRS’s website at http://www.galasoft.ch/sl4-irs.

The registration process takes some time to be completed, and requires sending a docu-
ment through snail mail (postal services) to Microsoft, and maybe even getting approved
by the IRS. It is not very complicated, but make sure to start the process early enough to
get your registration in time.

Building Compatible Applications for the Desktop and the Phone
In this section, we take an existing Silverlight desktop application and convert it to run
on Windows Phone 7 devices.

The Silverlight application and its WCF service are available from
http://www.galasoft.ch/sl4-wp7start. Download the CustomersManager-Start.zip file. Make
sure that the zip file is unblocked by right-clicking it in Windows Explorer and selecting
the file’s properties. On the General tab, if the Unblock button is available, click it to
avoid security issues later. Then, extract the zip file to a location on your hard drive.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

420

T I P

Installing as a Developer

Although it is true that applications can be
installed only through the marketplace, the
developers will be able to register up to
three devices where this restriction is lifted.
This enables a developer to test his code on
various devices (even though the uniform
hardware profile should reduce the number
of incompatible features between the various
devices). Devices registered to test applica-
tions may be removed, allowing a different
device to be registered instead.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-wp7xna
http://developer.windowsphone.com
http://www.galasoft.ch/sl4-irs
http://www.galasoft.ch/sl4-wp7start

ptg

Reviewing the Desktop Application
The existing application is a Silverlight 4 application connecting to a Windows
Communication Foundation (WCF) service to get a list of customers. New customers can
be added, and existing customers can be modified.

The application is built according to the principles of Model-View-ViewModel (MVVM)
that you learned in Chapter 7, “Understanding the Model-View-ViewModel Pattern.” To
make the developer’s life easier, the MVVM Light Toolkit is used; this is an open source
toolkit developed and maintained by this author. You’ll learn more about this toolkit in
Chapters 19, “Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control,” and 20, “Building
Extensible and Maintainable Applications.” The MVVM Light Toolkit is available for
Silverlight 4 on the desktop, and for Silverlight on Windows Phone 7, which helps creat-
ing compatible applications.

Configuring and Starting the WCF Service
To test the application, the WCF service needs to be started first. It is available as a sepa-
rate application named Customers in the zip file you just downloaded. Follow the instruc-
tions at http://www.galasoft.ch/sl4-wp7start to open and start it. Having the WCF service
in a separate solution forces you to explicitly start it when you want to test, but it also
makes the deployment easier because there is no dependency between the Silverlight
application and the WCF service.

Because the service runs in a different domain, accessing it from a Silverlight application
is restricted (except if the Silverlight application runs with elevated permissions, as
discussed in Chapter 14, “Enhancing Line-of-Business Applications and Running Out of
the Browser”). To solve this, a clientaccesspolicy.xml file is in place in the root of the
WCF application. This file enables access to all Silverlight applications in an unrestricted
manner. When publishing the service to a production server, you may want to reduce the
permissions. You can find more information about the cross-domain policy files in
Silverlight 2 Unleashed, Chapter 23, Listings 23.1 and 23.2.

Once the WCF service is configured,
right click on the file
CustomerService.svc and select View in
Browser from the context menu. An
information page is displayed. Keep this
window open, because you will need the
URL of the page later in this chapter.

Starting the Silverlight Client
To test the Silverlight application, follow these steps:

1. Open in Visual Studio the CustomersManager.sln solution that is found in the
CustomersManager-Start folder.

2. Make sure that the CustomersManager.Web project is set as startup project, and the
index.html page as startup page.

Developing with Silverlight for Windows Phone 7 421

1
5

T I P

Cross-Domain on the Phone

Windows Phone 7 applications are not
subjected to cross-domain restrictions as are
Silverlight desktop applications running in
normal trust. A Windows Phone application
can connect to any site or service.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-wp7start

ptg

3. Press Ctrl+F5. The application starts and loads the list of customers is loaded from
the WCF service. Using this application, it is possible to change the first name or
last name of a customer, to change his gender (should that be needed), and then to
save the changes back to the service. It is also possible to load a different picture for
the user and upload it to the WCF server. Finally, you can also create a new
customer.

Note that the Silverlight clients are not automatically notified when a customer changes
or when a new customer is created. It would be possible to create such a functionality
using the duplex polling networking feature that is discussed in Chapter 18, “Drag and
Drop, Full Screen, Clipboard, COM Interop, Duplex Polling, Notification Windows, and
Splash Screens.”

This desktop application will not be detailed further here, but take some time to study the
code. Of course, it is also fully Blendable with design-time data, thanks to the MVVM
pattern.

Creating a New Windows Phone 7 Application
Now is time to expand our reach to customers by opening the application to the
Windows Phone 7 platform. Thanks to the fact that Silverlight is used on both the
desktop and the phone, and thanks to the MVVM separation pattern (and a few helpers
to bridge the small differences between Silverlight on the desktop and on the phone),
building a similar experience on the phone is very easy.

Of course, because of differences in the screen dimensions and in the more limited
support that the phone platform offers, the experience will be less rich. In our sample, the
phone user will be able to edit a customer’s first name and last name. He will not,
however, be able to create a new customer or to select a picture for the customer. Note
that these features would be possible to implement on the phone, too, but we will keep it
simple here. Let’s start with the following steps:

1. With the CustomersManager solution open in Visual Studio, right-click the
CustomersManager solution in the Solution Explorer and select Add, New Project
from the context menu.

2. In the Add New Project dialog, under Silverlight for Windows Phone, select
Windows Phone Application. If you do not see this template, you need to install the
Windows Phone 7 tools as described earlier in this chapter. Name the new applica-
tion CustomersManager.WP7, and then click OK.

3. Make sure that the phone application is selected as startup project, and then press
Ctrl+F5 to start the emulator. This takes a few minutes. Do not close the emulator!
After it runs, starting the application is much faster.

4. Right-click the CustomersManager.WP7 project and select Properties.

5. In the Application tab, set the Default Namespace to CustomersManager.SL instead
of CustomersManager.WP7, as shown in Figure 15.6. We want to change the default
namespace to share a maximum of code with the CustomersManager.SL project.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

422

 From the Library of Wow! eBook

ptg

6. Right-click the References folder and select Add Reference. In the Browse tab, navi-
gate to the folder named External that can be found in the CustomersManager-Start
folder, next to CustomersManager.Web, CustomersManager.SL, and
CustomersManager.WP7.

7. In the External folder, open the folder named WP7 and select the three DLLs that
this folder contains. Click OK to close the Add Reference dialog and save everything
using the File, Save All menu.

Developing with Silverlight for Windows Phone 7 423

1
5

FIGURE 15.6 Changing the default namespace.

Adding a Service Reference
We need a service reference to the WCF project now with the following steps, just like we
added one for the desktop Silverlight application.

1. In Visual Studio, right-click the References folder of the CustomersManager.WP7
and select Add Service Reference.

2. In the Add Service Reference dialog, paste the URL of the WCF service’s web page
that was displayed in the “Configuring and Starting the WCF Service” section. This
is the URL of the CustomerService.svc file running in the development web server.
Then click the button Go.

3. After the service information is done loading, change the Namespace in the Add
Service Reference to be RemoteCustomersService, just as it is for the Silverlight 4
application. Here, too, to share code, we need to use the same name.

4. Save everything.

Sharing Code
Because both the Silverlight 4 and the Silverlight for Windows Phone 7 applications run
Silverlight, it is possible to share code between both with the following steps:

1. Right-click the CustomersManager.WP7 project, and select Add, New Folder. Name
this folder Design.

2. Right-click the Design folder and select Add, Existing Item. In the Existing Item
dialog, navigate to CustomersManager-Start\CustomersManager.SL\Design\.

 From the Library of Wow! eBook

ptg

3. Select the file in this folder, and then click the small
arrow in the Add button, as shown in Figure 15.7. Select
Add as Link.

The Add as Link operation adds a shortcut to the selected
file in the WP7 project. There is no physical copy of the
file on the disk, but the file will be compiled into the
WP7 DLL anyway. This is a great way to share code
between different platforms.

4. Repeat the Steps 1 to 3 for the folders Model and ViewModel. Make sure to link all
the files in each folder.

5. Build the application. There should be one error mentioning that
ObservableCollection<CustomerViewModel> does not have a constructor that takes
one argument.

This error is due to a compatibility issue. In Silverlight 4, a new constructor (with one
argument of type IEnumerable<T>) was added to the ObservableCollection<T> class.
However, this overload of the constructor is not available in Silverlight 3, which is what
the Windows Phone 7 is running. To solve this, we will use a conditional compilation
symbol.

Using such conditional compilation is a little annoying because it makes the source code
more complex to read. For small amounts of code, however, it is okay. Follow these steps:

1. Open the WP7 project properties and select the Build tab.

2. In the Conditional Compilation Symbols text box, notice the symbols
SILVERLIGHT;WINDOWS_PHONE. This lets you use either symbol for the compila-
tion.

3. Open MainViewModel.cs from the WP7 project. It is important to open it from
there because opening the file from the SL project opens it in the context of
Silverlight 4, while opening it from the WP7 project uses the phone context.

4. Locate the line in the Refresh method where the new
ObservableCollection<CustomerViewModel> is created and change this line as shown
in Listing 15.12. Note that depending on which context the file is open in
(Silverlight 4 or Windows Phone) the corresponding lines are activated and colored
in the editor, while the other lines are grayed.

LISTING 15.12 Creating the ObservableCollection

#if WINDOWS_PHONE

Customers = new ObservableCollection<CustomerViewModel>();

foreach (var customer in customers)

{

Customers.Add(customer);

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

424

FIGURE 15.7 Adding
as a link.

 From the Library of Wow! eBook

ptg

}

#else

Customers = new ObservableCollection<CustomerViewModel>(customers);

#endif

5. Build the application again. This time it works fine.

Binding the View and the Viewmodel
We need to bind the application in an MVVM style by setting a ViewModelLocator in the
App.xaml resources and then setting the MainPage’s DataContext to the MainViewModel, as
follows:

1. Open App.xaml and modify the Application.Resources as shown in Listing 15.13.

LISTING 15.13 Creating a ViewModelLocator

<Application.Resources>

<vm:ViewModelLocator x:Key=”Locator”

xmlns:vm=”clr-namespace:CustomersManager.SL.ViewModel” />

</Application.Resources>

2. Open MainPage.xaml. In the phoneNavigation:PhoneApplicationPage root tag, set
the DataContext property as shown in Listing 15.14.

LISTING 15.14 Setting the DataContext

DataContext=”{Binding Main, Source={StaticResource Locator}}”

3. Check the XAML markup. Within the LayoutRoot Grid, there are two Grid elements
named TitleGrid and ContentGrid. Set the two TextBlock elements in the TitleGrid
to the application’s name and to the page title.

4. Modify the ContentGrid as shown in Listing 15.15.

LISTING 15.15 Creating a Simple ListBox

<Grid x:Name=”ContentGrid” Grid.Row=”1”>

<ListBox ItemsSource=”{Binding Customers}”

ScrollViewer.HorizontalScrollBarVisibility=”Disabled”

SelectedItem=”{Binding SelectedCustomer, Mode=TwoWay}” />

</Grid>

5. Run the application. If you see the image shown in Figure 15.8, everything is
working fine! The connection to the WCF service worked perfectly, and a number of
customers were returned. At this point, however, there is no DataTemplate able to

Developing with Silverlight for Windows Phone 7 425

1
5

 From the Library of Wow! eBook

ptg

render these items. This is why, instead, the
ToString method is called on each
CustomerViewModel instance and the type
name is returned by default.

Everything we did in this section is the same as we
have done in Silverlight applications before. The
same principles apply, and the MVVM pattern
works great on the phone, too. In the next section,
you will see that design-time data can also be
created on the phone and that the application is
Blendable.

Creating the UI
At this point, it is possible to edit the UI either in
the XAML editor, in the Visual Studio designer or in Expression Blend. It is really up to
you to choose the tool you prefer. In this sample, we demonstrate how friendly Windows
Phone 7 development is in Blend. As you saw when we installed the Windows Phone 7
developer tools, Expression Blend for the phone is free, so there is really no reason for not
using it! Follow these steps:

1. Open the CustomersManager.sln solution in Expression Blend 4 for Windows
Phone.

2. In the Projects panel, expand the CustomersManager.WP7 project and open the
MainPage.xaml.

3. Notice that a number of customers (without a DataTemplate) are shown in the
ListBox. These customers are created in design time by the class
DesignCustomersService in the Design folder. This follows the sample shown at MIX
2010’s “Understanding the MVVM pattern” talk, available as a video at
http://www.galasoft.ch/sl4-mix10. By modifying this class, it is possible to change
what Blend displays on the screen (after the application is recompiled).

4. Right-click the ListBox on the main design surface and select Edit Additional
Templates, Edit Generated Items (ItemTemplate), Create Empty from the context
menu.

5. In the Create DataTemplate Resource dialog, enter the name CustomerTemplate
and click OK. Note that in Silverlight 3, external resource dictionary are not
supported, so resources can only be placed in the page or in App.xaml.

6. In the Objects and Timeline panel, select the Grid in the ItemTemplate and set its
Height to 130 pixels and its Width to 460 pixels.

7. Split the Grid in two columns by passing the mouse on top of the Grid’s border in
the designer surface and clicking. Select the first column, and in the Properties
panel, set its Width to 130 pixels.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

426

FIGURE 15.8 Customers without
a DataTemplate.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-mix10

ptg

8. In the first column, add an Image control from the Assets library. Make it fill the
whole cell, and set its Margin to 5,5,5,5.

9. Find the Source property for the Image and open the binding editor. You learned
how to do this in Chapter 6, “Working with Data: Binding, Grouping, Sorting, and
Filtering.”

10. Because we are within a DataTemplate representing a CustomerViewModel instance,
the implicit DataContext is automatically set to the CustomerViewModel class. In the
data binding dialog, expand the Model property within the CustomerViewModel. This
is a Customer instance as generated by the WCF service and wrapped into the
CustomerViewModel.

11. In the Customer instance, select the PictureUri property and click OK.

Notice how a picture (the logo of www.galasoft.ch) is appearing for each customer.
To understand what is happening, inspect the DesignCustomerService class in the
Design folder. For each design time customer created, the PictureUri is set to a
remote URL corresponding to this picture. Blend is able to download this picture
and display it on the design surface. At runtime however, a picture of the customer
will be shown instead.

12. In the cell on the right of the DataTemplate, add a StackPanel and make it fill the
whole space.

13. In the StackPanel, add two TextBlock elements.

14. Select the first TextBlock and create a data binding between its Text property and
the Model’s FirstName property. Then set its FontSize to 36px.

15. Select the second TextBlock and repeat Step 13, this time with the LastName property
and a FontSize of 48px. If the font size is set in points (pt), remember that you can
change it to pixels (px) with Tools, Options, Units.

16. Set the scope back to the page and run the
application. After a short delay, you should see
the list of customers and their picture in the
emulator, as shown in Figure 15.9.

Adding an Edit Panel
The CustomersManager Silverlight application for
the desktop allows adding new customers, editing
existing customers, and uploading a new picture. In
this sample, we will allow editing the FirstName and
LastName of a Customer on the phone, with the
following steps:

1. In Blend, inside the ContentGrid, add a new
StackPanel and make it fill the whole space.
Name it EditStackPanel.

Developing with Silverlight for Windows Phone 7 427

1
5

FIGURE 15.9 List of customers
with DataTemplate.

 From the Library of Wow! eBook

www.galasoft.ch

ptg

2. In the Objects and Timeline panel, move the StackPanel so that it appears behind
the ListBox. It should be the first child of the ContentGrid.

3. Hide the ListBox by clicking the small Eye icon in the Objects and Timeline panel.

4. In the EditStackPanel, add a TextBlock, a TextBox, and the again a TextBlock and a
TextBox.

5. Set the first TextBlock’s Text property to “First Name”.

6. Then, open the data binding editor for the first TextBox’s Text property. The
DataContext is now set to the MainViewModel, which is perfect. Select the
SelectedCustomer.Model.FirstName property.

7. Expand the advanced properties section, and make sure that the data binding’s Mode
is set to TwoWay. We want the model to be updated when the user enter a text!

8. Repeat Step 5 for the second TextBlock and “Last Name”.

9. Repeat Steps 6 and 7 for the second TextBox and the LastName property of the
SelectedCustomer’s Model.

10. Add a Button to the EditStackPanel and set its Content property to “Save”.

Adding States
To switch from one view (the ListBox) to the other (the EditStackPanel), we need to add
states and transitions. This is very simple in Blend, thanks to the visual design features,
with the following steps:

1. Select the EditStackPanel and set its Opacity to 0.

2. In the Objects and Timeline panel, display the ListBox again by clicking on the
small, hidden Eye icon.

3. Click the States tab. Add a new state group by pressing the corresponding button.
Name the group EditStates.

4. In the EditStates group, add a new state named Normal and another state named
Edit.

5. Set the default transition to 1s. You can also choose an easing function for this
animation (for example, Cubic In).

6. With the Edit state selected, make sure that Blend is in state recording mode (with a
red border around the design surface) and select the ListBox

7. Expand the Transform section in the Properties panel.

8. In the Projection section, select the Rotation tab and set the Y rotation to 76.6
degrees. Notice that the rotation happens with the Y axis in the middle of the
ListBox’s width, which is not what we want. The center of rotation needs to be
moved.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

428

 From the Library of Wow! eBook

ptg

9. Click the Base state to exit state recording mode. The center of rotation may not be
edited while a state is recording, or else its value will only change for the corre-
sponding state!

10. Select the Center of Rotation tab, and set the value of X to 0. The ListBox should
now disappear completely due to the rotation angle.

11. Finally, select the Edit state again and set the ListBox’s Opacity to 0 and the
EditStackPanel’s Opacity to 100%. This way the transition will be smoother.

12. In the States panel, click “Turn On Transition Preview” (this is the tooltip of the
small button just below the tabs). Then, click Normal and Edit, and see how the UI
changes according to the defined transition.

Adding an ApplicationBar
To trigger the state transition, some controls are needed. However, we would like to lose
as little “real estate” on the screen as possible, because of the small dimensions. A good
solution is to use the ApplicationBar, a control specific to the Windows Phone 7 that
ensures a consistent experience between all the applications. This control hosts a series of
maximum four buttons and an optional menu. Unfortunately, at the time of this writing,
Blend does not support adding and configuring an ApplicationBar, but it is easy to do so
in XAML with the following steps:

1. Right-click the WP7 project and select Add, New Folder. Name the folder Resources.

2. Right-click the Resources folder and select Add, Existing Item.

3. In the Add Existing Item dialog, find the Resources folder inside the External folder
where we got the external DLLs before. Inside the Resources folder, select the two
PNG files and click Add.

4. Select the two PNG files in the Solution Explorer and press F4 to display their prop-
erties. Make sure that the Build Action is set to Content, and Copy to Output
Directory is set to Copy If Newer.

5. In MainPage.xaml, uncomment the sample application bar markup at the bottom of
the page, and then modify it as shown in Listing 15.16. Note that there can be only
one ApplicationBar per page.

LISTING 15.16 Adding the ApplicationBar

<phone:PhoneApplicationPage.ApplicationBar>

<shell:ApplicationBar

IsVisible=”True”

IsMenuEnabled=”True”>

<shell:ApplicationBarIconButton

IconUri=”/Resources/appbar.edit.rest.png”

Text=”edit”

Click=”EditButtonClick” />

Developing with Silverlight for Windows Phone 7 429

1
5

 From the Library of Wow! eBook

ptg

<shell:ApplicationBarIconButton

IconUri=”/Resources/appbar.cancel.rest.png”

Text=”cancel”

Click=”CancelButtonClick”

IsEnabled=”False”/>

<shell:ApplicationBar.MenuItems>

<shell:ApplicationBarMenuItem

Text=”Refresh”

Click=”RefreshClick” />

</shell:ApplicationBar.MenuItems>

</shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

Listing 15.16 adds an ApplicationBar with one menu item titled Refresh and two
buttons, Edit and Cancel. These controls are very primitive and have only a Click
event. In fact, they are not even controls, but are a specific class of elements. This
forces us to add code in the code behind, which is not a big problem but breaks a
little the strict separation that we had until now.

8. Open MainPage.xaml.cs and add the event handlers shown in Listing 15.17.

LISTING 15.17 ApplicationBar Event Handlers

1 public enum IconButtons

2 {

3 Edit = 0,

4 Cancel = 1

5 }

6

7 public void EnableButton(IconButtons whichButton, bool enable)

8 {

9 (ApplicationBar.Buttons[(int)whichButton]

10 as ApplicationBarIconButton).IsEnabled = enable;

11 }

12

13 private void EditButtonClick(object sender, EventArgs e)

14 {

15 EnableButton(IconButtons.Edit, false);

16 EnableButton(IconButtons.Cancel, true);

17 VisualStateManager.GoToState(this, “Edit”, true);

18 }

19

20 private void CancelButtonClick(object sender, EventArgs e)

21 {

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

430

 From the Library of Wow! eBook

ptg

22 EnableButton(IconButtons.Edit, true);

23 EnableButton(IconButtons.Cancel, false);

24 VisualStateManager.GoToState(this, “Normal”, true);

25 }

26

27 private void RefreshClick(object sender, EventArgs e)

28 {

29 var vm = DataContext as MainViewModel;

30 if (vm != null)

31 {

32 vm.RefreshCommand.Execute(null);

33 }

34 }

. On lines 7 to 11, a method is enabling and disabling the ApplicationBar buttons. It
uses the enum defined on lines 1 to 5. This is needed because the
ApplicationBarIconButton elements cannot be referenced by name.

. On lines 17 and 24, note the usage of the VisualStateManager class used to set the
page in the Edit or Normal states programmatically.

. On lines 29 to 33, the RefreshClick event handler retrieves the DataContext, casts it
to MainViewModel, and then executes the RefreshCommand. This is a way to execute a
command from the code behind when the controls used do not have a Command
property.

Run the application. You should now see the ApplicationBar with its two buttons, Edit
and Cancel (which is disabled). Select a customer and click the Edit button to observe the
transition to the edit mode, and then click Cancel to go back to the ListBox. You can also
open the menu by pressing on the three little dots in the application bar, and then click
Refresh.

You can also expand the menu in the ApplicationBar and click the Refresh button. Any
changes made in the meantime by the Silverlight desktop application will be reloaded on
the phone.

Using Commands in Windows Phone 7
One thing is missing: The Save button in the edit panel doesn’t work. It must be wired to
the SaveSelectedCustomerCommand on the MainViewModel with the following steps:

1. Open MainPage.xaml in the XAML editor in Visual Studio and locate the Button
with the Content set to “Save”.

2. Modify the Button’s markup as shown in Listing 15.18.

Developing with Silverlight for Windows Phone 7 431

1
5

 From the Library of Wow! eBook

ptg

LISTING 15.18 Setting a Command on the Save Button

<Button Content=”Save”

xmlns:cmd=”clr-

namespace:GalaSoft.MvvmLight.Command;assembly=GalaSoft.MvvmLight.WP7”

cmd:ButtonBaseExtensions.Command=”{Binding SaveSelectedCustomerCommand}” />

The markup in Listing 15.18 is using the ButtonBaseExtension class provided in the WP7
edition of MVVM Light Toolkit. This class (originally developed by Josh Smith) is handy
because the Button control does not have a Command property in Windows Phone 7 (or in
Silverlight 3 for that matter). By using the ButtonBaseExtension.Command and
ButtonBaseExtension.CommandParameter attached properties, this functionality can be
added to the Button control (and any other control driving from ButtonBase).

Run the application again, select a customer, and click the Edit button. You can now
change the selected customer’s first name, last name, and save the changes. In the
Silverlight desktop application, click Refresh to see the changes made by the phone.

Continuing the Exploration
There is obviously much more to Windows Phone 7 than what was shown in these few
pages, but this should give you a good head start with the technology. More information
will be unveiled as the official release of the Windows Phone 7 devices becomes immi-
nent. At the time of this writing, there are already multiple blog entries and even draft
books related to Windows Phone 7 development available at no cost.

The official website for Windows Phone developers is
http://developer.windowsphone.com. From there, the Resources link takes you to the
section of MSDN dedicated to Windows Phone 7.

Finally, Sams has a Windows Phone 7 book in preparation titled Windows Phone 7
Unleashed. It should be available early 2011.

Summary
In this chapter, we talked about navigation with Silverlight 4 and Windows Phone 7
applications with Silverlight.

The first part of this chapter showed an interesting way to combine the richness of
Silverlight applications with the navigation features of the web browser, normally associ-
ated with websites and web applications. The Back and Forward buttons were always an
interesting feature of hypertext documents. Having this functionality available in a rich
application makes it very versatile. However, we need to remember that this is a very
different application model from the standard Silverlight application and plan the
features accordingly.

CHAPTER 15 Developing Navigation Applications and Silverlight for Windows
Phone 7

432

 From the Library of Wow! eBook

http://developer.windowsphone.com

ptg

The Windows Phone 7 platform is one of the most exciting developments for Silverlight
because it allows reusing existing skills to build applications for a very different platform
that should spread the usage of Silverlight to a larger population and to very different
scenarios. This chapter offered a glimpse into the Windows Phone 7 development with
Silverlight and how to reuse code between a Silverlight desktop application and a phone
application.

In the next chapter, we will talk about effects and media in Silverlight 4: how to use pixel
shaders to modify a picture, a video, or even a part of the user interface; how to take
pictures and record sound using webcam and microphone; and how to create images on-
the-fly and save them.

Summary 433

1
5

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Understand what pixel
shaders are and how they
work.

. Use the Shazzam tool to learn
more about shaders and edit
them.

. Integrate shaders in the
Silverlight application and
animate them.

. Access the webcam and
microphone to enhance the
interactivity.

. Use the OpenFileDialog to
load files and the
SaveFileDialog to save files to
the local computer.

. Study the WriteableBitmap
class and use it to save parts
of the application as images.

. Learn how to save images in
various formats from the
Silverlight application.

. Use the WriteableBitmap to
manipulate pixels of an
image.

. Load the WriteableBitmapEx
library from CodePlex and use
some of its extended function-
alities to combine images
together.

. See a list of new features
related to media in
Silverlight 4.

CHAPTER 16

Using Effects and
Recording Media

In addition to the large topics such as MVVM, WCF RIA
Services, new controls, and so on, Silverlight 4 is loaded
with multiple improvements and new features that are
maybe less extensive but contribute to making Silverlight a
very rich platform.

In this chapter, we review features that have to do with
media such as pixel shaders, webcams, and audio record-
ing, before moving on to other features in the next chapter.

Creating Effects with Pixel
Shaders
Pixel shaders are small programs that take each and every
pixel of an element and process it. The color and trans-
parency of the pixel can be modified (for example, based
on the pixel’s original color or its position). Pixel shaders
can be applied to any visual on the screen (image, video,
but also UI elements). Even better, they can have properties
that can be data bound and/or animated. The range of
effects is endless!

Shaders are written in a language named HLSL (High Level
Shading Language), which is not related to Silverlight. In
fact, it is possible to find pixel shaders online, and to apply
them to a Silverlight element. Before they can be used by
the Silverlight application, however, they need to be
compiled, tested, and then included in the XAP file.

 From the Library of Wow! eBook

ptg

Writing, Finding, and Compiling Shader Files
Writing HLSL shaders often implies mathematic operations that can be quite complex.
However, with so many shaders available online, it is often not necessary to write them
but instead to find and parameter them. To understand how shaders work, let’s write two
small examples, starting with a simple monochrome effect shown in Listing 16.1, which
removes the red and green components of each pixel and leaves only the blue and the
alpha (transparency) components.

LISTING 16.1 Simple Monochrome Shader

1 sampler2D input : register(S0);

2

3 float4 main(float2 position : TEXCOORD) : COLOR

4 {

5 float4 color = tex2D(input, position.xy);

6 return float4(0, 0, color.b, color.a);

7 }

. On line 1, a variable of type sampler2D is declared. This is the input of the pixel
shader and corresponds to the visual to which the shader is applied (for example, an
Image or a UIElement).

. Lines 3 to 7 are the main function, which is called once for every pixel. The return
type is a float4, meaning that it is a register with four values (for the Red, Green,
Blue, and Alpha channels). The only parameter is a float2, a register with 2 values
(for the X and Y coordinates of the pixel). This method will be found in every
shader.

. Line 5 uses the function called tex2D, which retrieves the color of a pixel in the
input element based on its coordinates (normalized between 0 and 1). Notice the
use of the xy property of the position parameter. xy allows to access both the X and
the Y values in one pass, which speeds up the calculations. Pixel shaders work
extremely well in parallel, but this makes them a little harder to understand. Next
to position.xy, it is also possible to retrieve only position.x and position.y if
needed.

. Finally, a new float4 is constructed, but the values of the Red and Green channels
are left to 0. In effect, this removes the Red and Green values and leaves only Blue
and Alpha (transparency).

The shader in Listing 16.1 is processing pixels based only on their color. There is no
distortion of the element to which the shader is applied. It is, however, possible to modify
the color of a pixel based on its position, which creates a distorted output. For example, a
well-known wave effect is shown in Listing 16.2.

CHAPTER 16 Using Effects and Recording Media436

 From the Library of Wow! eBook

ptg

LISTING 16.2 Wave Effect Shader

1 sampler2D input : register(S0);

2

3 float4 main(float2 position : TEXCOORD) : COLOR

4 {

5 position.y = position.y + (sin(position.y*100)*0.03);

6 return tex2D(input, position.xy);

7 }

. Line 5 modifies the Y value of the position.

. Line 6 retrieves the color of the pixel at the same X coordinate than the original
pixel, but at a different Y position. In effect, this replaces the color of the original
pixel by the color of another pixel on the same element. This creates a distorted
effect, which, because it corresponds to a sine function, looks like a reflection on
water.

When applied to a picture, the shaders in Listing 16.1 and 16.2 create the output shown
in Figure 16.1.

Creating Effects with Pixel Shaders 437

1
6

FIGURE 16.1 Unmodified picture, picture with monochrome shader, picture with wave shader.

Understanding the Restrictions
In Silverlight, the Shader Model 2 is supported, with a limit of maximum 64 arithmetic
instructions and 32 texture sample instructions, as opposed to Windows Presentation
Foundation (WPF) 4, which supports the Shader Model 3 with 512 instructions or more.
When looking for shaders online, make sure that they are compatible!

Also, shaders in Silverlight are always executed on the CPU (as opposed to WPF, which
runs the shaders on the GPU when possible). Note, however, that in case the client
computer has multiple cores, the shader execution is parallelized, which speeds up things.
Also, the CPU’s fast SSE instruction set is used.

For more technical details about shaders, check http://www.galasoft.ch/sl4-shaders.

Creating and Modifying Shaders with Shazzam
Creating and testing shaders would be quite difficult if a great free tool didn’t exist:
Shazzam, the WPF/Silverlight Pixel Shader Utility. This application created by Walt
Ritscher can be installed from http://shazzam-tool.com.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-shaders
http://shazzam-tool.com

ptg

Configuring Shazzam
Make sure that the target framework selected is Silverlight. Shazzam is able to generate C#
and VB.NET code that can be integrated in an application. You can also change the name-
space that Shazzam uses to create the code (for example, to MyShaders).

Testing a Shader
To test the wave shader in Shazzam, follow these steps:

1. Use the menu File, New Shader File to create a blank shader.

2. In the New File Name dialog, select a location and name the new shader Wave.fx.

3. A void shader (without any effect) is generated by Shazzam. Delete the content of
this file. Instead, enter the content of Listing 16.2 and save the file.

4. In the top panel of Shazzam, select one of the tabs with sample content.

5. Press F5. Shazzam compiles and applies the shader to the sample file.

6. Select the tabs to check the effect of the shader on various elements. Using the
menu File, Open Image File and File, Open Media File, it is possible to select your
own pictures and videos to test the shader.

Shazzam is a great tool and comes with a number of sample shaders that you can learn
from.

Integrating Shaders in the Application
To integrate a pixel shader in a Silverlight application, two things are needed: the
compiled shader file, and a Silverlight wrapper class that loads and exposes the shader to
the application. When a shader file is compiled in Shazzam, the corresponding class is
generated in C# and in VB.NET. To integrate and use the shader in a Silverlight applica-
tion, follow these steps:

1. Create a new Silverlight application in Visual Studio and name it ShaderTest.

2. Open MainPage.xaml and place a few elements (UI controls, pictures, videos) in the
LayoutRoot Grid. You can type the XAML markup, use the designer and the Toolbox,
or use Expression Blend.

3. Add a folder named MyShaders to the Silverlight project.

4. With the Wave shader loaded in Shazzam, select Tools, Compile Shader.

5. Select Tools, Explore Compiled Shaders.

6. Locate the shader named Wave.ps and drag this file from Windows Explorer into
the MyShaders folder in Visual Studio’s Solution Explorer. This adds a copy of the
Wave.ps file to the Silverlight project.

7. Select Wave.ps in the Solution Explorer and press F4 to show the Properties. Make
sure that the Build Action is set to Resource.

CHAPTER 16 Using Effects and Recording Media438

 From the Library of Wow! eBook

ptg

8. In Visual Studio, create a new class into the MyShaders folder and name it
WaveEffect.cs.

9. Replace the code in the WaveEffect class with the code in Listing 16.3.

LISTING 16.3 WaveEffect Class

1 public class WaveEffect : ShaderEffect

2 {

3 public WaveEffect()

4 {

5 var pixelShader = new PixelShader();

6 pixelShader.UriSource = new Uri(

7 “/ShaderTest;component/MyShaders/Wave.ps”,

8 UriKind.Relative);

9 this.PixelShader = pixelShader;

10 }

11 }

10. In the XAML code, add an xmlns prefix to the MainPage UserControl tag mapping
the prefix xmlns:shaders to “clr-namespace:ShaderTest.MyShaders”.

11. Add the WaveEffect to the LayoutRoot Grid with the markup in Listing 16.4.

LISTING 16.4 Adding the WaveEffect

<Grid x:Name=”LayoutRoot”>

<Grid.Effect>

<shaders:WaveEffect x:Name=”MyWaveEffect” />

</Grid.Effect>

...

</Grid>

At this point, the application can be run to see the effect. It is also applied when you look
at the user interface in the Visual Studio designer or in Expression Blend.

Creating Effects with Pixel Shaders 439

1
6

T I P

Using Pack URIs

The URI at line 7 in Listing 16.3 is a pack URI used in Silverlight to reference elements in an
assembly. Chapter 10, “Creating Resources, Styles, and Templates,” briefly discussed this
kind of URI. In their short form (without the name of the assembly), they instruct Silverlight to
look for the element within the executing assembly. In the case of the shader, however, the
full syntax must be used, even though the PS file is located inside the same assembly as the
CS file. For more information about pack URIs, refer to http://www.galasoft.ch/sl4-packuri.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-packuri

ptg

Adding the Effect into Blend
When an effect is included into the Silverlight assembly (or one of its referenced assem-
blies), Expression Blend shows it in the Asset library, in the Effects section. Opening the
ShaderTest Silverlight application in Blend reveals the WaveEffect that was just imple-
mented in the list of the available shaders. Adding the effect to an element is as simple as
dragging the WaveEffect from the Assets library to the element to which it should be
applied.

Combining Effects
A Silverlight element can accept only one effect. If multiple effects need to be applied,
place the element with the first effect within a Border to which the second effect is
applied. To test this, add the SimpleMonochrome effect of Listing 16.1 to the ShaderTest
application, just like we did for the Wave effect. Then, modify the MainPage.xaml markup
as shown in Listing 16.5.

LISTING 16.5 Combining Effects

<Border>

<Border.Effect>

<shaders:SimpleMonochromeEffect/>

</Border.Effect>

<Grid x:Name=”LayoutRoot”>

<Grid.Effect>

<shaders:WaveEffect x:Name=”MyWaveEffect” />

</Grid.Effect>

</Grid>

...

</Border>

Adding Properties and Animating Shaders
Pixel shaders can also be configured with properties. For example, the amplitude of the
WaveEffect can be modified by the Silverlight application, and even animated with the
following steps:

1. Open Shazzam again.

2. In the Shader Loader section, if the Wave.fx shader is not visible, use the Change
Location link to select the folder in which you saved the file.

3. Modify the shader code as shown in Listing 16.6.

CHAPTER 16 Using Effects and Recording Media440

 From the Library of Wow! eBook

ptg

LISTING 16.6 Modified Wave Shader

1 sampler2D input : register(S0);

2 float amplitude : register(C0);

3

4 float4 main(float2 position : TEXCOORD) : COLOR

5 {

6 position.y = position.y + (sin(position.y*100)*amplitude);

7 return tex2D(input , position.xy);

8 }

. Line 2 declares an input variable, through the usage of the register keyword.
Although S0 is the input element (for example, the LayoutRoot Grid), C0 is the first
property applied to the shader. There can be multiple properties named C0, C1, C2
and so forth.

. On line 6, the hard-coded value 0.03 is replaced by the variable named amplitude.

4. Compile the shader by selecting Tools, Compile Shader.

5. Replace the old Wave.ps file in Visual Studio with the newly compiled Wave.ps file
from the GeneratedShaders folder that can be opened via Tools, Explore Compiled
Shaders in Shazzam.

6. Modify the class WaveEffect.cs (from Listing 16.3) by adding a dependency property.
Then use this property to configure the PixelShader as shown in Listing 16.7 by
calling the method UpdateShaderValue. This method binds the amplitude register of
the shader with the Amplitude dependency property.

LISTING 16.7 Modifying the WaveEffect Class

public static readonly DependencyProperty AmplitudeProperty

= DependencyProperty.Register(“Amplitude”,

typeof(float), typeof(WaveEffect),

new PropertyMetadata((float)(0),

PixelShaderConstantCallback(0)));

public float Amplitude

{

get { return (float)GetValue(AmplitudeProperty); }

set { SetValue(AmplitudeProperty, value); }

}

public WaveEffect()

{

var pixelShader = new PixelShader();

pixelShader.UriSource = new Uri(

Creating Effects with Pixel Shaders 441

1
6

 From the Library of Wow! eBook

ptg

“/ShaderTest;component/MyShaders/Wave.ps”,

UriKind.Relative);

this.PixelShader = pixelShader;

UpdateShaderValue(AmplitudeProperty);

}

Because Amplitude is a dependency property, it can be animated; for example, with the
animation shown in Listing 16.8 (to be added to MainPage.xaml) and started in the code
behind in MainPage.xaml.cs, like in Listing 16.9.

LISTING 16.8 Creating an Animation in XAML

<UserControl.Resources>

<Storyboard Storyboard.TargetName=”MyWaveEffect”

Storyboard.TargetProperty=”Amplitude”

x:Key=”WaveAnimation”>

<DoubleAnimation To=”0”

AutoReverse=”True” Duration=”0:0:3”

RepeatBehavior=”Forever”>

<DoubleAnimation.EasingFunction>

<CubicEase />

</DoubleAnimation.EasingFunction>

</DoubleAnimation>

</Storyboard>

</UserControl.Resources>

LISTING 16.9 Starting the Animation in the Code Behind

public MainPage()

{

InitializeComponent();

var sbd = Resources[“WaveAnimation”] as Storyboard;

sbd.Begin();

}

Run the application and observe how the user interface is modified, as shown in Figure
16.2. This effect works nicely on images and videos (for example, to build a reflection),
less nicely on controls, but it demonstrates how easily complex effects can be integrated
in a Silverlight application.

CHAPTER 16 Using Effects and Recording Media442

FIGURE 16.2 ShaderTest application (animated).

 From the Library of Wow! eBook

ptg

Using Shaders for Transitions in the VSM
Expression Blend 4 allows using shaders for transitions between states. This is especially
nice when large portions of the screen need to transition from one state to another,
but it can also be used for small templates. Note, however, that not any kind of effect
can be used for transitions: It must be a class deriving from TransitionEffect included
in the namespace Microsoft.Expression.Media.Effects, in the assembly
Microsoft.Expression.Interactions, which is installed with the Blend SDK.

To use shaders when implementing
states and transitions in Blend,
expand the choice with the small fx
icon circled in green in Figure 16.3.

The shader will be applied to the
active element during the transition
from one state to the other, as shown
in Figure 16.4. By activating the small
button circled in red in Figure 16.3,
you can visualize the transition in
Expression Blend directly.

Accessing the Webcam and the Microphone 443

1
6

FIGURE 16.3 Selecting an effect for the
transition.

FIGURE 16.4 Screen before, during, and after transition
with cloud reveal effect.

Accessing the Webcam and the Microphone
Silverlight 4 comes with extended access to the host computer, including a feature that
everyone was eagerly awaiting: webcam and microphone access from the Silverlight appli-
cation. At this time, unfortunately, there are no built-in encoders for the raw video and
audio streams, which makes it very difficult to record and save videos. This is an improve-
ment that we hope to see in a future version of Silverlight, to enable building videocon-
ferencing systems.

In this section, we build a small application that creates greeting cards made of a picture,
a frame and some overlay text and saves a short audio message. The initial state for this
application named GreetingCardMaker can be downloaded from
http://www.galasoft.ch/sl4-greeting. Download the zip file, and then right-click it in
Windows Explorer and select Properties, the General tab, and then click Unblock. If the
Unblock button is not visible, you can just unpack the files.

The start project is an MVVM application built with a view (MainPage.xaml), a
MainViewModel class and a ViewModelLocator.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-greeting

ptg

The interface IDialogService that was already used in Chapter 13, “Creating Line-of-
Business Applications,” is also included. The MainPage class implements this interface. As
we did in Chapter 13, the MainViewModel has one property of type IDialogService that it
uses to display messages to the user. This is a clean separation between intent (the
MainViewModel wants to display a message) and implementation (the MainPage uses a
MessageBox to show the message).

Getting the List of Devices
The first step to access a webcam and microphone is to detect which devices are available
on the client computer. Some high-level classes allow doing this with the following steps:

1. Open the GreetingCardMaker application in Visual Studio, and then open the file
MainViewModel.cs.

2. Add the two properties shown in Listing 16.10. These are ReadOnlyCollection
instances (that is, collections that cannot be modified by the application).

LISTING 16.10 Collections of Video and Audio Devices

public ReadOnlyCollection<VideoCaptureDevice> WebCams

{

get;

private set;

}

public ReadOnlyCollection<AudioCaptureDevice> Microphones

{

get;

private set;

}

. Add a property shown in Listing 16.11, which will store an instance of the
CaptureSource class. This object provides access to the functionalities of the video
and audio devices.

LISTING 16.11 Storing a CaptureSource

public CaptureSource VideoAndAudioSource

{

get;

private set;

}

3. Add a property as shown in Listing 16.12 into the MainViewModel, to be notified
when the user selects a video device. We will bind the SelectedItem of a ListBox to
this property later.

CHAPTER 16 Using Effects and Recording Media444

 From the Library of Wow! eBook

ptg

LISTING 16.12 Selected Video Device

1 public const string SelectedWebCamPropertyName = “SelectedWebCam”;

2 private VideoCaptureDevice _webcam;

3 public VideoCaptureDevice SelectedWebCam

4 {

5 get { return _webcam; }

6 set

7 {

8 if (_webcam == value)

9 {

10 return;

11 }

12

13 if (VideoAndAudioSource.State == CaptureState.Started)

14 {

15 VideoAndAudioSource.Stop();

16 }

17

18 _webcam = value;

19 RaisePropertyChanged(SelectedWebCamPropertyName);

20

21 if (_webcam != null)

22 {

23 VideoAndAudioSource.VideoCaptureDevice = _webcam;

24

25 if ((Microphones.Count == 0 || SelectedMicrophone != null)

26 && (CaptureDeviceConfiguration.AllowedDeviceAccess

27 || CaptureDeviceConfiguration.RequestDeviceAccess()))

28 {

29 VideoAndAudioSource.Start();

30 // StartAudioCommand.RaiseCanExecuteChanged();

31 }

32 }

33 }

34 }

. The property in Listing 16.12 raises the PropertyChanged event, so a data binding
will be notified of changes to that property.

. In addition to the standard implementation of such a bindable property, lines 13 to
16 call the Stop method on the CaptureSource instance that we stored earlier. This is
needed when selecting a new device to avoid issues with the hardware.

. On line 23, the selected video device is assigned to the CaptureSource instance. Note
that it is also possible to select the DesiredFormat property. This can be useful if the
webcam output is always used on a small surface. In that case, using a smaller
format (for example 320 x 240) may speed up the operation.

Accessing the Webcam and the Microphone 445

1
6

 From the Library of Wow! eBook

ptg

. Lines 25 checks whether an audio device has been selected (but only if there are
audio devices on the client computer).

. Line 26 checks whether the Silverlight application has permission to access the
video and audio devices. This step is explained later in this chapter, in the
“Enabling Access” section.

. If all these conditions are met, the CaptureSource instance is started. This switches
the webcam on, and prepares the microphone.

. Line 30 is commented out for now. It will be used later to update the status of the
command used to start an audio recording.

4. Copy Listing 16.12 and paste a copy underneath. Then make the following changes:

On lines 1 and 19, replace SelectedWebCamPropertyName with
SelectedMicrophonePropertyName.

On line 1, replace “SelectedWebCam” with “SelectedMicrophone”.

On line 2 and 3, replace VideoCaptureDevice with AudioCaptureDevice.

On line 2, 5, 8, 18, 21, and 23, replace _webcam with _microphone.

On line 3, replace SelectedWebCam with SelectedMicrophone.

On line 23, replace VideoCaptureDevice with AudioCaptureDevice.

On line 25, replace Microphones with WebCams and SelectedMicrophone with
SelectedWebCam.

5. In the MainViewModel constructor, initialize the two collections as declared in Listing
16.10. The CaptureDeviceConfiguration class is used to retrieve the list of video and
audio devices available to record content, as shown in Listing 16.13.

LISTING 16.13 Retrieving Video and Audio Devices

WebCams = CaptureDeviceConfiguration

.GetAvailableVideoCaptureDevices();

Microphones = CaptureDeviceConfiguration

.GetAvailableAudioCaptureDevices();

Note that the CaptureDeviceConfiguration class also allows retrieving the default video
and audio device, as configured by the user in the Silverlight configuration dialog
(displayed by right-clicking any Silverlight application and choosing Silverlight from the
context menu). This menu is shown in Figure 16.5.

6. In MainPage.xaml, add a DataTemplate to the UserControl.Resources as shown in
Listing 16.14. This template will be used to represent one video or audio device by
using its FriendlyName.

CHAPTER 16 Using Effects and Recording Media446

 From the Library of Wow! eBook

ptg

LISTING 16.14 Creating a DataTemplate

<UserControl.Resources>

<DataTemplate x:Key=”CaptureDeviceTemplate”>

<TextBlock Text=”{Binding FriendlyName}” />

</DataTemplate>

</UserControl.Resources>

Accessing the Webcam and the Microphone 447

1
6FIGURE 16.5 Default video and audio device.

7. Below the Grid named CardImageGrid, add two ListBox elements to display the list
of devices, as shown in Listing 16.15.

LISTING 16.15 Two ListBox Elements

<ListBox Margin=”10”

Grid.Column=”1”

SelectedItem=”{Binding SelectedWebCam, Mode=TwoWay}”

ItemsSource=”{Binding WebCams}”

ItemTemplate=”{StaticResource CaptureDeviceTemplate}” />

<ListBox Margin=”10”

Grid.Column=”1”

Grid.Row=”1”

SelectedItem=”{Binding SelectedMicrophone, Mode=TwoWay}”

ItemsSource=”{Binding Microphones}”

ItemTemplate=”{StaticResource CaptureDeviceTemplate}” />

8. Run the application. You should now see the list of webcams in the upper ListBox
and the list of microphones in the lower one.

 From the Library of Wow! eBook

ptg

Enabling Access
On line 26, Listing 16.12 checks whether the Silverlight application has permission to
access the video and audio devices by checking the property AllowedDeviceAccess on the
class CaptureDeviceConfiguration. This property is true if the user already gave his
consent or if the application is running with elevated permissions.

If that is not the case, line 27 is executed, and the method RequestDeviceAccess is called.
This causes the dialog shown in Figure 16.6 to be displayed. The user can store the
permission, which will prevent the dialog of being shown the next time that the applica-
tion is started. If needed, he can revoke it later using the Permissions tab in the Microsoft
Silverlight Configuration dialog.

CHAPTER 16 Using Effects and Recording Media448

FIGURE 16.6 Camera and microphone access.

Displaying the Video Output
The output of the webcam is an instance of the class CaptureSource, which can be set as
the source of a VideoBrush. We already used VideoBrush (and its static equivalent
ImageBrush) in Silverlight 2 Unleashed, Chapters 5 and 6. Any element can be painted by
this brush. In this case, we will use a Rectangle, as shown in Listing 16.16, that must be
added within the Grid named CardImageGrid. Make sure that the Rectangle appears before
the TextBlock that this Grid already contains. We want the TextBlock to be shown in
front of the video. Note that this Rectangle can be transformed at will (for example,
flipped horizontally to display a mirrored image, or rotated, skewed, and so forth).

LISTING 16.16 Rectangle and VideoBrush

<Rectangle Width=”640” Height=”480”>

<Rectangle.Fill>

<VideoBrush x:Name=”WebcamVideo”

Stretch=”Uniform” />

</Rectangle.Fill>

</Rectangle>

The WebcamVideo brush must be bound to the CaptureSource instance stored in the
MainViewModel class. Unfortunately, the VideoBrush class does not have a Source property
that can be handled in XAML. Instead, the SetSource method must be called. This is done
in the MainPage class code behind: In the MainPage constructor, the MainViewModel’s

 From the Library of Wow! eBook

ptg

DialogService is set, like we already did in previous chapters. Modify this code as shown
in Listing 16.17.

LISTING 16.17 Setting the Source of the VideoBrush

var vm = DataContext as MainViewModel;

if (vm != null)

{

vm.DialogService = this;

WebcamVideo.SetSource(vm.VideoAndAudioSource);

}

At this point, however, the CaptureSource instance is never initialized. This is solved in
the MainViewModel class. Just add the line shown in Listing 16.18 to the MainViewModel
constructor.

LISTING 16.18 Creating the CaptureSource

VideoAndAudioSource = new CaptureSource();

As soon as the VideoAndAudioSource is started in the MainViewModel, the output of the
webcam is displayed in the Rectangle, which you can test by running the application,
selecting the video and audio devices that you want to use, and confirming this action in
the dialog shown in Figure 16.6.

Detecting Whether Other Applications Use the Device
Because of the way that webcams and microphones drivers are built, only one application
at the time can access these devices. For instance, if the webcam is already active, an
InvalidOperationException will be thrown on line 29 of Listing 16.12 (or in the equiva-
lent line for the SelectedMicrophone property). To prevent the application from crashing,
catch this exception as shown in Listing 16.19. This needs to be done in both the
SelectedMicrophone and the SelectedWebCam properties.

LISTING 16.19 Catching the InvalidOperationException

try

{

VideoAndAudioSource.Start();

//StartAudioCommand.RaiseCanExecuteChanged();

}

catch (InvalidOperationException)

{

DialogService.ShowMessage(“Impossible to start the device”);

}

Accessing the Webcam and the Microphone 449

1
6

 From the Library of Wow! eBook

ptg

Capturing Audio
At this point, the GreetingCardMaker application is able to display the output of a
webcam, and the microphone is activated, but nothing much else happens. In this
section, an audio stream will be recorded and saved to a WAV file on the user’s hard disk.

Converting to a WAV File
The microphone’s output is delivered in a raw format to the Silverlight application: The
Pulse Code Modulation (PCM) format. It is a direct representation of the sound waves.
The Silverlight application needs to convert this raw data into a usable format. This will
gain space by compressing the raw data. Unfortunately, there are no built-in converters in
Silverlight 4 (a situation which is likely to change in future versions). In the meantime,
we can use an external class to convert PCM to WAV files. This is not the best format for
audio because it creates quite large files, but the conversion from PCM to WAV is rela-
tively simple.

In this sample, we will use the WavManager class created by Ondrej Svacina and available at
http://www.galasoft.ch/sl4-pcmtowav. This static class has a single method SavePcmToWav,
which takes care of the conversion.

Creating a Sink
Recording the raw audio is done by a class deriving from the abstract class
System.Windows.Media.AudioSink. Here, too, there are no implementations of AudioSink in
the Silverlight 4 framework at the moment. Implementing one is not very difficult, as
shown by the following steps:

1. In Visual Studio, open the GreetingCardMaker application in the Solution Explorer,
and then right-click the Helpers folder and select Add, Class from the context menu.
Name the new class WavAudioSink.cs.

2. Derive the WavAudioSink class from AudioSink by changing its signature to public
class WavAudioSink : AudioSink.

3. The abstract class AudioSink requires four methods named OnCaptureStarted,
OnCaptureStopped, OnFormatChange, and OnSamples, as shown in Listing 16.20.

LISTING 16.20 Implementing an AudioSink

protected override void OnCaptureStarted()

{

}

protected override void OnCaptureStopped()

{

}

CHAPTER 16 Using Effects and Recording Media450

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-pcmtowav

ptg

protected override void OnFormatChange(

AudioFormat audioFormat)

{

}

protected override void OnSamples(

long sampleTimeInHundredNanoseconds,

long sampleDurationInHundredNanoseconds,

byte[] sampleData)

{

}

4. On the top of the WavAudioSink class, add the three attributes shown in Listing
16.21. We will use them later.

LISTING 16.21 Three Attributes

private Stream _stream;

private AudioFormat _format;

private bool _isRecording;

5. Implement the OnFormatChange method as shown in Listing 16.22. This method is
called at least once before the recording starts. It sets the format in which the
recording takes place. Note that only PCM is supported at the moment.

LISTING 16.22 OnFormatChange Method

if (audioFormat.WaveFormat != WaveFormatType.Pcm)

{

throw new ArgumentException(

“Only PCM is supported”,

“audioFormat”);

}

_format = audioFormat;

The OnSamples method shown in Listing 16.23 is the most important. It is called by
the Silverlight framework as soon as sound samples are available in raw format, and
periodically while the recording is going on.

LISTING 16.23 OnSamples Method

1 if (_stream == null)

2 {

3 _isRecording = true;

4 _stream = new MemoryStream();

Capturing Audio 451

1
6

 From the Library of Wow! eBook

ptg

5 }

6

7 if (_isRecording)

8 {

9 _stream.Write(sampleData, 0, sampleData.Length);

10 }

. This method is called the first time when the recording is starting. It creates a new
Stream if needed to store the audio samples.

. On line 7, the method checks whether recording is still active. This is needed
because the Stream will be closed before saving it.

. Then, on line 9, the raw data is written into the Stream. Because a MemoryStream is
used on line 4, the whole data is saved in the application’s memory. For long
recordings, this is not ideal, but for this kind of small greeting messages, it is okay.

6. Finally, add a new method named Save, shown in Listing 16.24. This method will
take care of converting the PCM data to a WAV sound and writing the converted
data to an output Stream.

LISTING 16.24 Saving the PCM Data to WAV

public void Save(Stream outputStream)

{

_isRecording = false;

CaptureSource = null;

WavManager.SavePcmToWav(_stream, outputStream, _format);

_stream = null;

}

Using the SaveFileDialog
We saw in Chapter 14, “Enhancing Line-of-Business Applications and Running Out of the
Browser,” how files can be saved to the user’s folders (such as My Documents) if the appli-
cation has elevated permissions. However, this is not possible when the application runs
within the web browser. There is, however, another way using the SaveFileDialog class.
Like all dialogs, this must be initiated by the user (for example, in response to a click a
button). However the MainViewModel should not be in charge of displaying this dialog,
because it should remain separated from the view. Instead, the IDialogService interface
(in the ViewModel folder) can be extended as follows:

1. Modify IDialogService as shown in Listing 16.25. The method GetFile will take
care of returning a Stream to a file selected by the user to save the audio recording.

CHAPTER 16 Using Effects and Recording Media452

 From the Library of Wow! eBook

ptg

LISTING 16.25 Extending the IDialogService Interface

public interface IDialogService

{

void ShowMessage(string message);

bool AskConfirmation(string message);

Stream GetFile(string filter, string defaultExtension);

}

2. In the MainPage class (which implements the IDialogService interface), add the
method shown in Listing 16.26.

LISTING 16.26 Getting a File with the SaveFileDialog

1 public Stream GetFile(string filter, string defaultExtension)

2 {

3 var dialog = new SaveFileDialog

4 {

5 Filter = filter,

6 DefaultExt = defaultExtension

7 };

8

9 if (dialog.ShowDialog() == true)

10 {

11 return dialog.OpenFile();

12 }

13

14 return null;

15 }

. On lines 3 to 7, a new SaveFileDialog is created. The Filter property defines what
kind of files the dialog can select. The DefaultExt property is used when a new file is
saved without an extension. The content of DefaultExt will be used for this new
file. For example, if the DefaultExt is .wav and the user types Test1 as the name of
the file, the SaveFileDialog will create a file named Test1.wav.

. On line 9, the dialog is shown to the user. If the user clicks the Cancel button, the
ShowDialog method returns false.

. If the user did select a file, the OpenFile method creates the file (if needed), opens it
for reading or writing, and returns a FileStream (which is inheriting the Stream
class).

Because the MainViewModel stores an instance of the IDialogService, it can now use this
new method to get a Stream to save the audio file.

Capturing Audio 453

1
6

 From the Library of Wow! eBook

ptg

Using the Sink and Adding Commands
We already saw in previous chapters how to add commands on a viewmodel to trigger
some actions. The RelayCommand and RelayCommand<T> classes that we already used before
are available in the GreetingCardMaker application, in the Helpers folder. Add a
StartAudioCommand and StopAudioCommand with the following steps:

1. In the MainViewModel class, add two properties and an attribute as shown in Listing
16.27: two commands to start and stop the recording, and an instance of the
WavAudioSink class.

LISTING 16.27 Two Commands and a Sink

public RelayCommand StartAudioCommand

{

get;

private set;

}

public RelayCommand StopAudioCommand

{

get;

private set;

}

private WavAudioSink _sink;

2. Activate the call to the RaiseCanExecuteChanged method on the StartAudioCommand
in the setter of the SelectedWebCam property as in Listing 16.12. Do the same for the
SelectedMicrophone property. Just remove the comment signs in the beginning of
the line.

3. In the MainViewModel constructor, instantiate the StartAudioCommand and
StopAudioCommand as shown in Listing 16.28.

LISTING 16.28 Instantiating the Commands

1 StartAudioCommand = new RelayCommand(

2 StartAudio,

3 () => SelectedMicrophone != null

4 && _sink == null);

5

6 StopAudioCommand = new RelayCommand(

7 StopAudio,

8 () => _sink != null);

CHAPTER 16 Using Effects and Recording Media454

 From the Library of Wow! eBook

ptg

. On lines 2 and 7, the Execute delegates for these commands are declared. The
StartAudio and StopAudio methods are shown in Listing 16.29 and 16.30.

. On lines 3 and 4, the CanExecute delegate for StartAudioCommand is declared. The
command is enabled if the user selected a microphone and if the WavAudioSink has
not been created yet. It means that the application is ready to record. When the
recording starts (and the WavAudioSink is created), the StartAudioCommand should be
disabled.

. On line 8, the CanExecute delegate for StopAudioCommand is declared. The command
is enabled (and the recording can be stopped) if the WavAudioSink is available. The
application will take care of setting this attribute to null when the recording stops.

4. Implement the StartAudio method as shown in Listing 16.29. This method is
simple: It creates a new WavAudioSink, sets its CaptureSource property to the source
that is currently active, and then refreshes the status of the two commands.

LISTING 16.29 StartAudio Method

private void StartAudio()

{

_sink = new WavAudioSink

{

CaptureSource = VideoAndAudioSource

};

StartAudioCommand.RaiseCanExecuteChanged();

StopAudioCommand.RaiseCanExecuteChanged();

}

5. Finally, implement the StopAudio method as shown in Listing 16.30.

LISTING 16.30 StopAudio Method

1 private void StopAudio()

2 {

3 try

4 {

5 using (var outputStream = DialogService.GetFile(

6 “WAV Files (*.wav) | *.wav”, “.wav”))

7 {

8 _sink.Save(outputStream);

9 }

10 }

11 catch (IOException ex)

12 {

Capturing Audio 455

1
6

 From the Library of Wow! eBook

ptg

13 DialogService.ShowMessage(ex.Message);

14 }

15

16 _sink = null;

17 StartAudioCommand.RaiseCanExecuteChanged();

18 StopAudioCommand.RaiseCanExecuteChanged();

19 }

. On lines 5 and 6, the GetFile method of the DialogService is called. The filter is
prepared in a format that is understood by the SaveFileDialog class: The string WAV
Files (*.wav) will appear in the combo box used to filter files. As for *.wav, this
extension is used to select the kind of files to display. This extension is also used as
the default extension for new files.

. On line 5, a using statement is used to wrap the Stream operation. This will auto-
matically close and dispose the outputStream, which will make the file available for
later use.

. On line 8, the Save method is called on the sink and the outputStream is provided
for saving.

. If the file that the user selected is open in another application, an IOException may
occur. This exception is caught on line 11, and an error message is shown to the
user on line 13.

. Finally, the sink is disposed, and the status of StartAudioCommand and
StopAudioCommand is refreshed on lines 16 to 18.

Wiring the Commands
The user interface of the GreetingCardMaker application has two buttons: Start Audio and
Stop Audio. These need to be wired to the corresponding commands. You can either do
that in XAML directly, in the Visual Studio designer with the data binding editor, or in
Expression Blend. After the binding is done, the buttons should appear in the XAML
editor as shown in Listing 16.31.

LISTING 16.31 Start Audio and Stop Audio Buttons

<Button Content=”Start Audio”

Width=”100”

VerticalAlignment=”Center”

Margin=”0,0,10,0”

Command=”{Binding StartAudioCommand}”/>

<Button Content=”Stop Audio”

Width=”100”

VerticalAlignment=”Center”

Margin=”0,0,10,0”

Command=”{Binding StopAudioCommand}” />

CHAPTER 16 Using Effects and Recording Media456

 From the Library of Wow! eBook

ptg

Testing Audio Recording
To test the application, run it and select a webcam and a microphone. The output of the
webcam should be displayed, and the Start Audio button should be enabled.

Click the Start Audio button to start the recording. Make some noise, and then click the
Stop Audio button. The SaveFileDialog is displayed. You can either select an existing file
(which will be overwritten) or enter a new name to create a new file.

After the file is saved, navigate to the folder you selected and play the file in a compatible
sound player.

Writing to a Bitmap
After saving an audio file in the previous section, the output of the webcam also needs to
be saved to a picture file. In fact, not just the webcam output, but also any element that is
laid over it in the CardImageGrid can be saved in the picture file, thanks to the
WriteableBitmap class.

This class allows manipulating images in multiple ways. In the GreetingCardMaker appli-
cation, we are looking to convert a visual element (a Grid containing a Rectangle with a
VisualBrush and a TextBlock over it) into a picture. The WriteableBitmap class makes this
operation very simple with the following steps:

1. Open the GreetingCardMaker into Visual Studio.

2. In the MainViewModel class, add a command to capture the image currently
displayed, as shown in Listing 16.32. Notice that this property is a
RelayCommand<UIElement>, and that it expects the CommandParameter of the attached
control to be set to the element that needs to be saved as an image.

LISTING 16.32 Adding the CaptureCommand

public RelayCommand<UIElement> CaptureImageCommand

{

get;

private set;

}

3. In the MainViewModel constructor, initialize the CaptureImageCommand by adding the
line of code shown in Listing 16.33. The CaptureImage method is shown in Listing
16.34.

LISTING 16.33 Initializing the CaptureImageCommand

CaptureImageCommand = new RelayCommand<UIElement>(CaptureImage);

Writing to a Bitmap 457

1
6

 From the Library of Wow! eBook

ptg

LISTING 16.34 CaptureImage Method

1 private void CaptureImage(UIElement element)

2 {

3 try

4 {

5 var bitmap = new WriteableBitmap(element, null);

6

7 using (var outputStream = DialogService.GetFile(

8 “PNG Files (*.png) | *.png”, “.png”))

9 {

10 if (outputStream == null)

11 {

12 return;

13 }

14

15 PngManager.SaveToImage(element, outputStream);

16 }

17 }

18 catch (IOException ex)

19 {

20 DialogService.ShowMessage(ex.Message) ;

21 }

22 }

. Line 5 captures the current state of the CardImageGrid and creates a WriteableBitmap
with it. There are three constructors for this class: One takes a BitmapSource, for
example, to manipulate images. Another constructor takes a width and a height and
constructs an empty WriteableBitmap instance. The one we use here takes a
UIElement and a Transform. For example, it would be possible to flip or rotate the
UIElement before it is rendered to an image, or to scale it to create thumbnails. In
our case, we don’t want to transform the visual, so we just pass null.

. Lines 7 and 8 get a Stream from the DialogService using the GetFile method that
was implemented earlier. This time, we are looking for a PNG file.

. On line 15, a class called PngManager is used to save the UIElement passed as parame-
ter into a PNG file. This class will be implemented in the next section, “Saving the
Picture to a PNG File.”

. As usual when working with file streams, a using statement is used on line 7, and a
possible IOException is caught and handled on lines 18 to 20.

5. Then, open MainPage.xaml and bind the Command of the Button with the Content set
to “Capture Video” to the CaptureImageCommand we just created. The
CommandParameter should be set through a binding to the CardImageGrid, the Grid
that needs to be turned into an image (as shown in Listing 16.35).

CHAPTER 16 Using Effects and Recording Media458

 From the Library of Wow! eBook

ptg

LISTING 16.35 Binding the CaptureImageCommand

<Button Content=”Capture Video”

Width=”100”

VerticalAlignment=”Center”

Margin=”0,0,10,0”

Command=”{Binding CaptureImageCommand}”

CommandParameter=”{Binding ElementName=CardImageGrid}”/>

Saving the Picture to a PNG File
Just like when we used an external encoder to convert the PCM sound stream to a WAV
sound file, an external PNG encoder will be used to turn the raw picture bytes into a PNG
file. To do this, we will use a WriteableBitmap and then an external library named
ImageTools with the following steps:

1. The ImageTools library is an open source project hosted on CodePlex. It allows
converting images to the PNG, GIF, JPG, and BMP formats. It also allows applying
filters to images. Download the latest version from http://imagetools.codeplex.com
and unpack the file in a known location on your hard drive. For more information
about this very useful library, refer to the CodePlex site.

2. Open the GreetingCardMaker application in Visual Studio.

3. Right-click the References folder in the Solution Explorer and select Add Reference
from the context menu.

4. In the Add Reference dialog, select the Browse tab and navigate to the folder which
you just unpacked. Open the Bin folder and select the four following DLLs:

ICSharpCode.SharpZipLib.Silverlight.dll, ImageTools.dll, ImageTools.IO.Png.dll,
ImageTools.Utils.dll. Then click OK.

Writing to a Bitmap 459

1
6

T I P

Compressing and Packing

The DLL ICSharpCode.SharpZipLib.Silverlight.dll is very useful: It is another open source
project (hosted at http://slsharpziplib.codeplex.com) that implements the zip protocol to
compress and pack (or uncompress and unpack) zip files from your Silverlight application.

5. Right-click the Helpers folder and add a class named PngManager.cs.

6. In the using section of the PngManager class (at the top of the file), add using
ImageTools.

7. In the PngManager class, implement the SaveToImage method shown in Listing 16.36.

 From the Library of Wow! eBook

http://imagetools.codeplex.com
http://slsharpziplib.codeplex.com

ptg

LISTING 16.36 SaveToImage Method

1 public static void SaveToImage(

2 WriteableBitmap bitmap,

3 Stream outputStream)

4 {

5 var image = bitmap.ToImage();

6 image.WriteToStream(outputStream);

7 }

. Lines 1 to 3 declare the method’s signature: The first parameter is a WriteableBitmap,
which will be rendered to an image. The second parameter is a Stream to which the
output will be written. Nothing here forces the caller to pass a FileStream (to save
into a file). It could also be a MemoryStream, or the Stream of a web request to send
the image to a web service, for example.

. Line 6 creates an ImageTools.Image by calling the ToImage method on the
WriteableBitmap. Note that this method is an extension method that is added to the
WriteableBitmap class by the ImageTools library. Extension methods extend the class
they are attached to with additional functionality. For more information, see the
“Creating Extension Methods” section in Chapter 22, “Advanced Development
Techniques.”

. Finally, line 7 serializes the image to the outputStream.

To test this feature, run the application and start the video and audio device. Enter a
greeting text in the TextBox next to the Capture button, and then click that button. After
you select a location for the file and save it, use Windows Explorer to retrieve the file and
open it in your favorite picture viewer application.

Manipulating Pixels
WriteableBitmap offers a low-level interface to each pixel saved in an array. Note that the
array is a single-dimension list of pixels, which can be a little confusing at first. For
example, the example in Listing 16.37 loops through all the pixels of a WriteableBitmap
and removes the Blue and Green components.

LISTING 16.37 Retrieving and Modifying Pixels

1 var bitmap = new WriteableBitmap(element, null);

2 int currentPixelIndex = 0;

3

4 for (var indexHeight = 0; indexHeight < bitmap.PixelHeight; indexHeight++)

5 {

6 for (var indexWidth = 0; indexWidth < bitmap.PixelWidth; indexWidth++)

7 {

8 int pixelValue = bitmap.Pixels[currentPixelIndex];

9

CHAPTER 16 Using Effects and Recording Media460

 From the Library of Wow! eBook

ptg

10 var color = Color.FromArgb(

11 (byte) (pixelValue >> 24),

12 (byte) (pixelValue >> 16),

13 (byte) (pixelValue >> 8),

14 (byte) pixelValue);

15

16 bitmap.Pixels[currentPixelIndex++] = color.A << 24 // A

17 | 0 << 16 // R

18 | 0 << 8 // G

19 | color.B; // B

20 }

21 }

. On line 4, a loop is created. This loop will enumerate all the rows of pixels. Note the
use of the PixelHeight property, which returns the height in pixels of the
WriteableBitmap.

. On line 6, an internal loop enumerates all the pixels in the current row, from left
(index 0) to right. Here we use the PixelWidth property.

. On line 8, the current pixel is retrieved from the Pixels array. Because all the pixels
are stored in one dimension only, we can simply use the currentPixelIndex counter,
which is incremented on every pass of the loop (on line 16).

. Lines 10 to 14 get the A, R, G, and B components of the current pixel and create a
Color instance. Because the pixel color is stored as an integer, we use the shift right
operator to extract the components.

. On lines 16 to 19, a new value is assigned in the Pixels array. The A and B values
are kept, but the R and G values are set to 0. Here the shift left operator is used to
calculate the integer value out of the bytes.

The end effect is very similar to Figure 16.1, with the blue mask.

Writing to a Bitmap 461

1
6

T I P

WriteableBitmap or Pixel Shader?

The effects that pixel manipulation in the WriteableBitmap instance are very close from what
a pixel shader is doing. However, pixel shaders are much faster, especially on multicore
machines (in which case, the mathematic operations are performed in parallel and use the
CPU’s fast SSE instructions.)

On the other hand, WriteableBitmap is great for in-process manipulation, or for combining
multiple images, as you will see in the next section. Also, their number of operations is
unlimited, whereas pixel shaders in Silverlight are limited to a maximum of 64 arithmetic
instructions.

You can find more comparison data at http://www.galasoft.ch/sl4-bitmapvsshader.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-bitmapvsshader

ptg

Extending WriteableBitmap
Because every pixel can be modified individually, WriteableBitmap allows for a wide range
of effects. However, addressing the pixels in the Pixels array is difficult and rather incon-
venient. To solve this issue, Rene Schulte (a Silverlight MVP) created the
WriteableBitmapEx library, which can be downloaded in Codeplex from
http://writeablebitmapex.codeplex.com.

When this DLL is referenced in a Silverlight application, the WriteableBitmap class is
extended with methods allowing higher-level manipulation of the pixels. For example,
two images can be merged (“blitted”) with the following steps:

1. In the GreetingCardMaker application, right-click the Silverlight project in the
Solution Explorer and select Add, New Folder from the context menu. Name this
folder Resources.

2. Download the image from http://www.galasoft.ch/sl4-frame. This image represents a
frame, and all the inner pixels are transparent. Save the image to a known location
on your hard drive.

3. Drag and drop the image from the location you saved it into to the Resources folder
in the Solution Explorer. This adds the file to the Silverlight project.

4. With the file selected in the Solution Explorer, press F4 to display the properties.
Make sure that the Build Action is set to Content and the Copy to Output Directory
property is set to Copy If Newer.

5. In the PngManager class, add a using statement on top of the file: using
System.Windows.Media.Imaging.

6. Modify the SaveToImage method as shown in Listing 16.38.

LISTING 16.38 New SaveToImage Method

1 public static void SaveToImage(

2 WriteableBitmap bitmap,

3 Stream outputStream)

4 {

5 var frameStreamInfo = Application.GetResourceStream(

6 new Uri(“Resources/frame.png”, UriKind.Relative));

7

8 var source = new BitmapImage();

9 source.SetSource(frameStreamInfo.Stream);

10 var frameBitmap = new WriteableBitmap(source);

11

12 var rectangle = new Rect(0, 0,

13 element.RenderSize.Width,

14 element.RenderSize.Height);

15 bitmap.Blit(rectangle, frameBitmap, rectangle);

CHAPTER 16 Using Effects and Recording Media462

 From the Library of Wow! eBook

http://writeablebitmapex.codeplex.com
http://www.galasoft.ch/sl4-frame

ptg

16

17 var image = bitmap.ToImage();

18 image.WriteToStream(outputStream);

19 }

. Lines 5 and 6 retrieve the frame picture from the XAP file by using the
Application.GetResourceStream method, which returns a Stream with the file’s
content.

. Lines 8 and 9 create a new BitmapImage and set its source to the Stream that was just
retrieved.

. Then, on line 10 another WriteableBitmap is created with this image. Another
constructor is used here, the one with a BitmapSource as parameter (BitmapImage
inherits this abstract class).

. Lines 12 to 14 create a rectangle with the image’s dimensions. Note that the Rect
class is used, which is a pure geometric class, not the Rectangle class that is used in
user interfaces. The Rect class simply defines a top-left point, a width, and a height.

. Line 15 uses the Blit extension method to combine the two bitmaps.

. Finally, lines 17 and 18 didn’t change, and save the bitmap to the Stream in PNG
format.

Test the application and save a capture to the hard drive. An example with the frame is
shown in Figure 16.7.

Extending WriteableBitmap 463

1
6

FIGURE 16.7 Greeting card with text and frame.

 From the Library of Wow! eBook

ptg

WriteableBitmapEx has a number of very useful methods as well as some nice samples
(including for Windows Phone 7) and is maintained and extended actively. This is a great
addition to your arsenal of tools. For example, in addition to the blitting action that you
saw in this chapter, there are also methods to draw on the bitmap directly, with various
shapes and methods being supported. With WriteableBitmapEx, many of the operations
that were possible in GDI+ are now possible in Silverlight. For more information about
this extension class, make sure to check the CodePlex site.

Using the Open File Dialog
In this chapter, the Save File dialog was used to retrieve the Stream of a file in which
content can be written. For security reasons, only the Stream is returned to the dialog’s
caller, and it is not possible to retrieve the filename. However, this dialog can be used
even without additional permissions, which is very convenient.

The counterpart to the Save File dialog for reading files is also available: the
OpenFileDialog class. This class can be used with the code in Listing 16.39. Note the pres-
ence of the Multiselect property. When set to true, the user can select multiple files that
will be placed in the dialog’s Files property. If Multiselect is false, only one file can be
selected, and it will be placed in the File property.

LISTING 16.39 Using the OpenFileDialog Class

public IEnumerable<FileInfo> OpenFileForRead(string filter)

{

var dialog = new OpenFileDialog

{

Filter = filter,

Multiselect = true

};

if (dialog.ShowDialog() == true)

{

return dialog.Files;

}

return null;

}

This method can be used as shown in Listing 16.40.

LISTING 16.40 Getting Text Files and Reading Them

var files = OpenFileForRead(“TXT Files (*.txt) | *.txt”);

foreach (FileInfo file in files)

{

CHAPTER 16 Using Effects and Recording Media464

 From the Library of Wow! eBook

ptg

using (var stream = file.OpenRead())

{

using (var reader = new StreamReader(stream))

{

var text = reader.ReadToEnd();

// Do something with content of file

}

}

}

This dialog could be used in the GreetingCardMaker application to let the user select the
frames for the pictures. In that case however, a StreamReader is not needed. Instead,
simply use the result of file.OpenRead() on line 11 of Listing 16.38.

Learning About News in Media
Some new features are available in terms of media in Silverlight 3 and Silverlight 4:

. (Silverlight 4) Digital Rights Management systems (DRMs) are now available for the
H264 media format. This popular format for video encoding can now also be
protected by the Silverlight Digital Rights Management system, as was already the
case for the VC1 format.

. (Silverlight 4) DRMs are now available for offline content. This is convenient for
OOB Silverlight applications that are used to watch content on demand even when
the client computer is not connected to the Internet.

. (Silverlight 3 and 4) In the earlier version of Silverlight, the support was added for
new media formats such as H264 and AAC. This opens Silverlight applications to
more popular content.

. (Silverlight 3 and 4) Together with Silverlight 3, smooth streaming for the Internet
Information Services (IIS, Microsoft’s web server). The resolution of the stream is
automatically adapted to the speed of the Internet connection, in real time. If the
speed drops temporarily, a lower resolution is sent to the client application, to avoid
losing the stream and disrupting the experience. This was used in big events such as
the Olympic games or in the transmission of conferences such as the Professional
Developer Conference (PDC) 2009. For more information about smooth streaming,
refer to http://www.galasoft.ch/sl4-smooth.

. (Silverlight 3 and 4) With these improvements, it is now also possible to stream
high-definition (HD) content from a web server to a Silverlight application.

. Finally, Expression Encoder is now available in its version 4, with a lot of improve-
ment to encode media.

Learning About News in Media 465

1
6

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-smooth

ptg

Summary
In this chapter, you learned about multiple techniques that enable you to enhance
Silverlight applications with effects and media.

With pixel shaders, the aspect of UI elements can be modified with external pieces of
code that are applied in parallel to each pixel. This is very convenient when visual
elements need to be modified dynamically (for example, to modify the aspect of a video
that is playing) and very fast.

You also saw how to input media elements into the Silverlight application with video and
audio devices. For the first time, Silverlight applications can be enhanced with images and
sounds that the user himself records.

We talked about the WriteableBitmap class, another way to modify images dynamically,
but this time within the Silverlight code directly. Although this method is a little slower
than using pixel shaders, it is easier to configure and modify for Silverlight developers.

Finally, we listed a few additional improvements to the media features of Silverlight 3 and
4. In the next chapter, we continue our exploration of new features in Silverlight 4.

CHAPTER 16 Using Effects and Recording Media466

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Discover the new
PlaneProjection class that
allows modifying elements in
a 3D plane.

. Talk about a new easier way
to compose transforms.

. Handle the right-click event
on a Silverlight surface.

. Host HTML content within a
Silverlight Out-of-the-Browser
application.

. Paint elements with HTML
content.

. Dive deeper into the isolated
storage.

CHAPTER 17

New Transforms, Right
Click, HTML Browser,

WebBrowserBrush, and
Isolated Storage

Continuing with the exploration of additions and
changes brought to Silverlight 4, this chapter covers multi-
ple improvements and new features.

Transforming Elements in a
Projection
In Silverlight 2 Unleashed, Chapter 3, we talked in details
about the basic transforms available in Silverlight
(TranslateTransform, ScaleTransform, SkewTransform,
RotateTransform) and about more complex transforms that
combine multiple basic ones (TransformGroup,
MatrixTransform). We also mentioned that all these trans-
forms are affine; that is, that two parallel lines will remain
parallel whatever transform is applied to the element, as
shown in Figure 17.1.

 From the Library of Wow! eBook

ptg

FIGURE 17.1 Affine transforms: Null, Rotate, Scale, Translate, Skew, TransformGroup.

Because of the constraint of the parallel lines, it was impossible to create 3D effects
without resorting to external frameworks. In Silverlight 3, however, a new class named
PlaneProjection was introduced and allows creating perspective transforms. Note, however,
that in contrast to all the transforms mentioned before, PlaneProjection is not a
System.Windows.Media.Transform descendant, but instead a
System.Windows.Media.Projection.

By applying an instance of the PlaneProjection class to an element, it is possible to create
a non-affine transform that gives an illusion of 3D. This is not true 3D; instead, the terms
3D-like effect or 2.5D effect are often used. In fact, PlaneProjection is really just a trans-
form: No camera or lights are involved in the 2.5D scene, in contrast to “true 3D” as
found in Windows Presentation Foundation (WPF).

PlaneProjection exposes a series of properties allowing moving the object in the 3D
space. The most spectacular are RotationX, RotationY and RotationZ which, as the name
shows, rotate the element along the X, Y, and Z axes as shown in Figure 17.2. In this
figure, the Z axis is “coming out of the picture” and pointing at us.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

468

 From the Library of Wow! eBook

ptg

FIGURE 17.2 PlaneProjection transform along the X, Y, and Z axis.

Of course, these rotations can be combined (as shown
in Figure 17.3).

The easiest way to create a group of rotations in
design mode is to use Expression Blend. A new group
in the Properties panel shows an editor for the
PlaneProjection. This includes the possibility to trans-
form the element by clicking and dragging a rotation
control (circled in red in Figure 17.4).

Setting Additional Properties
In addition to the three rotation angles, additional proper-
ties are used to customize the transformed element’s
appearance:

. CenterOfRotationX, CenterOfRotationY,
CenterOfRotationZ: Sets the center point around
which the rotations are applied. This is a relative
value between 0 and 1, with (0, 0, 0) being the top
left corner of the element. For the Z axis, values
larger than 0 move the center of rotation toward the viewer (out of the picture)
while negative values move it further away from the viewer (behind the picture).

. GlobalOffsetX, GlobalOffsetY, GlobalOffsetZ: These values are absolute (in pixels)
and move the element along the X, Y, and Z axes, without considering the element’s
rotation. Figure 17.5 shows the global offset axis in red.

. LocalOffsetX, LocalOffsetY, LocalOffsetZ: With these values, the element is moved
(in pixels) along the X, Y, and Z axes after these axes have been rotated along with
the element. Figure 17.5 displays the local offset axis in green.

Transforming Elements in a Projection 469

1
7

FIGURE 17.3 Composing the
rotations.

FIGURE 17.4 Using the
Projection editor in Blend.

 From the Library of Wow! eBook

ptg

FIGURE 17.5 X, Y, and Z axes for global offset (red) and local offset (green).

Using a Matrix3DProjection
For more complex projections in the 3D space that the PlaneProjection cannot cover, the
Matrix3DProjection class can help. Just like the MatrixTransform class that was shown in
Silverlight 2 Unleashed, Chapter 3, the Matrix3DProjection is a matrix of parameters that
modify the element’s appearance. However, this matrix is more complex, since it takes
place in the 3D space.

For more information about Matrix3DProjection, see http://www.galasoft.ch/sl4-matrix3d.

Animating the PlaneProjection
Because the PlaneProjection’s properties are dependency properties, they can be data
bound and animated. In this section, we build a state transition in Expression Blend using
the plane projection to create a nice effect. This is the same effect that the Windows
Phone 7 uses for some of its transitions, and in fact what is shown here is applicable to
phone applications, as well! Just follow these steps:

1. Start Expression Blend and create a new Silverlight 4 application. Name it
PerspectiveTransition.

2. In the LayoutRoot Grid, add two additional Grid elements and name them
ContentGrid1 and ContentGrid2. Make sure that ContentGrid1 is behind
ContentGrid2. (It must appear first in the Objects and Timeline panel.)

3. Select the two new Grid elements in the Objects and Timeline panel and set their
Width and Height to Auto, and the Margin to 0. Set the VerticalAlignment and
HorizontalAlignment to Stretch.

4. Add a few controls and UI elements to ContentGrid1, and set the Grid’s Background
to a nice linear gradient brush.

5. In the Objects and Timeline panel, hide the ContentGrid1 by clicking the small Eye
icon next to the element’s name. Make sure that ContentGrid2 is selected.

6. Set ContentGrid2’s Background to a plain white.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

470

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-matrix3d

ptg

7. With ContentGrid2 still selected, find the Projection section (in the Transform cate-
gory of the Properties panel). Select the Center of Rotation tab and set X to 0.5, Y to
0 and Z to 0. This places the point on the top border of the image, in the center of
the width.

8. In Windows Explorer, select a picture and drag it on the designer surface. This adds
the picture to the project, and adds an Image control to ContentGrid2. Make sure
that the Image control is indeed a child of ContentGrid2 in the Objects and Timeline
panel.

9. Resize the picture in the designer so that it fills the whole Width and Height. If
needed, change the Stretch property, the HorizontalAlignment, VerticalAlignment
and the Margin property until you are satisfied.

10. Display ContentGrid1 again by clicking on the small Eye icon next to its name in
the Objects and Timeline panel.

11. Select the States panel and add a state group named IntroStates.

12. In the IntroStates group, add a new state named Entrance and another state named
Data.

13. With the Data state selected, make sure that Blend is in state recording mode. A red
border should be visible around the designer surface.

14. Select ContentGrid2. In the Projection section of the Properties panel, select the
Rotation tab and increase the value of X until the panel disappears to the user’s
eyes. This should be a negative value of approximately -76.5.

15. With the Data state still selected and recording, set the Opacity of ContentGrid2 to 0.

16. Click the Base state to stop the recording. Set the Transition duration to 1.5 seconds.

17. Select an easing function for the transition (for example, the Cubic InOut easing).

18. Select a GoToStateAction in the Behaviors section of the Assets library and drag it
onto ContentGrid2.

19. With the GoToStateAction selected, set the EventName to MouseLeftButtonDown in the
Properties panel, and the StateName to Data. Make sure that UseTransitions is
checked.

20. Drag another GoToStateAction, this time on ContentGrid1. Set the EventName to
MouseLeftButtonDown, and the StateName to Entrance. Here, too, make sure that
UseTransitions is checked.

21. Run the application and click the picture. The transition should be played in the 3D
space as shown in Figure 17.6. Then click the Grid’s background, which should
reverse the animation and display the picture again.

Transforming Elements in a Projection 471

1
7

 From the Library of Wow! eBook

ptg

Figure 17.6 Entrance state, transition, data state.

Composing Transforms
Another small but welcomed addition to the transform landscape is the introduction in
Silverlight 4 of the new CompositeTransform class. This is just a simpler way to define a
group of transforms without having to resort to a TransformGroup and its more complex
syntax.

For example, the TransformGroup in Listing 17.1 can be expressed by the
CompositeTransform in Listing 17.2. However, there is a small difference: In the
CompositeTransform, the order of the transforms applied to the element are always: Scale,
Skew, Rotate, and Translate. Should you want a different order for some reason, you need
to use a TransformGroup instead. Another difference is that the CenterX and CenterY prop-
erties of the CompositeTransform are applied to each transform. With the TransformGroup,
it is possible to specify a different center for each transform.

LISTING 17.1 Transform Composition with TransformGroup

<StackPanel.RenderTransform>

<TransformGroup>

<RotateTransform Angle=”15” />

<ScaleTransform ScaleX=”0.7”

ScaleY=”0.7” />

<SkewTransform X=”15” />

<TranslateTransform X=”20” />

</TransformGroup>

</StackPanel.RenderTransform>

LISTING 17.2 Transform Composition with CompositeTransform

<StackPanel.RenderTransform>

<CompositeTransform Rotation=”15”

ScaleX=”0.7” ScaleY=”0.7”

SkewX=”15” TranslateX=”20” />

</StackPanel.RenderTransform>

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

472

 From the Library of Wow! eBook

ptg

Handling the Right-Click Event
In earlier versions of Silverlight, right-clicking on any element on the page would show
the Silverlight context menu and nothing else. Although this is still the default behavior,
the applications now have the possibility to handle the mouse right-click event and to
perform a custom action.

The right-click event can be caught on any UIElement, and handled just like any other
event. There is, however, one difference: If you want to prevent the default Silverlight
context menu to be shown (for example, because you are displaying a custom context
menu), the event must be marked as handled.

In the following sample, a custom right-click event is handled to remove a selected item
from a ListBox. In the next section, we see how to use the context menu control from the
Silverlight toolkit to perform the same operation. Start with the following steps:

1. Load the start application from http://www.galasoft.ch/sl4-rightclick. This is the
frame of a Model-View-ViewModel (MVVM) application with a list of customers. For
this simple sample, the data is simulated.

2. If needed, unblock the content by right-clicking on the zip file in Windows
Explorer, selecting Properties from the context menu, and then clicking the Unblock
button. If the button is not visible on the General tab, the content is already
unblocked.

3. Extract the content of the zip file to a location on your hard drive, and then open
the solution file in Visual Studio 2010.

4. Run the application. You should see a list of customers and their account number
presented in a ListBox.

The customers are created in the MainViewModel class. This is just dummy data, and the
source of this data is actually not relevant for this experiment. Each Customer instance is
rendered in the ListBox by a DataTemplate located in the resources of MainPage.xaml.
What is needed now is an event handler for the right-click event on the customers.

Handling a Routed Event
Because the right-click occurs on one of the elements displayed in the ListBox, it seems
necessary to add an event handler in the DataTemplate. However, this is not convenient
because it would make it impossible to move the DataTemplate to an external resource
dictionary (which is very often needed to implement multiple skins or to facilitate the
designer-developer workflow).

Instead, two possible solutions exist:

. Using commands. We already saw that a binding to a command is a loose coupling,
and the binding is only resolved at runtime, when it is needed. That would be a
very clean solution, however, there is one catch: In Silverlight (and WPF), only
certain elements (Button, ToggleButton, CheckBox, RadioButton, and so on) have a

Handling the Right-Click Event 473

1
7

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-rightclick

ptg

Command property. In Chapter 19, “Authentication, Event to Command Binding,
Random Animations, Multitouch, Local Communication, and Bing Maps Control,”
we work around this limitation.

. Using a single event handler on the ListBox parent element.

A handler on the parent ListBox is able to catch and handle the MouseRightButtonDown
event raised on the child because the event is routed (like many built-in events in
Silverlight 4). It means that an event raised on any element in the tree will travel from
this element to its parent, and the parent’s parent, and all the way up to the main
UserControl. This is very convenient because it allows us to place one single event
handler that will catch the events raised by any of the ListBox’s children. To demonstrate
this, use the following steps:

1. Open MainViewModel.cs in Visual Studio and implement the DeleteCustomer
method as shown in Listing 17.3. Because the Customers collection is an
ObservableCollection, any change made to the items list (adding, removing, chang-
ing the sorting order) is automatically reflected by the user interface through the
data binding.

LISTING 17.3 DeleteCustomer Method

public void DeleteCustomer(Customer toRemove)

{

if (toRemove != null

&& Customers.Contains(toRemove))

{

Customers.Remove(toRemove);

}

}

2. Open MainPage.xaml in the Visual Studio XAML editor and modify the ListBox tag
as shown in Listing 17.4.

LISTING 17.4 Catching the MouseRightButtonDown Event in the ListBox

<ListBox Margin=”30”

ItemTemplate=”{StaticResource CustomerTemplate}”

ItemsSource=”{Binding Customers}”

MouseRightButtonDown=”ListBoxMouseRightButtonDown” />

3. Right-click the ListBoxMouseRightButtonDown name and select Navigate to Event
Handler from the context menu. This opens MainPage.xaml.cs.

4. Implement the event handler as shown in Listing 17.5.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

474

 From the Library of Wow! eBook

ptg

LISTING 17.5 ListBoxMouseRightButtonDown Handler

1 private void ListBoxMouseRightButtonDown(

2 object sender,

3 MouseButtonEventArgs e)

4 {

5 var vm = DataContext as MainViewModel;

6 if (vm != null)

7 {

8 var element = e.OriginalSource as FrameworkElement;

9 if (element != null)

10 {

11 var customer = element.DataContext as Customer;

12 if (customer != null)

13 {

14 vm.DeleteCustomer(customer);

15 // e.Handled = true;

16 }

17 }

18 }

19 }

. Line 5 gets the MainPage’s DataContext. Because this property is of type object, it is
necessary to cast it to the MainViewModel type.

. Line 6 checks whether the vm variable is null. This can be the case if the DataContext
was not set yet, or if the DataContext is not of the MainViewModel type; in this case,
the as operation returns null. This is a nice way to protect the application from a
NullReferenceException.

. Line 8 gets the OriginalSource of the event. This is the element on which the
mouse was actually clicked. Because the event is routed, it will eventually arrive in
the ListBox. However, because the ListBox has many children, it is needed to know
which element was clicked (and which Customer this item represents).

. Line 11 gets the DataContext of the clicked element. The Silverlight framework auto-
matically sets the DataContext of a DataTemplate to the data item that this
DataTemplate represents. In this case, the DataContext of each DataTemplate is one
Customer instance.

. If the retrieved item is not null and has been casted successfully to the Customer
type, the DeleteCustomer method on the MainViewModel is called on line 14.

Handling the Right-Click Event 475

1
7

 From the Library of Wow! eBook

ptg

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

476

T I P

Talking to the DataContext in Code

Getting the DataContext and using it to call methods or set properties on the viewmodel is a
technique that is often used when there is no other way to address the viewmodel. In
general, it is better to minimize the size of the code behind to increase the application’s
testability and maintainability, as discussed in Chapter 7, “Understanding the Model-View-
ViewModel Pattern.” However, this is not always possible, and code like that shown in Listing
17.5 is a perfectly acceptable workaround.

Run the application and right-click one of the elements. It should disappear from the list.
However, the Silverlight context menu is displayed, which hinders further operation. We
need to tell Silverlight that the right-click event was handled by our code, and that the
Silverlight context menu should not be shown. To do this, follow these steps.

1. In MainPage.xaml.cs, in the ListBoxMouseRightButtonDown event handler shown in
Listing 17.5, remove the comment sign (//) from line 15.

2. Run the application again and right-click a customer. This time, the Silverlight
context menu is not displayed. Click the blue background of the LayoutGrid, and the
default Silverlight context menu is shown.

Showing the Silverlight Context Menu
The Silverlight context menu should never be completely blocked by a Silverlight applica-
tion because it offers convenient functionalities to the user: configuring permissions,
checking and deleting isolated storage, configuring Silverlight updates, managing webcam
and microphone. However, it is not possible at this time to display the Silverlight configu-
ration dialog programmatically (for example, by adding a menu item to a custom context
menu).

To allow the user to configure Silverlight, it is a good practice to never handle the right-
click event on the parent element (the main UserControl), but instead to leave a border on
which the user can right-click to display the configuration dialog.

Displaying a Context Menu
The usual function of a right-click event on an element is to display a context menu; that
is, a menu whose content depends on the element that was clicked. Although the core
Silverlight framework does not have such a control, there is one in the Silverlight toolkit.
If the toolkit is not installed yet, follow the indications in Chapter 4, “Investigating
Existing Controls,” to make it available on your development computer, and then follow
these steps:

1. Open MainViewModel.cs and add a RelayCommand as shown in Listing 17.6. Notice
that the command expects a Customer instance as the CommandParameter.

 From the Library of Wow! eBook

ptg

LISTING 17.6 Adding the DeleteCustomerCommand

public RelayCommand<Customer> DeleteCustomerCommand

{

get;

private set;

}

2. In the MainViewModel constructor, instantiate the DeleteCustomerCommand as shown in
Listing 17.7. This code uses a reference to the DeleteCustomer method that was
defined in Listing 17.3. This works because DeleteCustomer expects one parameter of
type Customer.

LISTING 17.7 Instantiating the DeleteCustomerCommand

DeleteCustomerCommand

= new RelayCommand<Customer>(DeleteCustomer);

3. Right-click the References folder in the Silverlight application, in the Solution
Explorer, and select Add Reference from the context menu.

4. In the Add Reference dialog, select the .NET tab and add a reference to
System.Windows.Controls, System.Windows.Controls.Input.Toolkit, and
System.Windows.Controls.Toolkit.

5. In MainPage.xaml.cs, delete the ListBoxMouseRightButtonDown event handler.

6. In MainPage.xaml, remove the MouseRightButtonDown property from the ListBox.

7. Locate the CustomerTemplate in the UserControl’s Resources.

8. In the StackPanel within the DataTemplate, add the markup shown in Listing 17.8.
In this listing, the input prefix stands for
http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit in the list of
xmlns.

LISTING 17.8 Adding a Context Menu in XAML

1 <input:ContextMenuService.ContextMenu>

2 <input:ContextMenu Width=”140”>

3 <input:MenuItem Header=”Delete”

4 Command=”{Binding Source={StaticResource Locator},

5 Path=Main.DeleteCustomerCommand}”

6 CommandParameter=”{Binding}”>

7 <input:MenuItem.Icon>

8 <Image Source=”Resources/DeleteIcon.png”

9 Height=”20” Width=”20” />

10 </input:MenuItem.Icon>

Handling the Right-Click Event 477

1
7

 From the Library of Wow! eBook

http://schemas.microsoft.com/winfx/2006/xaml/presentation/toolkit

ptg

11 </input:MenuItem>

12 </input:ContextMenu>

13 </input:ContextMenuService.ContextMenu>

. Line 1 uses an attached property defined in a class named the ContextMenuService.
This class is currently in the Preview band of the Silverlight toolkit. It means that it
is functional, but changes may well occur in future versions. Also, it is not fully
tested, so some bugs might remain.

. The content of the attached property is set to a ContextMenu control, also defined in
the Silverlight toolkit. This control is defined on lines 2 to 12.

. One MenuItem is added to the ContextMenu on lines 3 to 11. Its Header is set to
Delete, which is the text shown in the menu item.

. Lines 4 and 5 bind the MenuItem’s Command property to the DeleteCustomerCommand on
the MainViewModel. Notice that the Source of the Binding needs to be set explicitly.
The implicit DataContext of the DataTemplate is the Customer item. The
DeleteCustomerCommand, however, is defined in the MainViewModel class. This is where
the ViewModelLocator comes handy.

. On line 6, the CommandParameter is set to an “empty binding.” This means that the
content of CommandParameter will be the implicit DataContext of the MenuItem. In this
case, this is the instance of the Customer class that the DataTemplate represents. This
is a convenient way to pass the Customer instance directly to the viewmodel.

. Finally, on lines 7 to 10, an icon is defined for the MenuItem, and set to a PNG image
located in the Resources folder.

9. Run the application and right-click a
customer in the ListBox. The custom
context menu is shown as in Figure
17.7.

The ContextMenuService takes care of setting
e.Handled to true, so the Silverlight context
menu is automatically blocked when a
custom context menu is used.

Hosting an HTML Browser (Out-of-the-Browser
Only)
Until the out-of-browser (OOB) mode for Silverlight was developed, a Silverlight applica-
tion was always running hosted in a web page. In some cases, the whole website was
developed in Silverlight, with no visible HTML elements. In general, however, Silverlight
elements are used to enhance the website with additional functionality or to improve the
user experience.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

478

FIGURE 17.7 Custom context menu.

 From the Library of Wow! eBook

ptg

Displaying HTML content within the Silverlight application was never intended for these
scenarios. There are some third-party solutions relying on placing an HTML iframe
element in front of the Silverlight plug-in. Although communication is possible between
the Silverlight application and the HTML content, it is a cumbersome solution. However,
for most applications, this was not critical because displaying HTML in Silverlight was a
rare use case.

Hosting an HTML Browser (Out-of-the-Browser Only) 479

1
7

WA R N I N G

Making a Site Fully in Silverlight

Developing a whole website in Silverlight, without any HTML elements, is generally speaking
not a very good practice. Although Silverlight provides enhanced functionalities, it is not as
ubiquitous as HTML/CSS/JavaScript. Running a Silverlight-only website on a mobile device,
for example, is a challenge.

At the very least, alternative content for devices without Silverlight support should be offered.

With the advent of OOB applications however, this requirement becomes more frequent
than before. Silverlight OOB applications are not hosted in an HTML environment
anymore. The only way to display and interact with HTML elements is by hosting a web
browser within the application. For example, if the OOB application wants to show a
Twitter stream, an RSS feed, or even just an extract of a web page, hosting a web browser
control is the only solution.

The WebBrowser control answers this concern. It can be embedded within a Silverlight
application, and can navigate to a URI or render an HTML string. This leverages the capa-
bility of the computer’s web browser (for example, to render PDF files or even Flash
content within the Silverlight application), provides a viewer for rich content (for
example, a Help file), integrates the HTML experience directly in the Silverlight applica-
tion (instead of starting an external web browser), and so forth.

Understanding the Limitations
A few limitations must be taken in account:

. The WebBrowser control renders HTML content only when it is placed in an applica-
tion running out of the browser. When the application runs in the browser, a
warning message is displayed in the WebBrowser control, as shown in Figure 17.8.

. The WebBrowser control appears on top of every other element in the Silverlight
application. It is not possible to change its Z-order, to transform it, or to change its
Opacity. If you need to transform the HTML content, or display it under another
element, check the “Painting with HTML” section, later in this chapter.

. When the OOB application runs in full screen, all navigation is disabled. The
content cannot even be scrolled.

 From the Library of Wow! eBook

ptg

Building a Simple Web Browser
In this section, a simple web browser application is built in Silverlight to help us under-
stand the features and limitations of the WebBrowser control. This application will then be
extended with additional features. Follow these steps:

1. Download the starting point (named WebBrowserSample-Start) for this sample from
http://www.galasoft.ch/sl4-webbrowser. Save the zip file on your hard drive, and
then display the file’s properties and (if needed) unblock its content by clicking the
corresponding button.

2. Extract the content of the zip file and start the solution WebBrowserSample.sln in
Visual Studio 2010.

This application is prepared with a main page, and two ChildWindow elements that
will be configured and used later. In addition, a web application is available to serve
the Silverlight application and to provide same-domain content.

3. Open MainPage.xaml and add the markup shown in Listing 17.9 to the LayoutRoot
Grid. This creates a WebBrowser control named MyWebBrowser. Note that the
WebBrowser control is part of the core Silverlight framework, and does not need addi-
tional DLLs to be included in the XAP file.

LISTING 17.9 Creating the WebBrowser Control

<WebBrowser x:Name=”MyWebBrowser”

Grid.ColumnSpan=”2”

Margin=”10,0,10,10”

Grid.Row=”1” />

4. Open MainPage.xaml.cs and add the code in Listing 17.10 to the MainPage construc-
tor, after the call to InitializeComponent. This code adds an event handler to the
WebBrowser’s Completed event, which is called when a navigation operation is
completed. Note the usage of a lambda expression to declare an anonymous event
handler. Note also that placing this call before InitializeComponent was called
would fail because MyWebBrowser is available only after the XAML markup has been
parsed.

LISTING 17.10 Handling the Completed Event

MyWebBrowser.LoadCompleted += (s, e) =>

MyBusyIndicator.IsBusy = false;

5. Implement the Navigate method as shown in Listing 17.11. This method is called
when the Navigate button is clicked.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

480

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-webbrowser

ptg

LISTING 17.11 Navigate Method

private bool _isContentLocal;

private string _lastAddress = string.Empty;

private void Navigate()

{

if (string.IsNullOrEmpty(LocationTextBox.Text))

{

return;

}

MyBusyIndicator.IsBusy = true;

MyWebBrowser.Source = GetNavigationUri();

SaveFileButton.IsEnabled = true;

_lastAddress = MyWebBrowser.Source.AbsoluteUri;

_isContentLocal = false;

}

6. Implement the method GetNavigationUri as shown in Listing 17.12. This method
checks the TextBox on the main page and attempts to build a valid URI with its
content.

LISTING 17.12 GetNavigationUri Method

1 private Uri GetNavigationUri()

2 {

3 Uri nextUri;

4

5 if (LocationTextBox.Text.StartsWith(“http://”))

6 {

7 nextUri = new Uri(LocationTextBox.Text, UriKind.Absolute);

8 }

9 else

10 {

11 var xapUri = App.Current.Host.Source;

12 var baseAddress = xapUri.AbsoluteUri.Substring(

13 0, xapUri.AbsoluteUri.IndexOf(“ClientBin/”));

14

15 nextUri = new Uri(baseAddress

16 + LocationTextBox.Text, UriKind.Absolute);

17 }

18

19 return nextUri;

20 }

Hosting an HTML Browser (Out-of-the-Browser Only) 481

1
7

 From the Library of Wow! eBook

ptg

. Line 5 checks whether the address that the user entered starts with http://. If that
is the case, the method considers that it is a remote address and creates an absolute
Uri instance.

. If the address entered is relative to the Silverlight application’s origin, a little more
work is needed to create an absolute Uri. To understand why, check the “Using
Relative URIs” section, later in this chapter.

. On line 11, the absolute address of the XAP file is retrieved.

. On lines 12 and 13, the base address of the website is extracted.

. Then, on lines 15 and 16, the absolute Uri is created.

Make sure that the WebBrowserSample.Web web project is set as the startup project, and
that the page WebBrowserSampleTestPage.html is set as the start page. Then, run the
application. Note that the WebBrowser control appears with a warning mentioning that
HTML is enabled only in out-of-browser mode, as shown in Figure 17.8.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

482

FIGURE 17.8 WebBrowser control in the browser.

Executing Out-of-the-Browser
To run the application out of the browser, follow these steps:

1. Close the application.

2. In Visual Studio, open the Silverlight project’s properties.

3. In the Silverlight tab, check the Enable Running Application out of the Browser
check box.

4. Run the application again.

 From the Library of Wow! eBook

ptg

5. Right-click the Silverlight application and select Install WebBrowserSample
Application onto this computer. Then, close the web browser.

6. In the OOB application, enter the text mypage.html into the TextBox on top of the
page, and then click the Navigate button.

mypage.html is a file located on the website from which the XAP file originates. It is a
simple HTML file with a few links and a few text paragraphs. From here, click the
Gutenberg link to be taken to the Project Gutenberg’s website. This page is external to the
site of origin, but it can be navigated anyway.

To run the OOB application from Visual Studio, select the Silverlight project properties.
On the Debug tab, in the Start Action, check Out-of-Browser Application radio button and
make sure that WebBrowserSample.Web is selected in the combo box. Then, set the
Silverlight project as the start application in the Solution Explorer.

Exploring the Navigation Restrictions
By clicking various links in the WebBrowser control, we notice the following facts about
navigation:

. All the content can be displayed, including images, Flash movies, and so forth.
Scripts are executed.

. Cross-schema navigation (from HTTP to HTTPS or opposite) is not possible. No error
is raised, but the navigation simply fails. Similarly, all the content displayed must be
in the same schema.

. Content displayed in HTML iframe elements appears correctly, but only if both the
page and the iframe run in the same schema (HTTP or in HTTPS).

. On Windows computers, right-clicking the WebBrowser control’s surface displays the
same context menu as in Internet Explorer.

Later, we will see that if the application runs with elevated permissions, there are no
restrictions at all, and navigating from HTTP to HTTPS or opposite is enabled.

Using Relative URIs
Relative URIs in Silverlight must be handled with care. When trying to load a relative URI
(for example, new Uri(“/Images/myimage.png”, UriKind.Relative)), Silverlight first checks
within the XAP whether the PNG file can be found. If it is not the case, Silverlight checks
relatively to the folder containing the XAP file (in general, that is the ClientBin folder).
For example, if the web application’s domain is www.mypage.com, and if the folder
/Images/myimage.png cannot be found within the XAP file, the URI entered before
resolves to the absolute URI www.mypage.com/ClientBin/Images/myimage.png.

To retrieve files placed outside of the ClientBin folder (on the root of the website or in a
child folder), an absolute URI must be created, as shown in Listing 17.12.

Hosting an HTML Browser (Out-of-the-Browser Only) 483

1
7

 From the Library of Wow! eBook

www.mypage.com
www.mypage.com/ClientBin/Images/myimage.png

ptg

Another difficulty is that in XAP, relative URIs must have a leading forward slash (/) char-
acter. For example, consider the following URIs set in XAML:

. Source=”Images/el20090906004.jpg”

Valid if the Images folder is in the ClientBin folder (not embedded in the XAP file)

Invalid if Images is embedded in the XAP file

. Source=”/Images/el20090906004.jpg”

Valid in both scenarios

Finally, files embedded into the XAP file must have their Build Action set to Content, and
the Copy to Output Directory property must be set to Copy If Newer or Copy Always.

Loading HTML Content from Memory
In addition to navigating to a URI, the WebBrowser control is also able to display HTML
loaded from a string. This is very convenient, for example, to display richly formatted
documents created by the Silverlight application (reports, articles, and so on) or to show
documents when the application is offline. To test this, follow these steps:

1. Open MainPage.xaml.cs in Visual Studio.

2. Implement the event handler ShowHtmlButtonClick as shown in Listing 17.13.

LISTING 17.13 Navigating to a string

private void ShowHtmlButtonClick(object sender, RoutedEventArgs e)

{

MyWebBrowser.NavigateToString(LocationTextBox.Text);

}

3. Run the application and enter HTML code into the TextBox (for example, the
markup shown in Listing 17.14). Then, click the HTML button.

LISTING 17.14 Sample HTML Markup

<h1>This is a test</h1>

<div style=”color: Red;”>This works</div>

Go to GalaSoft

In the “Saving to the Isolated Storage” section, later in this chapter, you will see how
entire HTML files can be saved to memory and displayed later in offline mode, and what
restrictions apply.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

484

 From the Library of Wow! eBook

ptg

Invoking JavaScript
When a web page containing JavaScript functions is loaded into the WebBrowser control,
Silverlight code can invoke the various methods by using the InvokeScript method, as
shown in http://www.galasoft.ch/sl4-invokescript.

In the other direction, the script function can raise the ScriptNotify event on the
WebBrowser control by calling the window.external.notify function and passing it a string
parameter. This parameter can be retrieved in the ScriptNotify event handler of the
WebBrowser class, as the Value property of the NotifyEventArgs parameter. You can find
more information about ScriptNotify at http://www.galasoft.ch/sl4-scriptnotify.

Note that normal cross-domain restrictions apply, if the script is located in a different
domain than the Silverlight application was loaded from.

Writing and Reading in the Isolated Storage
The isolated storage has been available to Silverlight applications since Silverlight 2. It is a
location on the client computer organized like a file system with directories and files.
However, the Silverlight application doesn’t know where the files are located.

In Silverlight 2 Unleashed, the isolated storage was presented in Chapter 10. For the most
part, the objects and restrictions remain the same in Silverlight 4. In this section, you’ll
see how to use the isolated storage to save HTML web pages locally for offline viewing.

Note the following restrictions for this sample:

. Only HTML markup is saved for offline viewing. Images and other content are not
saved. This includes external CSS files, which will cause the HTML pages to appear
“in the raw,” without styling.

. At the time of this writing, some web pages cause the Silverlight application to crash
when they are loaded from the isolated storage and displayed into the WebBrowser
control. The cause of the crash seems to be related to external JavaScript files adding
content dynamically to the web page.

. Some HTML files throw JavaScript errors when they are loaded offline.
Unfortunately, there is no way to keep JavaScript errors like these silent.

Saving to the Isolated Storage
To turn this small sample into a full-blown offline viewer, a lot of additional work would
be needed to “sanitize” the saved HTML pages. However, it shows how various features of
the isolated storage can be used to enhance a Silverlight application, with the following
steps:

1. Reopen the WebBrowserSample application in Visual Studio.

2. In the Solution Explorer, right-click the Helpers folder in the Silverlight project and
add a class named LocalFileHelper.cs.

Writing and Reading in the Isolated Storage 485

1
7

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-invokescript
http://www.galasoft.ch/sl4-scriptnotify

ptg

3. In this file, implement the FileContent property and the SaveFile method as shown
in Listing 17.15.

LISTING 17.15 FileContent Property and SaveFile Method

1 public string FileContent { get; set; }

2

3 public bool SaveFile(string fileName)

4 {

5 if (string.IsNullOrEmpty(fileName)

6 || string.IsNullOrEmpty(FileContent))

7 {

8 return false;

9 }

10

11 using (var isoStore = IsolatedStorageFile.GetUserStoreForApplication())

12 {

13 using (var stream = isoStore.OpenFile(fileName, FileMode.CreateNew))

14 {

15 using (var writer = new StreamWriter(stream))

16 {

17 writer.Write(FileContent);

18 }

19 }

20 }

21

22 return true;

23 }

. Line 11 gets the isolated store for the application. Note that using the same class
IsolatedStorageFile, it is also possible to get the store for the site of origin of the
application. This is convenient if multiple Silverlight applications served from the
same website need to exchange information about the client computer, or if some
settings are shared.

. Line 13 opens the file in the isolated storage for writing. This line will fail if the file
already exists. The caller of the method is responsible for checking this beforehand.
Note the using statement, which will automatically close the Stream when the oper-
ation is completed.

. On line 15, a StreamWriter is created. This class is useful to write text content to a
Stream. Here, too, a using statement takes care of closing the StreamWriter after the
operation is finished.

. Line 17 writes the text saved in the FileContent property to the Stream before true
(success) is returned on line 22.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

486

 From the Library of Wow! eBook

ptg

Using Directories
Of course, it is also possible to use directories in the isolated storage to build a file
structure. For more information about how to use directories, see
http://www.galasoft.ch/sl4-isodirectories.

Note, however, that it is not possible to get a handle on the given directory, but only to
work with the directory’s name. To create a directory within another directory, the code
in Listing 17.16 can be used.

LISTING 17.16 Creating a Directory Within Another Directory

isoStore.CreateDirectory(“Directory1\\Directory2”);

Requesting More Storage Space
The code in Listing 17.15 has one big issue: When the isolated storage is full, the save
operation will fail. For an application with default permissions (in the browser or OOB),
the default quota for isolated storage is 1MB. Applications with elevated permissions have
a default quota of 25MB. However, after a certain time, the storage might not be sufficient
to save an additional file.

To avoid this issue, add the content of Listing 17.17 between lines 12 and 13 of Listing
17.15. In this listing, additional storage is requested. For security, we request twice the size
of the file that needs to be saved. Note that the user is free to refuse, in which case the
operation is aborted on line 5.

LISTING 17.17 Increasing the Isolated Storage Quota

1 if (isoStore.AvailableFreeSpace < FileContent.Length)

2 {

3 if (!isoStore.IncreaseQuotaTo(isoStore.Quota + FileContent.Length * 2))

4 {

5 return false;

6 }

7 }

Checking Whether a File Exists
To check whether a given file already exists, the LocalFileHelper should be able to
retrieve all the files from the isolated store, and then check whether the list of names
contains the file that the user is looking for. This can be done with the following steps:

1. In LocalFileHelper.cs, add the code shown in Listing 17.18.

2. The ToList method used in the FileExists method is not available by default on
the string[] array type (which is returned by GetAvailableFiles). To add this exten-
sion method to our toolbox, it is necessary to add the following statement to the
top of the LocalFileHelper.cs file: using System.Linq;.

This statement adds a series of extension methods to the array class.

Writing and Reading in the Isolated Storage 487

1
7

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-isodirectories

ptg

LISTING 17.18 Getting the List of Files and Checking Whether a File Exists

public string[] GetAvailableFiles()

{

using (var isoStore

= IsolatedStorageFile.GetUserStoreForApplication())

{

return isoStore.GetFileNames();

}

}

public bool FileExists(string fileName)

{

var list = GetAvailableFiles().ToList();

return list.Contains(fileName);

}

Using the LocalFileHelper
To get information from the user and handle the file saving operation, a ChildWindow
named SaveFileChildWindow.xaml will be used. This element is already present in the
Silverlight project. Modify it as follows:

1. Open the file SaveFileChildWindow.xaml.cs in Visual Studio.

2. Modify the constructor as shown in Listing 17.19. This code creates a new
LocalFileHelper as a private field, and then saves the content of the file in its
FileContent property. The creator of the ChildWindow is responsible for passing the
content of the file to this window.

LISTING 17.19 Modifying the SaveFileChildWindow Constructor

private LocalFileHelper _helper;

public SaveFileChildWindow(string fileContent)

{

_helper = new LocalFileHelper

{

FileContent = fileContent

};

InitializeComponent();

}

3. Modify the OKButton_Click event handler as shown in Listing 17.20.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

488

 From the Library of Wow! eBook

ptg

LISTING 17.20 Handling the OK Button

1 private void OKButton_Click(object sender, RoutedEventArgs e)

2 {

3 var fileName = FileNameTextBox.Text.ToLower();

4

5 if (_helper.FileExists(fileName))

6 {

7 MessageBox.Show(“Already exists: “ + FileNameTextBox.Text);

8 return;

9 }

10

11 if (_helper.SaveFile(fileName))

12 {

13 DialogResult = true;

14 }

15 else

16 {

17 MessageBox.Show(“Problem when saving, try again or cancel”);

18 }

19 }

. Line 3 retrieves the name that the user entered in the TextBox located in
SaveFileChildWindow.xaml.

. Line 5 uses the FileExists method that was implemented in the LocalFileHelper
class in Listing 17.18. If the file name is already used, a message is shown and the
operation is aborted.

. Line 11 uses the LocalFileHelper to save the file in the isolated storage.

. If everything went well, the DialogResult is set to true on line 13. This closes the
ChildWindow. The caller can retrieve the DialogResult property to check whether the
operation was successful.

4. Open MainPage.xaml.cs and modify the SaveFileButtonClick event handler as
shown in Listing 17.21.

LISTING 17.21 Handling the SaveFileButtonClick Event listing (17.21)

1 private void SaveFileButtonClick(object sender, RoutedEventArgs e)

2 {

3 try

4 {

5 var content = MyWebBrowser.SaveToString();

6 var window = new SaveFileChildWindow(content);

7 window.Closed += (s, args)

8 => MyWebBrowser.Visibility = Visibility.Visible;

Writing and Reading in the Isolated Storage 489

1
7

 From the Library of Wow! eBook

ptg

9 window.Show();

10

11 MyWebBrowser.Visibility = Visibility.Collapsed;

12 }

13 catch (SecurityException)

14 {

15 MessageBox.Show(“Impossible to save, no permission”);

16 }

17 }

. Line 5 calls the WebBrowser’s SaveToString method. This method returns the HTML
markup currently loaded into the web browser. Note, however, that this method
may cause a SecurityException to be thrown, as you will see later in this chapter.
This exception is caught on line 13, and a corresponding message is shown on
line 15.

. Line 6 constructs a new SaveFileChildWindow and passes the content of the HTML
file to it.

. Lines 7 and 8 define an event handler for the Closed event of the ChildWindow. The
lambda expression used sets the WebBrowser control’s Visibility to Visible. We will
see in a moment why this is needed.

. Line 9 displays the ChildWindow.

. Finally, line 11 collapses the WebBrowser control.

Understanding the Restrictions of GDI
On line 11 of Listing 17.21, the WebBrowser control is hidden when the ChildWindow is
displayed. This is necessary because of a restriction of the WebBrowser: the HTML content
is rendered by the GDI graphics system (like many legacy applications) and not in
DirectX (like modern application frameworks such as Silverlight). The rules of GDI apply
to the WebBrowser control: This is why this control cannot be made semitransparent or
transformed, cannot be animated and always appears on top of every other Silverlight
element. This restriction is annoying but we will see a way to partly work around this in
the section titled Painting with HTML. In the meantime, the WebBrowser is simply
collapsed and restored when needed.

Testing the File Saving Operation
To test saving a file, run the application and enter the name mypage.html in the TextBox.
Then click the Navigate button. After the page is loaded, click the Save File button. The
operation should complete without errors.

You can also test the FileExists method of the LocalFileServer: Try to save a file
with the same name that was just used. An error message should be displayed by the
application.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

490

 From the Library of Wow! eBook

ptg

Writing and Reading in the Isolated Storage 491

1
7

WA R N I N G

Making Sure That the Web Server Is Running

Because the pages mypage.html and secondpage.html are stored on a local web server, and
because the OOB application runs independently, it is necessary to make sure that the web
server is started before attempting to load the HTML page. You already saw how to do this in
Chapter 14, “Enhancing Line-of-Business Applications and Running Out of the Browser,” in
the “Making Sure That the WCF Server Is Running” section.

Trying to Save Cross-Domain Content
Saving content served by the server of origin (in this case, the local web server) of the
Silverlight application is not subjected to restrictions. However, attempting to save cross-
domain content will cause an error to occur. To witness this, follow these steps:

1. Load mypage.html in the WebBrowserSample application. Then click the Gutenberg
link to load the home page of the Project Gutenberg.

2. In the Project Gutenberg page, look for a book that you want to read offline and
load it in the WebBrowser. After the book is loaded, click the Save button.

3. The error message we created in Listing 17.21, line 15 is shown. This is the result of
the SecurityException being thrown.

Without elevated permissions, the WebBrowser control is allowed to display cross-domain
web pages, but a call to the SaveToString method is not permitted for these pages. To
solve this, the application needs to be installed with elevated permissions with the follow-
ing steps:

1. Run the WebBrowserSample application.

2. Right-click the top of the page (on a Silverlight element) and select Remove This
Application from the context menu.

3. In Visual Studio, display the Properties of the Silverlight project.

4. In the Silverlight tab, open the Out-of-Browser Settings dialog.

5. Check the Require Elevated Trust check box, and then close the dialog.

6. Set the WebBrowserSample.Web as the startup project.

7. Run the application and reinstall the Silverlight application on the computer.

8. Navigate to http://www.gutenberg.org and find the book you wanted to save. This
time, the saving operation is successful.

9. Set the Silverlight project as the startup project in Visual Studio again.

This example shows the limitations of an OOB application without elevated permissions.
For the rest of the chapter, we proceed with elevated permissions.

 From the Library of Wow! eBook

http://www.gutenberg.org

ptg

Reading from the Isolated Storage
Now that files are saved into the isolated storage, the application should offer them to the
user for offline viewing with the following steps. As previously mentioned, only the
HTML markup was saved; all the images, external Cascading Style Sheets (CSS), and other
content are not available in this simple example. This explains why saved pages look
differently from the original.

1. Reopen the WebBrowserSample application in Visual Studio.

2. In the LocalFileHelper class, add the code shown in Listing 17.22.

LISTING 17.22 Getting a File from the Isolated Storage

1 public bool GetFileContent(string fileName)

2 {

3 if (!FileExists(fileName))

4 {

5 return false;

6 }

7

8 using (var isoStore

9 = IsolatedStorageFile.GetUserStoreForApplication())

10 {

11 using (var stream = isoStore.OpenFile(fileName, FileMode.Open))

12 {

13 using (var reader = new StreamReader(stream))

14 {

15 FileContent = reader.ReadToEnd();

16 }

17 }

18 }

19

20 return true;

21 }

. Line 3 checks whether the desired file actually exists in the store. If it cannot be
found, the operation is aborted on line 5.

. Lines 8 and 9 retrieve the isolated store for the application, like we did before when
saving a file.

. Line 11 opens the file for reading.

. Line 13 creates a StreamReader, the perfect class to read text content.

. Line 15 reads the whole content of the file, and place it in the FileContent property
for later use.

. Line 20 notifies the caller that everything went fine.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

492

 From the Library of Wow! eBook

ptg

3. A ChildWindow will be used to show the list of available files, and load the content.
This element named LoadFileChildWindow.xaml is already available and partly
implemented in the Silverlight project. Open LoadFileChildWindow.xaml.cs.

4. Create a new instance of the LocalFileHelper as shown in Listing 17.23. The
FileContent property is a simple wrapper around the LocalFileHelper’s property of
the same name.

LISTING 17.23 Creating the LocalFileHelper

private LocalFileHelper _helper = new LocalFileHelper();

public string FileContent

{

get { return _helper.FileContent; }

}

5. Modify the LoadFileChildWindow constructor as shown in Listing 17.24. The list of
available files is simply retrieved thanks to the LocalFileHelper and an
ObservableCollection is created to store the list.

LISTING 17.24 Retrieving the Files List

public LoadFileChildWindow()

{

Files = new ObservableCollection<string>(_helper.GetAvailableFiles());

InitializeComponent();

}

6. Modify the OKButton_Click event handler like in Listing 17.25.

LISTING 17.25 Getting the File’s Content

1 private void OKButton_Click(object sender, RoutedEventArgs e)

2 {

3 if (FilesListBox.SelectedIndex < 0)

4 {

5 MessageBox.Show(“Please select a file or cancel”);

6 return;

7 }

8

9 if (!_helper.GetFileContent(

10 FilesListBox.SelectedItem.ToString()))

11 {

12 MessageBox.Show(“Cannot get file content, try again”);

13 return;

Writing and Reading in the Isolated Storage 493

1
7

 From the Library of Wow! eBook

ptg

14 }

15

16 DialogResult = true;

17 }

. Lines 9 and 10 call the GetFileContent method on the LocalFileHelper. This loads
the content into the helper’s FileContent property for later. If an error occurs, an
error message is shown, and the operation is aborted.

. Line 16 is reached if everything went fine, and the window is closed by setting
DialogResult to true.

7. Open MainPage.xaml.cs and modify the LoadFileButtonClick event handler as
shown in Listing 17.26.

LISTING 17.26 Loading the File

1 private void LoadFileButtonClick(object sender, RoutedEventArgs e)

2 {

3 var window = new LoadFileChildWindow();

4 window.Closing += (s, args) =>

5 {

6 if (window.DialogResult == true)

7 {

8 MyWebBrowser.NavigateToString(window.FileContent);

9 _lastAddress = LocationTextBox.Text = window.FileName;

10 _isContentLocal = true;

11 }

12

13 MyWebBrowser.Visibility = Visibility.Visible;

14 };

15

16 MyWebBrowser.Visibility = Visibility.Collapsed;

17 window.Show();

18 }

. On line 3, a new LoadFileChildWindow is created.

. The Closing event of the new window is handled on lines 4 to 14. First, if the opera-
tion was successful, the offline file content is loaded into the WebBrowser control on
line 8. Then, the WebBrowser’s Visibility is restored. These lines will be executed
when the user closes the window later.

. Line 16 hides the WebBrowser control for the reason explained earlier in this chapter,
to avoid that the browser remains in front of the ChildWindow.

. Finally line 17 shows the ChildWindow to the user.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

494

 From the Library of Wow! eBook

ptg

Now it’s time for testing: Run the application and click the Load File button. Retrieve the
file that was saved in the previous section from the Gutenberg website and load it in the
window. You can now build your library online, and use it even when the computer is
offline later.

Deleting Files
After a book is read, it doesn’t make much sense to keep it on the computer, seeing how it
can be loaded again from the Gutenberg website later. Deleting files from the isolated
storage is very easy with the following steps:

1. In the LocalFileHelper class, add the code shown in Listing 17.27. This method
checks whether the file to be deleted is available in the store, and then calls the
store’s DeleteFile method.

LISTING 17.27 Deleting a File from the Store

public void DeleteFile(string fileName)

{

if (FileExists(fileName))

{

using (var isoStore

= IsolatedStorageFile.GetUserStoreForApplication())

{

isoStore.DeleteFile(fileName);

}

}

}

2. In LoadFileChildWindow.xaml.cs, edit the DeleteFile_Click event handler as shown
in Listing 17.28. Notice that the file name is also removed from the Files collec-
tion. Because this property is an ObservableCollection, the ListBox will be notified
of the change through the data binding and will automatically be updated.

LISTING 17.28 Implementing the DeleteFile_Click Event Handler

private void DeleteFile_Click(object sender, RoutedEventArgs e)

{

if (FilesListBox.SelectedIndex < 0)

{

return;

}

var fileName = FilesListBox.SelectedItem.ToString();

_helper.DeleteFile(fileName);

Files.Remove(fileName);

}

Writing and Reading in the Isolated Storage 495

1
7

 From the Library of Wow! eBook

ptg

3. Run the application and click the Load File button. You can now select a file from
the list and delete it from the isolated storage.

Using the IsolatedStorageSettings
A nice improvement to the WebBrowserSample application would be to automatically
reload the last page that was viewed before the application was ended. This is a nice
touch that many web browsers offer nowadays. In this section, we use the
IsolatedStorageSettings class, a façade class from the Silverlight framework that hides
some of the complexity of the isolated storage and offers a simpler interface to the func-
tionality that is needed to save key/value pairs. To add this functionality to the applica-
tion, follow these steps:

1. Reopen WebBrowserSample in Visual Studio.

2. In LocalFileHelper.cs, add the constants from Listing 17.29 on top of the class.

LISTING 17.29 Constants for Settings

private const string IsContentLocalKey = “IsContentLocal”;

private const string LastAddressKey = “LastAddress”;

private const string SettingsFileName = “__LocalSettings”;

3. To save the settings, add the method shown in Listing 17.30 to the LocalFileHelper
class.

LISTING 17.30 Saving the Settings

public void SaveSettings(bool isContentLocal, string lastAddress)

{

IsolatedStorageSettings.ApplicationSettings[IsContentLocalKey]

= isContentLocal;

IsolatedStorageSettings.ApplicationSettings[LastAddressKey]

= lastAddress;

}

4. The method in Listing 17.31 loads the settings from the isolated storage and should
be added to the LocalFileHelper class, too.

LISTING 17.31 Loading the Settings

public void LoadSettings(

out bool isContentLocal,

out string lastAddress)

{

isContentLocal = false;

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

496

 From the Library of Wow! eBook

ptg

lastAddress = string.Empty;

if (IsolatedStorageSettings.ApplicationSettings.Contains(

LastAddressKey)

&& IsolatedStorageSettings.ApplicationSettings.Contains(

IsContentLocalKey))

{

lastAddress = IsolatedStorageSettings

.ApplicationSettings[LastAddressKey].ToString();

isContentLocal = (bool)IsolatedStorageSettings

.ApplicationSettings[IsContentLocalKey];

}

}

Both SaveSettings and LoadSettings use the
IsolatedStorageSettings.ApplicationSettings table to store the settings. This works very
much like other key/value settings tables (for example, in ASP.NET). Because the content
of the value is of type object, any serializable content can be stored and the Silverlight
framework will take care of serializing the values for you.

Filtering the Settings File
In Listing 17.29, a constant named SettingsFileName was declared. This is the name of
the __LocalSettings file that Silverlight creates to store the settings. The LocalFileHelper
should filter this file out when retrieving the list of all the files stored in the isolated
storage, or else this name will appear in the LoadFileChildWindow’s ListBox. This is done
by modifying the GetAvailableFiles method as shown in Listing 17.32, which uses a
LINQ query to filter the settings file name out of the list. The Where method is an exten-
sion method for lists contained in the System.Linq namespace that was added to the top
of the class file earlier.

LISTING 17.32 Filtering the Settings Filename

public string[] GetAvailableFiles()

{

using (var isoStore

= IsolatedStorageFile.GetUserStoreForApplication())

{

return isoStore.GetFileNames().ToList()

.Where(n => n != SettingsFileName)

.ToArray();

}

}

Writing and Reading in the Isolated Storage 497

1
7

 From the Library of Wow! eBook

ptg

Using the Settings in the Main Page
The MainPage class can now load and save settings with the following steps:

1. On top of the MainPage class, create a LocalFileHelper as shown in Listing 17.33.

LISTING 17.33 Creating a LocalFileHelper in MainPage

private LocalFileHelper _helper = new LocalFileHelper();

2. In the MainPage constructor, add an event handler (shown in Listing 17.34) for the
Application.Exit event. This is raised just before the application is ended, without a
possibility to cancel the shutdown. This is the last moment we can choose to save
the settings.

Listing 17.34 also shows a call to a new method named LoadInitialPage. This method
(shown in Listing 17.35) will restore the last visited page when the application is started.

LISTING 17.34 Saving the Settings When the Application Exits

Application.Current.Exit += (s, e) =>

_helper.SaveSettings(_isContentLocal, _lastAddress);

LoadInitialPage();

Finally, the LoadInitialPage method is shown in Listing 17.35. This method is called by
the MainPage constructor. It loads the settings, checks whether the navigation was local or
not, and attempts to restore the state that the application had when it was exited.

Note the LoadSettings method uses out parameters. The value of these parameters will be
overwritten by the LoadFileHelper’s LoadSettings method. Although out parameters are
convenient in such a case, one should be careful when using them because it is not
always quite clear what happens.

LISTING 17.35 Restoring the Initial Page

private void LoadInitialPage()

{

_helper.LoadSettings(out _isContentLocal, out _lastAddress);

if (!string.IsNullOrEmpty(_lastAddress))

{

LocationTextBox.Text = _lastAddress;

if (_isContentLocal)

{

if (_helper.GetFileContent(_lastAddress))

{

MyWebBrowser.NavigateToString(_helper.FileContent);

}

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

498

 From the Library of Wow! eBook

ptg

}

else

{

Navigate();

}

}

}

To test this new functionality, run the application and navigate to a web page. Then, close
the application and reopen it. The same page should be loaded again. Repeat the test with
a local file.

(Not) Detecting Internal Navigation in the WebBrowser
The page saved by the application in the settings is in fact not the last page that the user
navigated to (by clicking links in the displayed web page), but the last address that was
loaded in the WebBrowser control’s Source property. Because of limitations in the
WebBrowser control, it is impossible to detect internal navigation: No event is raised when
the user clicks a link, and even though the LoadCompleted event is raised, it is not possible
to find out which URI the user navigated to. At the time of this writing, it is not clear
whether this limitation will remain in future versions of the WebBrowser control.

Trusting the Isolated Storage or Not
The isolated storage is a secure storage location, in the sense that the Silverlight applica-
tion does not know where the files are actually located. However, it is secure only in one
direction. A user of the client computer can very easily find where the files are actually
stored with the following steps:

1. Run the WebBrowserSample application and save a web page in the isolated storage.
Write down the name that you used. (Make sure to use a name that is unique; for
example, myownsavedwebpage.)

2. In Windows Explorer, search for the file name myownsavedwebpage in C:\.

The search result should display the text file as well as the _LocalSettings file, which can
be opened in a text editor. Neither the name nor the content are encrypted! Isolated
storage is not a good place to store confidential information. Instead, a user’s personal informa-
tion must be stored on the web server, where it can be hidden from prying eyes.

Painting with HTML
As you saw, the WebBrowser control has all the restrictions that classic GDI components
have: It cannot be transformed, clipped, or made transparent. It always appears on top of
all the other Silverlight elements. In some cases, this is not acceptable, (for example,
when an animation must be played on the Silverlight page, or when something must be
shown on top of the WebBrowser).

Painting with HTML 499

1
7

 From the Library of Wow! eBook

ptg

In this chapter, the WebBrowser control is simply collapsed when a ChildWindow must
appear in front of it. This is a little confusing for the user, however, because the whole
web page disappears from sight. It is easy to change this with the help of the
WebBrowserBrush with the following steps:

1. Reopen the WebBrowserSample solution in Visual Studio.

2. In MainPage.xaml, add the markup shown in Listing 17.36. This Rectangle must
appear behind the WebBrowser control. Notice that the Fill property of the Rectangle
is set to a WebBrowserBrush, which will use HTML to paint it.

LISTING 17.36 Adding a Rectangle and a WebBrowserBrush

<Rectangle Margin=”10,0,10,10”

Grid.Row=”1”

Grid.ColumnSpan=”2”>

<Rectangle.Fill>

<WebBrowserBrush x:Name=”MyWebBrowserBrush”

SourceName=”MyWebBrowser” />

</Rectangle.Fill>

</Rectangle>

3. In MainPage.xaml.cs, place the call shown in Listing 17.37 just before the
WebBrowser’s Visibility is set to Collapsed in SaveFileButtonClick and in
LoadFileButtonClick,.

LISTING 17.37 Redraw the WebBrowserBrush

MyWebBrowserBrush.Redraw();

4. Run the application, load a web page, and then click the Save button. Unlike before,
the HTML page is still visible in the background. This is in fact the painted
Rectangle.

The WebBrowserBrush does not allow any interaction with the HTML content. It requires a
WebBrowser control to render the HTML markup. Note that the WebBrowser control should
not be collapsed when the call to Redraw is made on the WebBrowserBrush, or else the
whole Rectangle will be black. It is okay, however, if the WebBrowser control is placed
outside of the visible screen.

Unlike any other Brush, WebBrowserBrush is the only one where the Redraw method must
be called explicitly when something changes in the WebBrowser control.

CHAPTER 17 New Transforms, Right Click, HTML Browser, WebBrowserBrush,
and Isolated Storage

500

 From the Library of Wow! eBook

ptg

Handling CompositeTarget.Rendering
The WebBrowserBrush is also useful in other situations; for example, when HTML content
should be transformed (for instance to display a reflection effect below the WebBrowser
control) or animated. A sample of a reflection effect and of an animation can be found at
http://www.galasoft.ch/sl4-webbrowserbrush.

Note that in the case of the reflection effect, it is necessary to keep the brush and the
WebBrowser control in sync at all times. To do this, the CompositionTarget.Rendering event
can be handled as shown in Listing 17.38. This event is very convenient when fast- paced
animations must be handled in code, or when something (like the call to Redraw) must
happen very often. Note, however, that calling complex methods often can have an
impact on performance.

LISTING 17.38 Handling the CompositionTarget.Rendering Eevent

public Reflection()

{

InitializeComponent();

CompositionTarget.Rendering += (s, e) =>

MyWebBrowserBrush.Redraw();

}

Summary
In this chapter, we talked about topics added to Silverlight 4 such as the new
PlaneProjection transform allowing moving elements in the 3D space, handling the
right-click event to display a custom context menu or execute other functions, and how
the WebBrowser control and the WebBrowserBrush can be used to display HTML content in
an OOB application.

We also spent time examining exactly how the isolated storage works. Although this is
not a new feature of Silverlight 4 (it was already found in Silverlight 2), understanding the
isolated storage is crucial when developing Silverlight applications, especially OOB appli-
cations that can run offline.

In the next chapter, we continue exploring advanced techniques to enhance Silverlight
applications.

Summary 501

1
7

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-webbrowserbrush

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Use drag and drop to improve
the user experience when
opening external files.

. Talk about the enhancements
brought to the full screen
mode.

. Copy and paste using the
Windows Clipboard.

. Get notifications from a WCF
service using duplex polling.

. Display notifications windows
to inform the user even when
the application is not active.

. Improve the splash screen
that is shown when the
application starts.

CHAPTER 18

Drag and Drop,
Full Screen, Clipboard,

COM Interop,
Duplex Polling,

Notification Windows,
and Splash Screens

In Chapter 17, “Transforms, Right Click, HTML Browser,
WebBrowserBrush, and Isolated Storage,” we talked about a
number of topics that help the Silverlight developers to
create a smooth and rich experience. In this chapter, we
continue the exploration.

Dragging and Dropping
In Chapter 9, “Connecting to the Web,” we used the
OpenFileDialog to select files on the local computer and
load them into the Silverlight application for processing.
This method is well known by the user, but it is not very
friendly: It requires clicking a button, disrupting the work-
flow by presenting a dialog, navigating into the
OpenFileDialog, selecting one or multiple files, and finally
closing the dialog.

 From the Library of Wow! eBook

ptg

Dragging Files on the Silverlight Application
A more user-friendly experience is dragging files from the file explorer or from the
desktop and dropping them onto the Silverlight application. This is a much more natural
manner of selecting files and passing them to Silverlight with much less disruption.
Dragging and dropping was introduced in Silverlight 4, and is very easy to add to an
application, as we will show with the following steps. Note that even though this sample
is an OOB application, drag and drop in Silverlight works without any special permission,
in and out of the browser:

1. Reopen the WebBrowserSample application that was created in Chapter 17.
If you don’t have this application anymore, you can download it from
http://www.galasoft.ch/sl4-dragdrop.

2. Open MainPage.xaml and modify the opening tag of the LayoutRoot Grid as shown
in Listing 18.1. The AllowDrop attribute notifies Silverlight that the Grid is a valid
drop target, and that it should raise the Drop event.

LISTING 18.1 Setting AllowDrop and the Drop Event Handler

<Grid x:Name=”LayoutRoot”

Background=”White”

AllowDrop=”True”

Drop=”HandleDrop”>

3. In MainPage.xaml.cs, add the HandleDrop event handler shown in Listing 18.2.

LISTING 18.2 Handling the Drop Event

1 private void HandleDrop(object sender, DragEventArgs e)

2 {

3 var files = e.Data.GetData(DataFormats.FileDrop) as FileInfo[];

4

5 if (files == null || files.Length == 0)

6 {

7 return;

8 }

9

10 var isFirst = true;

11 foreach (var file in files)

12 {

13 using (var reader = file.OpenText())

14 {

15 _helper.FileContent = reader.ReadToEnd();

16 _helper.SaveFile(file.Name);

17

18 if (isFirst)

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

504

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-dragdrop

ptg

19 {

20 MyWebBrowser.NavigateToString(_helper.FileContent);

21 LocationTextBox.Text = file.Name;

22 isFirst = false;

23 }

24 }

25 }

26 MessageBox.Show(string.Format(

27 “{0} files saved in storage”, files.Length));

28 }

. Line 3 retrieves the Data property (of type IDataObject) that the object initiating the
drag operation prepared. In our case, the IDataObject was created by the Silverlight
framework in collaboration with the operating system. The GetData method returns
an object that can be casted to FileInfo[], an array of FileInfo instances.

. On lines 11 to 25, we loop through all the files.

. On line 13, the current file is opened for text reading. The method OpenText returns
a StreamReader, which can directly be used to read the document’s content. Note
that if the file is binary (such as a picture, and so on), the OpenText works fine, but
the ReadToEnd method returns a long string of unreadable characters. For image files,
you must use a BinaryReader.

. On line 15 and 16, the content of the text file is read and saved to isolated storage
thanks to the LocalFileHelper. This class was implemented in Chapter 17, Listing
17.15.

. On lines 18 to 23, if the current file is the first of the list, it is displayed in the
WebBrowser control, and its name is shown in the LocationTextBox.

. Finally, a message is shown to the user to confirm that the action ran correctly.

To test the application, run it and select a few files on your hard drive. Note that because
the WebBrowser’s NavigateToString method expects HTML content, simple text files will
be shown without any formatting, which is not a very good experience. Test HTML files
can be downloaded from http://www.gutenberg.org or from
http://www.galasoft.ch/sl4-dragdrop.

Dropping the files on the WebBrowser control’s surface doesn’t work. The Drop event is
intercepted by the WebBrowser’s content, which does not belong to the Silverlight applica-
tion. The files must be dropped on a Silverlight element so that the Drop event is bubbled
up to the LayoutRoot Grid, which handles it.

Drag-and-Drop Restrictions
Unlike in Windows Presentation Foundation (WPF), it is not possible to initiate a drag-
and-drop operations for other objects than for files out of the box (for example dragging
and dropping items within the Silverlight application). However, the Silverlight Toolkit

Dragging and Dropping 505

1
8

 From the Library of Wow! eBook

http://www.gutenberg.org
http://www.galasoft.ch/sl4-dragdrop

ptg

has a component that allows this operation. More details are found on Tim Heuer’s blog
at http://www.galasoft.ch/sl4-droptoolkit.

Supporting the Mac and Windowless
Maybe the most annoying limitation of drag and drop is that it does not work for
windowless Silverlight applications. We talked about windowless in Silverlight 2 Unleashed,
Chapter 7. This parameter is set in the HTML page hosting the Silverlight plug-in, and
removes the white background that is shown when every element’s Background of the
Silverlight application is set to Transparent. Although it allows a nicer integration of the
Silverlight application in the hosting web page, it increases the cost in terms of perfor-
mance and prevents files to be dropped on the Silverlight surface.

Because Silverlight on the Mac always runs in windowless mode (whereas this is rather
the exception on Windows), it is necessary to implement a workaround with the follow-
ing steps if the Silverlight application is used on Mac as well as Windows (which is a
common scenario).

1. Load the application at http://www.galasoft.ch/sl4-dropwindowless, unblock and
extract it like we already did a few times in this book, and then open the Solution
file.

2. Publish the web application on a web server that you have access to. Silverlight 2
Unleashed, Chapter 7 talks about getting web space and publishing Silverlight appli-
cations to it.

3. Run the application on a Mac computer. Try to drag and drop files on the red Grid.
In Windows, this works (the number of files is shown in a MessageBox), but it fails
on Mac.

4. In DragDropWindowlessTestPage.html, add the JavaScript code shown in Listing
18.3 below the onSilverlightError function.

LISTING 18.3 JavaScript Code to Enable Drag and Drop on a Mac

function handleDragEnter(oEvent)

{

oEvent.preventDefault();

var success = silverlightControl.dragEnter(oEvent);

if (success)

oEvent.stopPropagation();

}

function handleDragLeave(oEvent)

{

oEvent.preventDefault();

var success = silverlightControl.dragLeave(oEvent);

if (success)

oEvent.stopPropagation();

}

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

506

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-droptoolkit
http://www.galasoft.ch/sl4-dropwindowless

ptg

function handleDragOver(oEvent)

{

oEvent.preventDefault();

var success = silverlightControl.dragOver(oEvent);

if (success)

oEvent.stopPropagation();

}

function handleDropEvent(oEvent)

{

oEvent.preventDefault();

var success = silverlightControl.dragDrop(oEvent);

if (success)

oEvent.stopPropagation();

}

5. Run the application again and try dropping files. The MessageBox should be
displayed by the Silverlight application.

Working in Full Screen
Setting a Silverlight application in full screen is very easy, as you will see in this section.
This was already possible in Silverlight 2. There are, however, two improvements brought
in Silverlight 4 to enhance the full-screen experience.

Getting Keyboard Support in Full-Screen Mode (Elevated
Permissions)
Before Silverlight 4, keyboard support was disabled when the application was running in
full-screen mode. This made creating kiosk-type applications difficult. The full-screen
mode was interesting only for media applications controlled by the mouse.

Working in Full Screen 507

1
8

T I P

Using Keyboard in Full Screen Without Elevated Trust

The only keys that are enabled in full-screen mode with normal trust are: Up, Down, Left, and
Right arrows; Space, Tab; Page up, Page down; Home, End, and Enter; and the function keys.

Some web browsers support full-screen operations for any web page (for example, clicking
Alt-Enter in Internet Explorer sets the page in full-screen). However, the web browser chrome
is still visible in this mode, so it is not a true “kiosk” application.

In Silverlight 4, if the application runs OOB with elevated permissions, keyboard support
is enabled, as shown with the following steps:

1. Create a new Silverlight application and name it FullScreen.

 From the Library of Wow! eBook

ptg

2. In MainPage.xaml, add a TextBox and a Button.

3. Set the Content of the Button to “Enter Full Screen” and create an event handler
for the Click event, named FullScreenButtonClick.

4. In MainPage.xaml.cs, implement the FullScreenButtonClick event handler as shown
in Listing 18.4.

LISTING 18.4 Setting the Application in Full Screen

private void FullScreenButtonClick(object sender, RoutedEventArgs e)

{

if (App.Current.Host.Content.IsFullScreen)

{

(sender as Button).Content = “Enter full screen”;

App.Current.Host.Content.IsFullScreen = false;

}

else

{

(sender as Button).Content = “Exit full screen”;

App.Current.Host.Content.IsFullScreen = true;

}

}

5. Test the application by running it
and clicking the button. The
application is now shown in full-
screen mode, and a message is
shown mentioning that pressing
Esc will exit full screen (as shown
in Figure 18.1).

6. Try to enter text in the TextBox. This is not possible.

7. Press Esc to exit full-screen mode, and change the Silverlight project properties to
enable running out of the browser.

8. Run the application again. Right-click and install it.

9. In the OOB application, click the full-screen button. The behavior is the same as
before: The message is shown, and it is not possible to type in the TextBox. Right
click to uninstall the OOB application.

10. In the Silverlight project properties, click the Out-of-Browser Settings button and
request elevated trust for the application.

11. Run the application and install it again. Then, in the OOB application, click the
full-screen button.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

508

FIGURE 18.1 Press Esc to exit full-screen
mode.

 From the Library of Wow! eBook

ptg

With elevated permissions, the message
is not displayed anymore. In fact, press-
ing the Escape key does not end the full-
screen mode anymore. The only way to
end full-screen mode is now to click the
full-screen button. This can be conve-
nient for kiosk applications. In this kind
of applications, the user should not be
allowed to exit the full-screen mode by
pressing the Escape key. Instead, only a user initiated action (for example a menu
protected by a password) should be allowed to reset the application in the normal mode.

Using Full Screen on a Monitor While Working on Another
Nowadays, more and more users have multiple monitors connected to their computer. For
these users, being able to run a Silverlight application in full screen on the second
monitor while working on the primary one is very attractive. Until now, however, the
full-screen mode would toggle back to normal as soon as the mouse was clicked out of the
Silverlight surface. When an application with elevated permissions is set in full-screen
mode (like the application created in the previous section), it remains in full mode even if
the mouse is clicked on the first monitor. This is easy to test if you have two monitors
connected to your computer.

When the application runs with normal permissions, however, it can request permission
to stay in full screen on one monitor, with the following steps:

1. Uninstall the FullScreen OOB application.

2. Reopen the FullScreen Solution in Visual Studio.

3. In the Silverlight project properties, disable the elevated permissions for out of
browser.

4. In MainPage.xaml.cs, in the MainPage constructor, enter the code shown in Listing
18.5. This modifies the FullScreenOptions for the plug-in.

LISTING 18.5 Setting the FullScreenOptions

App.Current.Host.Content.FullScreenOptions

= FullScreenOptions.StaysFullScreenWhenUnfocused;

5. Run the application in the browser and click the full-screen button. A permission
dialog is displayed, shown in Figure 18.2. The permission requested here (which
does only appear in non-elevated mode) is for the application to stay in full-screen
mode. Click yes.

Working in Full Screen 509

1
8

WA R N I N G

User Initiated

Even with elevated permissions, setting the
Silverlight application in full-screen mode
must be initiated by the user (for example,
by clicking a button). The application cannot
spontaneously set itself in full-screen mode.

 From the Library of Wow! eBook

ptg

FIGURE 18.2 Permission dialog.

Try to type text in the TextBox: Text input is still disabled (because the application does
not have elevated permissions anymore). Also, pressing Esc will exit full screen. The only
thing that changed toward the normal application without any permission is that the
application will stay in full screen on one monitor while you can use the mouse and
keyboard in another monitor.

If the user chose to remember his answer in the permission dialog, he can revoke it in the
Silverlight configuration dialog, just like he can manage webcam and microphone
support.

Copying to and from the Clipboard
In Silverlight 3, Clipboard support was possible only by selecting text in a TextBox
control, and using the keyboard shortcuts (Ctrl+C, Ctrl+X, Ctrl+V). This is still possible in
Silverlight 4, of course.

What changed in Silverlight 4 is the possibility to access text operations on the Clipboard
programmatically. We saw in Chapter 14, “Enhancing Line-of-Business Applications and
Running Out of the Browser,” how data rows can be copied from a DataGrid to a text file,
for example, and how the Clipboard access can be revoked using the Silverlight configura-
tion dialog. This is because the DataGrid control uses the Clipboard programmatically.
With the following steps, it is easy to add Clipboard support to any Silverlight applica-
tion:

1. Create a new Silverlight application and name it ClipboardSample.

2. Add two TextBox elements in MainPage.xaml. Name the first TextBox FirstTextBox,
and the second SecondTextBox.

3. Run the application and type text in one TextBox.

4. Select the text with the mouse or the keyboard, then press Ctrl+C.

5. Place the cursor in the second TextBox and press Ctrl+V. The copied text is pasted.
This is the support for the Clipboard that was already available in Silverlight 3. End
the application.

6. In MainPage.xaml, add a StackPanel to the bottom of the page. Set its Orientation
to Horizontal and add three Button controls to it. Set the first Button’s Content
property to “Copy”, the second’s to “Cut”, and the third’s to “Paste”.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

510

 From the Library of Wow! eBook

ptg

7. Add an event handler for the first Button’s Click event and name it
CopyButtonClick. Do the same for the second and third Button with respectively
CutButtonClick and PasteButtonClick.

8. In MainPage.xaml.cs, implement the event handlers as shown in Listing 18.6.

LISTING 18.6 Copying, Cutting, and Pasting

private void CopyButtonClick(

object sender, RoutedEventArgs e)

{

Clipboard.SetText(

“The first textbox says: “ + FirstTextBox.Text);

}

private void CutButtonClick(

object sender, RoutedEventArgs e)

{

Clipboard.SetText(

“The first textbox said: “ + FirstTextBox.Text);

FirstTextBox.Text = string.Empty;

}

private void PasteButtonClick(

object sender, RoutedEventArgs e)

{

if (Clipboard.ContainsText())

{

SecondTextBox.Text = Clipboard.GetText();

}

}

9. Run the application and enter text in the first TextBox. Then click the Copy or Cut
buttons and paste the text in the second TextBox.

Note that programmatic Clipboard operations are available only for text content. Like
before, the permission dialog is shown the first time that the application tries to access
the Clipboard. If the user chooses to remember the decision, he can manage the permis-
sion using the Silverlight Configuration dialog like for the webcam, microphone, and full-
screen permissions. Also, if the application runs with elevated permissions, the user does
not need to give his consent.

Copying to and from the Clipboard 511

1
8

 From the Library of Wow! eBook

ptg

Working with COM (Elevated Permissions)
For data applications like we implemented in Chapters 13 and 14, creating reports is a
very important feature. In general, this task is delegated to the web server on which the
data is located. It is interesting, however, to offer a possibility to create reports locally, to
speed things up. This way, the client/server interaction is reduced to nothing (except, of
course, the initial task of loading data).

Silverlight 4 with elevated permissions offer an interesting possibility to interact with
installed applications through the legacy COM interface. COM was a very widely used
programming platform on Windows computers. Because it is an unmanaged program-
ming environment, writing COM-enabled applications is not very easy. This is a low-level
environment, where it is quite easy to create memory leaks or to crash the application.
For this reason, COM is less actively developed nowadays than it used to be, but many
Windows applications (including the Windows operating system itself) still offer COM
interfaces to consume their services.

Understanding the Restrictions
Because COM is not available on Mac or Linux operating systems, only Silverlight on
Windows can benefit from COM interaction. Because of this, COM interaction should be
limited to environments where the client computers are well known (such as an intranet),
or for functionalities that are not mission critical, but are enhancements to the Silverlight
application.

Another important restriction is that COM interaction is available only to OOB applica-
tions running with elevated trust. Using COM, it is possible to access functionalities that
a normal Silverlight application cannot perform. This is probably the feature of Silverlight
that has the highest power, and therefore presents the highest risk. Because of this, it
cannot be made available to applications running without elevated permissions.

Communicating with Microsoft Office
In this section, the WCF RIA Services application developed in Chapters 13 and 14 will be
extended to communicate with Microsoft Office (if available) and create a new Excel file.
Then, the user will be asked whether he wants to send the file as an attachment to a mail
message in Microsoft Outlook.

The start point for this sample is the MyNorthwind.Web application as it was left after
Chapter 14. If you didn’t save this application back then, it can be downloaded from
http://www.galasoft.ch/sl4-com. As usual, save the zip file on your hard drive, unblock
the zip file using the File Properties dialog (if needed), extract the content, and open the
MyNorthwind.Web.sln solution in Visual Studio.

This section assumes that Microsoft Excel and Microsoft Outlook are available on the
client computer.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

512

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-com

ptg

Creating and Filling an Excel Workbook
The first step is to create an Excel workbook and to fill it with values from the Order list
with the following steps:

1. With the Northwind.Web solution open in Visual Studio, open MainPage.xaml.

2. In the StackPanel with all the Button controls on the right of the page, add a new
Button with the same size and margins. Set its Content property to “Email Excel
Report” , its x:Name to EmailButton, and its Click event to EmailButtonClick. This
Button should not have a Command property.

3. In MainPage.xaml.cs, implement the EmailButtonClick event handler as shown in
Listing 18.7. The ReportingWindow is a ChildWindow that will be implemented in the
next steps.

LISTING 18.7 EmailButtonClick Event Handler

private void EmailButtonClick(object sender, RoutedEventArgs e)

{

if (!App.Current.HasElevatedPermissions)

{

return;

}

var window = new ReportingWindow(

orderDataGrid.ItemsSource as IEnumerable<Order>);

window.Show();

}

4. Add a new ChildWindow to the Silverlight project and name it
ReportingWindow.xaml.

5. Open ReportingWindow.xaml and add the markup in Listing 18.8 to the LayoutRoot
Grid.

LISTING 18.8 Adding Input Elements

<StackPanel>

<TextBlock Text=”Name for Excel attachment (without extension)”

Margin=”0,10,0,0” />

<TextBox x:Name=”AttachmentNameTextBox” />

<TextBlock Text=”Recipient’s email”

Margin=”0,10,0,0” />

<TextBox x:Name=”EmailTextBox” />

<TextBlock Text=”Email subject”

Margin=”0,10,0,0” />

<TextBox x:Name=”SubjectTextBox” />

</StackPanel>

Working with COM (Elevated Permissions) 513

1
8

 From the Library of Wow! eBook

ptg

6. Open ReportingWindow.xaml.cs and declare two constants, an attribute, and
modify the constructor as shown in Listing 18.9. The two constants will be used
later. The _orders attribute stores the list of Order instances that are passed to the
ChildWindow when it is created. These are the orders that will be displayed in the
Excel file.

LISTING 18.9 Initializing the Window

private const int MailItemTypeByValue = 1; // olByValue

private const int CreateItemTypeEmail = 0; // olMailItem

private IEnumerable<Order> _orders;

public ReportingWindow(IEnumerable<Order> orders)

{

_orders = orders;

InitializeComponent();

}

7. Modify the OKButton_Click event handler as shown in Listing 18.10.

LISTING 18.10 OKButton_Click Event Handler

1 private void OKButton_Click(object sender, RoutedEventArgs e)

2 {

3 dynamic excelApplication =

4 AutomationFactory.CreateObject(“Excel.Application”);

5 excelApplication.Visible = true;

6

7 dynamic excelWorkbook = excelApplication.Workbooks.Add();

8 dynamic excelSheet = excelApplication.ActiveSheet;

9 dynamic excelCell;

10

11 excelCell = excelSheet.Cells[1, 1];

12 excelCell.Value = “Date”;

13 excelCell.ColumnWidth = 25;

14 excelCell = excelSheet.Cells[1, 2];

15 excelCell.Value = “ID”;

16 excelCell.ColumnWidth = 15;

17 excelCell = excelSheet.Cells[1, 3];

18 excelCell.Value = “Ship”;

19 excelCell.ColumnWidth = 25;

20 excelCell = excelSheet.Cells[1, 4];

21 excelCell.Value = “To”;

22 excelCell.ColumnWidth = 40;

23 excelCell = excelSheet.Cells[1, 5];

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

514

 From the Library of Wow! eBook

ptg

24 excelCell.Value = “Value”;

25 excelCell.ColumnWidth = 25;

26 DialogResult = true;

27 }

. Lines 3 and 4 create an instance of Excel. The AutomationFactory class is the key to
COM interaction. The parameter for the CreateObject method is the COM name (as
a string) of Microsoft Excel. To find which name must be used, check the Microsoft
Office documentation and look for COM automation.

. Notice the usage of the dynamic keyword on line 3. This is a new keyword in C# 4
that allows creating objects at runtime, the type of which is not known yet. Of
course, IntelliSense does not work with dynamic objects because Visual Studio has no
way to know what the actual type will be and what properties and methods will be
available. This complicates the development.

. Line 5 notifies Excel that the workbook should be visible during processing. We will
change this value later.

. Lines 7 and 8 create a new Excel workbook and a new worksheet.

. Then, on lines 11 to 26, the first row of the worksheet is prepared. Using the COM
automation, it is possible to get a cell, set its size and its value, and many other
attributes. For more information about Excel automation, check the Office docu-
mentation.

8. The dynamic keyword requires a DLL to be added to the Silverlight project refer-
ences. Use the Add Reference context menu and from the .NET tab, add the
Microsoft.CSharp assembly to the project.

9. Run the application and install it
out of the browser. Click the Email
Excel Report button after the first
page is loaded, and then press OK
in the ChildWindow. A new Excel
document appears and the first
row is filled.

Processing the Data
Adding data from the application to the Excel sheet is very simple, as shown in Listing
18.11, to be added between lines 25 and 26 of Listing 18.10. Of course, any additional
calculation is possible. In Listing 18.11, some properties of each order are saved to the
Excel file.

Working with COM (Elevated Permissions) 515

1
8

WA R N I N G

Starting with 1

In the word of Office automation, just like in
Visual Basic, the first index of the list is 1
and not 0 like in C#. Do not get confused!

 From the Library of Wow! eBook

ptg

LISTING 18.11 Adding Data to the Excel Sheet

int index = 2;

foreach (Order o in _orders)

{

excelCell = excelSheet.Cells[index, 1];

excelCell.Value = o.OrderDate;

excelCell = excelSheet.Cells[index, 2];

excelCell.Value = o.OrderID;

excelCell = excelSheet.Cells[index, 3];

excelCell.Value = o.ShipName;

excelCell = excelSheet.Cells[index, 4];

excelCell.Value = o.ShipCity;

excelCell = excelSheet.Cells[index, 5];

excelCell.Value = o.Freight;

index++;

}

Close the previous Excel file. Then, open the Silverlight project properties and in the
Debug tab, set the Start Action radio button to Out-of-browser application. Set the
Silverlight project as Startup project in the Solution Explorer, then run the application
with Ctrl-F5. Click Email Excel Report again, press OK in the ChildWindow and witness
how the values are added to the Excel worksheet.

Saving the Excel File
Now that the file is created, it needs to be saved. Also, it is not necessary to show this file
to the user. Instead, the processing should take place in the background to avoid confus-
ing the user. Follow these steps:

1. In MainPage.xaml.cs, change the line 5 of Listing 18.10 from
excelApplication.Visible = true; to excelApplication.Visible = false; this will
keep the workbook in the background, hidden from the user during processing.

2. Add the content of Listing 18.12 to the OKButton_Click event handler. This code
must appear before the DialogResult property is set to true.

LISTING 18.12 Saving the File

1 var directoryPath = System.IO.Path.Combine(

2 Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments),

3 “Northwind.Web.Temp”);

4

5 if (Directory.Exists(directoryPath))

6 {

7 Directory.Delete(directoryPath, true);

8 }

9

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

516

 From the Library of Wow! eBook

ptg

10 Directory.CreateDirectory(directoryPath);

11

12 var fileName = System.IO.Path.Combine(

13 directoryPath,

14 AttachmentNameTextBox.Text + “.xlsx”);

15

16 excelWorkbook.SaveAs(fileName);

17 excelApplication.Quit();

. Lines 1 to 3 get the path of the My Documents folder and append the name of a
new directory that we will use as a temporary folder. This is possible because the
application is running with elevated permissions.

. Lines 5 to 8 make sure that an old version of the temp folder is not left over. Note
that this can be an issue if multiple versions of the same application run at the same
time on the same computer. In this simple sample, it is assumed that it is not the
case.

. Line 10 creates the temp folder in which the file will be saved.

. Lines 12 to 14 create the Excel file name depending on the user’s input.

. Finally, lines 16 and 17 save the Excel file to the new location, and then quit the
Excel application.

Working with COM (Elevated Permissions) 517

1
8

T I P

Using COM to Access the File System

Using COM automation, it is also possible to use the Scripting.FileSystemObject object
that the AutomationFactory can create. This provides unlimited access to the whole file
system. However, the syntax (with the dynamic keyword) is less comfortable to implement
than using the proper file access provided in elevated trust by Silverlight.

3. Run the application and test the functionality. This time, you must enter a name for
the Excel file! After it is completed, check that the file has been saved in My
Documents\Northwind.Web.Temp\. This is a perfectly normal Excel file that can be
opened and modified.

Emailing with Outlook
Microsoft Outlook also provides COM automation. We will use this to create a new email
message, attach the Excel document, and show the message to the user so that he can
send it. Note that even sending the message can be done automatically; however, it is rela-
tively difficult to do so without any user interaction (such as selecting a folder in which
the outgoing email message should be saved).

 From the Library of Wow! eBook

ptg

Sending an email with Outlook is probably not the most reliable solution. If a server-
based alternative is available, it is probably better to use it for email. However, preparing
the email message can be done with the following steps:

1. In MainPage.xaml.cs, in OKButton_Click, before DialogResult is set to true, add the
code shown in Listing 18.13.

LISTING 18.13 Creating an Outlook Message

1 dynamic outlook = AutomationFactory.CreateObject(“Outlook.Application”);

2 dynamic mail = outlook.CreateItem(CreateItemTypeEmail);

3 mail.Recipients.Add(EmailTextBox.Text);

4 mail.Subject = SubjectTextBox.Text;

5 var now = DateTime.Now;

6 mail.Body = “Report generated on “ + now.ToLongDateString()

7 + “, “ + now.ToShortTimeString();

8 mail.Attachments.Add(fileName, MailItemTypeByValue);

9 mail.Save();

10 mail.Display(false);

11 Directory.Delete(directoryPath, true);

. Line 1 creates an instance of Outlook using the AutomationFactory.

. Line 2 creates a new mail message. The value of the CreateItemTypeEmail
constant is found in the Outlook automation documentation at
http://www.galasoft.ch/sl4-outlookdoc.

. Line 3 and 4 uses the input from the ReportingWindow to add a recipient and a topic.

. Lines 5 to 7 create a body mentioning when the report was created.

. Lines 6 to 8 add the Excel file as attachment. The value of the constant
MailItemTypeByValue was found in the documentation at http://www.galasoft.ch/sl4-
emaildoc.

. Lines 9 and 10 save the message and display it to the user. He is free now to review
it before sending.

. Finally line 11 deletes the temp directory. Because the Excel file was added by value
to the email message, we do not need to local copy anymore.

2. Test the application to make sure that everything works as expected. Note that
communicating with the Office applications can take some time, especially if they
were not running already.

Although COM automation opens the door to very powerful functionality, it is also more
difficult to program than standard Silverlight code because the dynamic keyword does not
provide any IntelliSense. Also, when a functionality does not work properly, the error

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

518

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-outlookdoc
http://www.galasoft.ch/sl4-emaildoc
http://www.galasoft.ch/sl4-emaildoc

ptg

messages are very cryptic and difficult to debug. Finally, the fact that this feature is avail-
able only on Windows computers makes it necessary to provide alternative means for the
users that cannot use this feature. This makes COM automation a controversial feature
and one that should be used with care. Used properly, however, it can make wonders to
integrate your Silverlight OOB code with existing legacy applications and drivers.

Communicating over Duplex Polling
Client/server communication in the web world is most often done with a
request/response mechanism where the request is initiated by the client. This can cause
issues if the clients must be notified as fast as possible when something happens on the
server: Because the request is initiated by the client, the only way to keep track of changes
on the server is to poll the service repeatedly. However, polling can only be done every so
often. To avoid running out of bandwidth, a client cannot reasonably send a request
more than every few seconds at the very least.

In Silverlight 2, a perfect way to overcome this limitation was introduced: duplex polling.
In this scenario, the client initiates a callback channel that the server can use to “push”
information to the client. This avoids constant polling from the client and provides a way
to notify clients immediately when something occurs on the server. In this section, we
build a sample application that watches a folder on the server and notifies clients as soon
as files are added or deleted from the server-side folder.

Implementing the Server-Side Service
The server-side application requires some manual configuration to enable duplex polling,
as you will see with the following steps. Note that the code running in the web applica-
tion, on the server, is implemented in the full version of .NET 4 and not in Silverlight.

1. Create a new Silverlight application in Visual Studio and name it
DuplexPollingSample. Make sure to create the web application, too.

2. Right-click the Web project in the Solution Explorer and select Add Reference from
the context menu.

3. Click the Browse tab and find the folder C:\Program Files\Microsoft
SDKs\Silverlight\v4.0\Libraries. On Windows 64 bits, this folder is into Program
Files (x86).

4. In the Server folder, select the System.ServiceModel.PollingDuplex.dll and click OK
to add the reference to the Web application.

5. Right-click the References folder in the Silverlight application now, and select Add
Reference from the context menu.

6. In the same folder as before, open the Client folder and add the
System.ServiceModel.PollingDuplex.dll to the Silverlight application.

Communicating over Duplex Polling 519

1
8

 From the Library of Wow! eBook

ptg

7. Right-click the Web application in the Solution Explorer and select Add, New Item
from the context menu.

8. In the Web category of the Add New Item dialog, select a WCF Service and name it
FilesChangedService.svc. This creates the SVC file, an attached code behind as well
as an interface file named IFileChangedService.cs.

9. Modify the IFileChangedService interface as shown in Listing 18.14.

LISTING 18.14 IFileChangedService Interface

1 [ServiceContract(

2 Namespace = “http://www.mydomain.com”,

3 CallbackContract = typeof(IFilesChangedClient))]

4 public interface IFilesChangedService

5 {

6 [OperationContract]

7 void StartObservingFiles();

8 [OperationContract]

9 void StopObservingFiles();

10 }

. Lines 1 to 3 decorate the interface with the ServiceContract attribute. This tells the
WCF infrastructure that the class implementing this interface should be exposed as
a service. Because it is intended to support duplex communication, the
CallbackContract parameter must be set. We will create the IFilesChangedClient
interface a little later. Note that the Namespace parameter should be unique, but it
does not have to be a valid URL of a website. This is just a unique name for the
communication.

. Lines 6 and 7 declare the StartObservingFile method, decorated with the
OperationContract attribute. The method will be exposed as a service method for
remote clients.

. Lines 8 and 9 declare another service method, used to unregister a client from the
notifications.

10. Add a new interface file to the Web application and name it
IFilesChangedClient.cs. The code for this interface is shown in Listing 18.15. This
is also a ServiceContract; however, the difference is that the method is declared
with IsOneWay=true. This means that the communication is intended from the
server to the client only.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

520

 From the Library of Wow! eBook

ptg

LISTING 18.15 IFilesChangedClient Interface

[ServiceContract]

public interface IFilesChangedClient

{

[OperationContract(IsOneWay=true)]

void FileAdded(string fileName);

}

11. Open FilesChangedService.svc.cs. This is the actual implementation of the
IFilesChangedService interface that is marked as ServiceContract. This class will be
used to communicate with the Silverlight clients.

12. Implement the FileChangedService class as shown in Listing 18.16.

LISTING 18.16 Skeleton of the FilesChangedService Class

1 [ServiceBehavior(

2 InstanceContextMode = InstanceContextMode.PerCall)]

3 public class FilesChangedService : IFilesChangedService

4 {

5 private static FileSystemWatcher _watcher;

6 private static List<IFilesChangedClient> _clients;

7

8 private const string WatchedDirectory

9 = “c:\\temp\\DuplexPollingSampleFiles”;

10

11 public void StartObservingFiles()

12 {

13 }

14 }

. Line 5 declares an attribute of type FileSystemWatcher. This class will be used to
observe the content of the watched folder and notify the service when something
changes.

. Line 6 declares a list of all the clients that are interested to get notifications when
the watched folder’s content changes.

. Lines 8 and 9 declare the path of the watched folder. Change this value to match
the folder that your Silverlight application should watch. Hard coding this path in
the application is not ideal. Instead, it should be a setting in the Web.config file, but
for this small sample it is okay.

. Lines 11 to 13 declare the StartObservingFiles method that is required by the
IFilesChangeService interface.

13. Add the code from Listing 18.17 in the StartObservingFiles method.

Communicating over Duplex Polling 521

1
8

 From the Library of Wow! eBook

ptg

LISTING 18.17 Getting a Request

1 if (_clients == null)

2 {

3 _clients = new List<IFilesChangedClient>();

4 }

5

6 var client = OperationContext.Current

7 .GetCallbackChannel<IFilesChangedClient>();

8

9 // Initial call

10 var dir = new DirectoryInfo(WatchedDirectory);

11 var files = dir.GetFiles();

12

13 foreach (var file in files)

14 {

15 client.FileAdded(file.Name.ToLower());

16 }

17

18 if (!_clients.Contains(client))

19 {

20 _clients.Add(client);

21 }

. Lines 6 and 7 get the calling client from the OperationContext class. The type for
this instance is IFilesChangedClient according to what was declared before.

. Because the client should be notified of the initial state of the folder, lines 10 to 16
retrieve the current list of files in this folder, and call the FileAdded method on the
client. This sends a series of notifications to the client, one for each file in the
folder. We will see later how the client can react to the notifications.

. Lines 18 to 21 save the instance of the client in the list.

14. Below the code added in Listing 18.17 in the StartObservingFiles method, add the
code from Listing 18.18. This creates a new FileSystemWatcher and registers for its
Created event. Note that the watcher can also raise events when a file is deleted or
renamed, or when a file’s content changes. In this sample, we only handle files that
are added. Later, you can extend the application to handle deleted and renamed
files.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

522

 From the Library of Wow! eBook

ptg

LISTING 18.18 Creating the FileSystemWatcher

if (_watcher == null)

{

_watcher = new FileSystemWatcher(WatchedDirectory);

_watcher.Created += OnWatcherCreated;

_watcher.EnableRaisingEvents = true;

}

15. Implement the OnWatcherCreated event handler as shown in Listing 18.19.

LISTING 18.19 Notifying the Clients When a File Is Added

1 private void OnWatcherCreated(object sender, FileSystemEventArgs e)

2 {

3 var toRemove = new List<IFilesChangedClient>();

4

5 foreach (var client in _clients)

6 {

7 try

8 {

9 client.FileAdded(e.Name.ToLower());

10 }

11 catch (TimeoutException)

12 {

13 toRemove.Add(client);

14 }

15 }

16

17 foreach (var client in toRemove)

18 {

19 _clients.Remove(client);

20 }

21 }

. Line 3 creates a list. We will use this list to store clients that cannot be reached by
the call (if any). This means that the corresponding clients are “dead,” probably
because the client application has been closed.

. On lines 5 to 15, we loop through every client that registered.

. Line 9 attempts to call the FileAdded method on the client and pass it the name of
the file that has been added. If the client has been closed without notification, this
will fail with a TimeoutException after one minute. This exception is caught on line
11. In this case, the faulty client is added to the list of clients to remove.

. Finally, on lines 17 to 20, the faulty clients are removed from the main collection.

Communicating over Duplex Polling 523

1
8

 From the Library of Wow! eBook

ptg

Unregistering a Client
A client should be able to unregister itself from notifications. To do this, add the method
shown in Listing 18.20 to the FilesChangedService class.

LISTING 18.20 Unregistering a Client

public void StopObservingFiles()

{

var client = OperationContext.Current

.GetCallbackChannel<IFilesChangedClient>();

if (_clients != null

&& _clients.Contains(client))

{

_clients.Remove(client);

}

}

Configuring the Service
A large part of the complexity of Windows Communication Foundation is configuration.
Now that the service is ready, the Web.config file needs to be modified to expose the
service with the correct configuration, with the following steps:

1. In the Web application, open the Web.config file.

2. Within the system.serviceModel section, before the behaviors are declared, add the
markup in Listing 18.21. This registers the polling duplex infrastructure that we
added earlier.

LISTING 18.21 Registering Extensions

<extensions>

<bindingExtensions>

<add name=”pollingDuplexHttpBinding”

type=”System.ServiceModel.Configuration.PollingDuplexHttpBindingCollectionElement,

System.ServiceModel.PollingDuplex,

Version=4.0.0.0,

Culture=neutral,

PublicKeyToken=31bf3856ad364e35” />

</bindingExtensions>

</extensions>

3. Still in the same section and before the behaviors, add the markup in Listing 18.22.
This defines the pollingDuplexHttpBinding that will be used by the service, and
creates an endpoint, a point of entry for the service calls.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

524

 From the Library of Wow! eBook

ptg

LISTING 18.22 Binding and Service

<bindings>

<pollingDuplexHttpBinding />

</bindings>

<services>

<service name=”DuplexPollingSample.Web.FilesChangedService”

behaviorConfiguration=”DuplexPollingSample.Web.FilesChangedServiceBehavior”>

<endpoint

address=””

binding=”pollingDuplexHttpBinding”

contract=”DuplexPollingSample.Web.IFilesChangedService”>

</endpoint>

</service>

</services>

4. Then, modify the behaviors section as shown in Listing 18.23.

LISTING 18.23 Setting the Behaviors

<behaviors>

<serviceBehaviors>

<behavior name=””>

<serviceMetadata httpGetEnabled=”true” />

<serviceDebug includeExceptionDetailInFaults=”false” />

</behavior>

<behavior name=”DuplexPollingSample.Web.FilesChangedServiceBehavior”>

<serviceMetadata httpGetEnabled=”true”/>

<serviceDebug includeExceptionDetailInFaults=”false”/>

</behavior>

</serviceBehaviors>

</behaviors>

To test whether everything is ready, right-click the FilesChangedService.svc file in Visual
Studio’s Solution Explorer, and select View in Browser from the context menu. A test page
without errors should be shown in the web browser. If that is the case, the server is now
ready, and the client can be implemented.

Implementing the Client
The Silverlight client must get a reference to the WCF service, and register for the notifi-
cations with the following steps:

1. Right-click the References folder in the Silverlight project in the Solution Explorer,
and select Add Service Reference from the context menu.

2. In the Add Service Reference dialog shown in Figure 18.3, click the Discover button.
The FileChangedService.svc should be shown.

Communicating over Duplex Polling 525

1
8

 From the Library of Wow! eBook

ptg

FIGURE 18.3 Add Service Reference dialog.

3. Click the Go button. The description of the service is downloaded and the service
can be extended in the Services tree.

4. Enter the name
FileChangedService in the
Namespace text box and then click
OK. Visual Studio creates all the
objects needed for communication
with the WCF service.

5. Open MainPage.xaml and set the
x:Name of the main UserControl to
MyPage.

6. Modify the LayoutRoot Grid with
the markup shown in Listing 18.24.

LISTING 18.24 Setting the XAML

<Grid x:Name=”LayoutRoot” Background=”White”>

<Grid.RowDefinitions>

<RowDefinition Height=”*” />

<RowDefinition Height=”50” />

</Grid.RowDefinitions>

<ListBox ItemsSource=”{Binding ElementName=MyPage, Path=Files}”

Margin=”10” />

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

526

T I P

Adding a Reference to an External
Service

If the service is not in the same solution as
the client, the Discover button does not
work. In this case, copy the URL of the SVC
file (for example,
http://www.mydomain.com/FilesChangedSer
vice.svc) and paste it in the Add Service
Reference dialog, and then click Go.

 From the Library of Wow! eBook

http://www.mydomain.com/FilesChangedService.svc
http://www.mydomain.com/FilesChangedService.svc

ptg

<StackPanel Orientation=”Horizontal”

Grid.Row=”1”>

<Button Margin=”10”

x:Name=”UnsubscribeButton”

Content=”Unsubscribe”

Click=”UnsubscribeButtonClick”/>

<Button Margin=”10”

x:Name=”ResubscribeButton”

Content=”Re-subscribe”

IsEnabled=”False”

Click=”ResubscribeButtonClick” />

</StackPanel>

</Grid>

7. Open MainPage.xaml.cs. On top of the MainPage class, enter the attribute and the
property shown in Listing 18.25. Note that the FilesChangedServiceClient is located
in the namespace DuplexPollingSample.FilesChangedService that has been gener-
ated by Visual Studio, and that must be added to the list of using directives on top
of the page.

LISTING 18.25 Declaring the Client and the List of Files

private FilesChangedServiceClient _client;

public ObservableCollection<string> Files

{

get;

private set;

}

8. Modify the MainPage constructor as shown in Listing 18.26.

LISTING 18.26 MainPage Constructor

1 public MainPage()

2 {

3 Files = new ObservableCollection<string>();

4 InitializeComponent();

5

6 var source = App.Current.Host.Source;

7 var baseAddress = source.AbsoluteUri.Substring(

8 0,

9 source.AbsoluteUri.Length - source.AbsolutePath.Length);

10 var servicePath = baseAddress + “/FilesChangedService.svc”;

11 var serviceAddress = new EndpointAddress(servicePath);

12 var binding = new PollingDuplexHttpBinding();

13

Communicating over Duplex Polling 527

1
8

 From the Library of Wow! eBook

ptg

14 _client = new FilesChangedServiceClient(binding, serviceAddress);

15 _client.FileAddedReceived += FileAdded;

17 _client.StartObservingFilesAsync();

18 }

. Lines 6 to 10 get the absolute path of the service on the web server.

. Lines 11 and 12 declare an EndPointAddress and a PollingDuplexHttpBinding corre-
sponding to the service we need to call.

. Lines 14 to 16 create the client and then subscribe to the FileAddedReceived event
that is automatically created by Visual Studio when the reference to the service is
configured. This event will be raised when the server sends a message to the client.
Note that you can extend this with a method for when files are deleted, renamed,
and so forth.

. Finally, line 17 starts the subscrip-
tion by calling the
StartObservingFiles method on
the server. The call is asynchro-
nous (like every web calls in
Silverlight) and a corresponding
Completed event exists in case the
application is interested to the
server’s response. In this sample,
the response is ignored.

9. Implement the FileAdded event handler as shown in Listing 18.27. The name of the
added file can be retrieved from the FileAddedReceivedEventArgs parameter.

LISTING 18.27 Receiving a New File

private void FileAdded(

object sender,

FileAddedReceivedEventArgs e)

{

if (!Files.Contains(e.fileName))

{

Files.Add(e.fileName);

}

}

Unsubscribing and Resubscribing
It is good practice to unsubscribe from the service when it is not needed anymore. The
service offers the StopObservingFiles method to cleanly remove the corresponding client

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

528

WA R N I N G

Changing the Server, Refreshing the
Client

Any change on the server-side service must
be refreshed on the client by right-clicking
the FileChangedService reference in the
Service References folder in the Silverlight
project and then selecting Update Service
Reference from the context menu.

 From the Library of Wow! eBook

ptg

from the list. Note, however, that there is no guarantee that a client will unsubscribe
cleanly, which is why the TimeoutException is caught in Listing 18.19.

Communicating over Duplex Polling 529

1
8

WA R N I N G

Unsubscribing on Exit

Ideally, the Silverlight application should unsubscribe from the service before it is ended.
However, there is no reliable way to send a message to a service when the application shuts
down. For instance, if the message is sent from the Application_Exit event handler (in
App.xaml.cs), the message is never sent because it is already too late in the application’s
lifetime.

To implement a clean shutdown sequence, check the article at
http://www.galasoft.ch/sl4-shutdown. However, this does not work when the user navigates
to a different application by clicking a link or closes the browser window. In that case, the
TimeoutException on the server is the only way to handle a client’s “death.”

To unsubscribe and resubscribe, implement the event handlers in the MainPage class
shown in Listing 18.28.

LISTING 18.28 Unsubscribing and Resubscribing

private void UnsubscribeButtonClick(object sender, RoutedEventArgs e)

{

_client.StopObservingFilesAsync();

UnsubscribeButton.IsEnabled = false;

ResubscribeButton.IsEnabled = true;

}

private void ResubscribeButtonClick(object sender, RoutedEventArgs e)

{

Files.Clear();

_client.StartObservingFilesAsync();

UnsubscribeButton.IsEnabled = true;

ResubscribeButton.IsEnabled = false;

}

Testing the Application
To test the application, open the folder you defined in the web application in Listing
18.16, lines 8 and 9. Add a few files in this folder, and then run the application. The
ListBox in the Silverlight window should show the names of the files you just added.
Then, while the application is running, add a few new files to the folder and observe how
their names appear in the ListBox.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-shutdown

ptg

To test multiple clients, open a new web
browser and copy/paste the location of
the Silverlight application. This starts a
new client that also subscribes to the
service. Changes to the watched folders
are reflected in both clients at the same
time.

To test the timeout, close the first client,
and then add files to the watched folder.
The remaining client’s ListBox remains
unchanged until the timeout on the
server occurs (one minute by default).
Only then will the remaining client be
updated again.

Finally, try unsubscribing and resub-
scribing to the service. To be complete,
extend the service and the client with
calls when files are deleted or renamed.

Displaying Notification Windows
In the preceding section, you saw how the web server can send notifications to the client.
If the Silverlight application is visible on the desktop, the changes are immediately
noticeable. If the window is minimized (or simply behind another window), however, the
changes may go unnoticed.

To solve this, Silverlight 4 introduces the NotificationWindow that is well known by
computer users. These are the small “toasts” that appear (typically in the bottom right of
the screen) when something happens in an application (for example, in Outlook when an
email is received).

Understanding the Restrictions
There are a few restrictions that apply to notification windows:

. They are available only when the Silverlight application runs out of the browser.

. They are always square and fully opaque.

. The location of the NotificationWindow cannot be modified, only its size can be set.

. Content within a NotificationWindow cannot be edited by the user. Only mouse
events are handled.

. There can only be one NotificationWindow open at a time for an application.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

530

T I P

Resetting the Web Server

When the Silverlight application is closed,
the web server sometimes continues to run.
To start testing with a clean slate and avoid
confusion due to timeouts and so on, check
whether the web server is still running: In
the notification area of Windows, check
whether the icon shown in Figure 14.3 can
be seen and has the same port number as
defined in the web application’s project prop-
erties. If you can see this icon with the right
port, stop the web server by right-clicking it
and selecting Stop from the context menu.
This will reset the whole situation on the
server and enable you to restart testing
cleanly.

 From the Library of Wow! eBook

ptg

Adding a Notification Window
In this section, the DuplexSampleApplication we implemented in the previous section
will be modified to run out of the browser and to display notification windows. If you
didn’t save this application, the initial state can be downloaded from
http://www.galasoft.ch/sl4-notificationstart and modified with the following steps:

1. After unblocking the zip file and extracting the content, open the
DuplexPollingSample solution in Visual Studio.

2. Add a new UserControl to the Silverlight project and name it
NotificationContent.xaml.

3. Open Notification.xaml and set the UserControl’s Height to 80 and its Width to 350.

4. Enter the markup shown in Listing 18.29.

LISTING 18.29 Notification UserControl

<Grid x:Name=”LayoutRoot”

Background=”#FFC4C4FF”>

<HyperlinkButton Content=”Close”

HorizontalAlignment=”Right”

Margin=”0,10,10,0”

VerticalAlignment=”Top”

Foreground=”#FF3F3F3F”

Click=”CloseButtonClick” />

<TextBlock HorizontalAlignment=”Left”

Text=”A file change was detected”

FontSize=”20”

VerticalAlignment=”Top”

Margin=”10,10,0,0” />

<TextBlock Text=”Click to show the application”

Margin=”10,45,10,10”

FontStyle=”Italic”

FontSize=”14” />

</Grid>

5. In NotificationContent.xaml.cs, handle the HyperlinkButton’s Click event as shown
in Listing 18.30. This raises a custom event requesting to close the
NotificationWindow.

LISTING 18.30 Requesting to Close

public event EventHandler CloseRequested;

private void CloseButtonClick(object sender, RoutedEventArgs e)

{

Displaying Notification Windows 531

1
8

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-notificationstart

ptg

if (CloseRequested != null)

{

CloseRequested(this, EventArgs.Empty);

}

}

6. In MainPage.xaml.cs, add the code from Listing 18.31 in the bottom of the class.

LISTING 18.31 Displaying a NotificationWindow

1 private bool _isNotificationOpen;

2

3 private void ShowNotification()

4 {

5 if (_isNotificationOpen

6 || !App.Current.IsRunningOutOfBrowser)

7 {

8 return;

9 }

10

11 var win = new NotificationWindow();

12 var uc = new NotificationContent();

13 win.Width = uc.Width;

14 win.Height = uc.Height;

15 win.Content = uc;

16 win.Closed += (s, e) => _isNotificationOpen = false;

17 uc.MouseLeftButtonDown += (s, e) => App.Current.MainWindow.Activate();

18 uc.CloseRequested += (s, e) => win.Close();

19 _isNotificationOpen = true;

20 win.Show(5000);

21 }

. On lines 5 to 9, we check whether a NotificationWindow is already open. If that is
the case, or if the application is not running OOB, the operation is aborted.

. On lines 11 to 20, a NotificationWindow is prepared. After creating it on line 11, a
new UserControl is instantiated on line 12. This is the content of the window. The
Height and Width of the UserControl are assigned to the NotificationWindow, and
then the UserControl itself is assigned to the window’s Content on line 15.

. On line 16, the Closed event of the window is handled. This resets the
_isNotificationOpen attribute so that a next NotificationWindow can appear.

. Line 17 handles the MouseLeftButtonDown on the NotificationWindow. This line uses
the access to the MainWindow (in which the OOB application is hosted) to activate it
and bring it in front. Note, however, that if the main window is minimized, this
line will not restore its state.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

532

 From the Library of Wow! eBook

ptg

. Line 18 handles the custom CloseRequested event raised by the UserControl when
the HyperlinkButton is clicked. The NotificationWindow is closed.

. Finally, the window is showed on line 20 for a duration of 5,000 milliseconds.

7. Add a call to the ShowNotification method in the FileHandled method in Listing
18.27, just after the filename has been added to the Files collection. If you have
also implemented a FileDeleted and FileRenamed method, you can also add the call
to ShowNotification in those methods.

8. Open the Silverlight project properties
and enable the application to run out of
the browser. Then, run it and observe
how the NotificationWindow appears in
the bottom right of the screen when a
file change is detected, as shown in
Figure 18.4.

Queuing Notification Windows
As mentioned in the section about
restrictions, there can be only one
NotificationWindow open for a given
application. In the sample, we checked
whether such a window is open, and we
just blocked the new NotificationWindow
if that was the case.

On his blog, Tim Heuer (Silverlight Program Manager at Microsoft) has a suggestion to
queue NotificationWindow elements, in case it is important that all the messages are
shown. This is, for example, what happens with Microsoft Outlook, where one notifica-
tion after another is shown when multiple emails are received. You can find more infor-
mation about this at http://www.galasoft.ch/sl4-notificationqueue.

Interacting with the Main Window
Clicking the NotificationWindow activates the main window, the window that hosts the
OOB application. Activating will attempt to put the window in front of all others, in case
it was not minimized.

With normal trust, the interactions allowed are limited. With elevated permissions,
however, it is possible to modify the state of the MainWindow (for example, Minimized or
Maximized) and to change its size and position.

Making sure that the window is visible when the NotificationWindow is clicked can be
achieved with the following steps:

1. Run the OOB application and uninstall it.

Displaying Notification Windows 533

1
8

FIGURE 18.4 Showing a Notification
Window.

T I P

Running the Web Server

Remember that the web server might have to
be started manually when the application
runs in OOB. Chapter 14 already explained
how to do this, in the “Making Sure That the
WCF Server Is Running” section.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-notificationqueue

ptg

2. In the Silverlight project properties, enable elevated trust in the Out-of-Browser
Settings.

3. Open MainPage.xaml.cs and modify line 17 of Listing 18.31 as shown in Listing
18.32.

LISTING 18.32 Restoring the Main Window

uc.MouseLeftButtonDown += (s, e) =>

{

if (App.Current.MainWindow.WindowState == WindowState.Minimized)

{

App.Current.MainWindow.WindowState = WindowState.Normal;

}

App.Current.MainWindow.Activate();

};

4. Run the Silverlight in-browser application again and install it with elevated trust.

5. Minimize the OOB application and change a file in the watched folder. When the
NotificationWindow appears, click it to restore the window.

Notification windows are a great way to interact with the user and add a desktop-like
touch to the OOB Silverlight application, with or without elevated trust.

Creating a Custom Splash Screen
The Silverlight loader screen (also known as splash screen) is the very
first thing that anyone accessing your application sees. Although the
default progress counter shown in Figure 18.5 was original when
Silverlight was first launched, it should really be replaced in your appli-
cation by something that prepares the user to the original experience
they will get.

Because the Silverlight application is not loaded yet at the time where
the splash screen is displayed, the code driving the animations cannot
be written in .NET, but must be JavaScript and XAML only. This is a return to the early
days of Silverlight 1.0! Preparing a custom splash screen can be done as follows:

1. Create a new Silverlight application and name it CustomSplashTest. Make sure to
create a Web application to host it.

2. Because loading a XAP file on the local computer is very fast, add a large file to the
Silverlight project (for example, a video), and set its Build Action to Content in the
Properties panel, and Copy to Output Directory to Copy If Newer.

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

534

FIGURE 18.5
Default loader
screen.

 From the Library of Wow! eBook

ptg

3. Right-click the Web application and select Add, New Item from the context menu.
Select a Text file and set its name to Splash.xaml.

4. Select the Splash.xaml file, press F4 to show its properties, and make sure that the
Build Action is set to Page.

5. Open Splash.xaml and set its content as shown in Listing 18.33.

LISTING 18.33 Splash Screen in XAML

<Grid xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”

xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>

<StackPanel HorizontalAlignment=”Center”

VerticalAlignment=”Center”>

<TextBlock Text=”Please wait...”

FontSize=”36” Margin=”0,0,0,10” />

<Border Width=”300” Height=”15”

BorderBrush=”#FFC4C3C3”

CornerRadius=”4”

BorderThickness=”1”

x:Name=”ProgressBorder”>

<Rectangle x:Name=”ProgressRectangle”

RadiusX=”4” RadiusY=”4”

HorizontalAlignment=”Left”

Fill=”#FFC4C3C3” />

</Border>

<StackPanel Orientation=”Horizontal”

HorizontalAlignment=”Right”>

<TextBlock x:Name=”PercentageTextBlock”

Text=”32” FontSize=”24”

FontStyle=”Italic”

FontWeight=”Bold”

Foreground=”#FFC4C3C3” />

</StackPanel>

</StackPanel>

</Grid>

6. Right-click the Web application and select Add Reference. In the dialog, select the
.NET tab and then the three assemblies PresentationCore, PresentationFramework,
and WindowsBase. Click OK to add them to the project.

7. Open CustomSplashTestTestPage.html and add the JavaScript function shown in
Listing 18.34 below the onSilverlightError function.

Creating a Custom Splash Screen 535

1
8

 From the Library of Wow! eBook

ptg

LISTING 18.34 Updating the Progress

1 function onSourceDownloadProgressChanged(sender, e) {

2 var host

3 = document.getElementById(“SilverlightPlugIn”);

4 var progressBar

5 = host.content.findName(“ProgressRectangle”);

6 var progressBorder

7 = host.content.findName(“ProgressBorder”);

8 var percentTextBlock

9 = host.content.findName(“PercentageTextBlock”);

10

11 var progress;

12 if (e.progress)

13 progress = e.progress;

14 else

15 progress = e.get_progress();

16

17 progressBar.Width = progress * progressBorder.Width;

18 percentTextBlock.Text

19 = “” + Math.round(progress * 100) + “%”;

20 }

. Lines 2 and 3 get the host, the Silverlight plug-in.

. Lines 4 to 9 retrieve elements from the XAML content.

. Lines 11 to 15 retrieve the progress value (a numeric value between 0 and 1) from
the e parameter. Depending on the platform, either line 13 or 15 will be executed.

. Line 17 sets the Width of the ProgressRectangle in the XAML. This will create a
progress bar effect, where the filled region grows together with the progress value.

. Finally, lines 18 and 19 set the text of the PercentageTextBlock in the XAML.

8. Modify the HTML object tag as shown in Listing 18.35. This gives a name to the
object, and adds two parameters instructing Silverlight to use the custom splash
screen. The rest of the tag should remain unchanged.

LISTING 18.35 Naming the Object Tag and Adding Parameters

<object id=”SilverlightPlugIn”

data=”data:application/x-silverlight-2,”

type=”application/x-silverlight-2”

width=”100%” height=”100%”>

<param name=”splashscreensource” value=”Splash.xaml”/>

<param name=”onSourceDownloadProgressChanged”

CHAPTER 18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex
Polling, Notification Windows, and Splash Screens

536

 From the Library of Wow! eBook

ptg

value=”onSourceDownloadProgressChanged” />

...

</object>

9. Make sure that CustomSplashTestTestPage.html is the start page. Build and run the
Web application. You should see the splash screen being updated as the XAP file is
being downloaded.

Even with this super simple screen, the first impression on the user is already completely
different from with the default loader screen. Creating custom splash screens is really easy
and sets your application apart from others.

Summary
In this chapter, we continued our exploration of features of Silverlight that help create
improved user experience and advanced functionalities.

Dragging and dropping files on the Silverlight UI, for example, is not a mission-critical
feature, but it does improve the user experience over the classic OpenFileDialog.

The possibility to run in full screen allows creating kiosk applications that are very easy to
deploy. With the new changes in Silverlight 4 OOB applications with elevated trust, inter-
acting with kiosk applications is possible using the keyboard. For OOB applications, even
without elevated trust, the possibility to run in full screen on a second monitor while the
user works on the primary monitor increases the appeal of media applications such as
video players, for example.

Working with COM is a new feature that is available only on Windows platforms. Very
powerful, it allows nearly any interaction with the host computer, and therefore is avail-
able only to OOB applications with elevated permissions. Interacting with Microsoft
Office, for example, adds value to line-of-business applications, as you saw in this chapter.

Duplex polling is an advanced communication mechanism that provides fast feedback
from the server to any client that subscribed to the callback channel. Although a little
complex to configure and implement, it allows creating very responsive applications even
in a client/server scenario.

Notification windows are a feature that improves the user’s comfort in OOB scenarios by
showing feedback even when the application is in the background. We also saw how to
interact with the main window hosting the OOB application (only with elevated permis-
sions).

Finally, creating custom splash screens is a nice touch that helps differentiate your user
experience from the very first contact that the user has with your application.

In the next chapter, the exploration continues with a range of new features:
Authentication, advanced commanding, random animations, multitouch, local communi-
cation and the Bing maps control will be presented.

Summary 537

1
8

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Use authentication to log into
a Silverlight application with a
username and password.

. Bind events to commands
directly without using code-
behind.

. Build animations in XAML and
then access them in code to
randomize them.

. Talk about multitouch
gestures in Silverlight.

. Let Silverlight applications
“talk” to each other on the
local computer, without going
through the web server.

. Use the Bing maps control to
add mapping to a Silverlight
application.

CHAPTER 19

Authentication, Event
to Command Binding,

Random Animations,
Multitouch, Local

Communication, and
Bing Maps Control

In the two previous chapters, we talked about multiple
improvements that were implemented in Silverlight 3 and
4 to make this platform more powerful and user friendly
than ever before. In this chapter, we continue the series
with additional features and learn to use them to create
powerful and beautiful applications.

Logging In with Authentication
In this book, some useful techniques were shown to build
data applications (also known as line-of-business applica-
tions). In these applications, however, every user was able
to access the entirety of the application without any
restriction. Obviously, this is not a good way to manage a
business.

In this section, we show how to use the ASP.NET authenti-
cation services to verify and restrict access to some users.
That Silverlight can leverage the existing security frame-
work installed with ASP.NET is obviously making the devel-
oper’s life much easier. This can be, however, an issue when
the website from which the Silverlight application origi-
nates is not an ASP.NET website running on the Internet
Information Services (IIS) server. In those cases, a custom
security management system must be built.

 From the Library of Wow! eBook

ptg

Note that in addition to Visual Studio and the Silverlight tools, you need to install SQL
Server Express to be able to create users. This database system also needs to be available
on the web server where the Silverlight application is deployed (server only).

Creating a New Website
ASP.NET has two main kinds of server applications: web applications (including ASP.NET
MVC application) and websites. Usually, using a web application as the host for the
Silverlight application is preferable, because they are easier to configure than websites.
However, configuring a web application for authentication is less straightforward in
Visual Studio.

To keep things simple, we show how to use an ASP.NET website to host the application,
configure the access rights, and verify access without leaving Visual Studio. For more
information about configuring ASP.NET Security, check the book Professional ASP.NET 2.0
Security by Stefan Schackow (available at http://www.galasoft.ch/sl4-aspsecurity).

To create a new website, follow these steps:

1. Download the file AuthenticationSample-Start.zip from
http://www.galasoft.ch/sl4-authentication. Unblock the downloaded file using the
file’s Properties dialog and clicking the Unblock button on the General tab
(if available).

2. Open the solution AuthenticationSample.sln in Visual Studio.

3. Right-click the AuthenticationSample solution and select Add, New Web Site from
the context menu.

4. In the Add New Web Site dialog, select ASP.NET Empty Web Site.

5. Enter a location for the new website. You can select File System, HTTP, or FTP. It is
recommended to keep the website on the file system during development, and to
copy it to the web server only after it has been tested. Note that the website does
not need to be near the Silverlight application (although it is probably a good idea
to keep them together).

6. Click OK.

7. As done before, we need to establish a link between the Silverlight application and
the website. To do this, right-click the new website and select Property Pages from
the context menu.

8. In the Property Pages dialog, select the Silverlight Applications category.

9. Click the Add button. In the Add Silverlight Application dialog, select the
AuthenticationSample application and click the Add button. Then close the
Property Pages by clicking OK.

10. Set the new website as StartUp Project and the page
AuthenticationSampleTestPage.html as Start Page.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

540

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-aspsecurity
http://www.galasoft.ch/sl4-authentication

ptg

Adding and Managing Users
To check the user’s identity, the web server needs to have some information about the
users and their role. To do this, we use the ASP.NET configuration tool with the following
steps:

1. In Visual Studio, select any file in the website, and then select Web Site, ASP.NET
Configuration. This starts the configuration tool in a web browser, as shown in
Figure 19.1.

Logging In with Authentication 541

1
9

FIGURE 19.1 ASP.NET configuration tool.

2. In the configuration tool, click the Security tab.

3. In the Security tab, click Use the Security Setup Wizard link to configure security
step-by-step.

4. Click Next to reach the Select Access Method screen.

5. Select the access method From the Internet and click Next.

6. Click Next again to reach the Define Roles screen.

7. Check Enable Roles for this Web Site check box. This is not absolutely compulsory,
but using roles to manage access to various parts of the website is easier than to
manage permissions on a user basis.

8. On the Add New Roles screen, add two roles named manager and employee. You
can have as many roles as you need. Then click Next.

 From the Library of Wow! eBook

ptg

9. On the next screen, add two users. You can use any name, password, email, security
question, and answer. Make sure to write down the username and the password; we
will need them later.

10. Once the users are created, click Next to reach the New Access Rules screen. In this
step, you can choose to enable or disable access automatically to some sections of
the website. We will not need this feature here. click Next.

11. Finally in the last step, click Finish.

12. Click again on the Security tab, and then select Create or Manage roles.

13. In the list, click the Manage link next to the employee role.

14. Search for one of your users, and then check the User Is in Role check box.

15. Click the Back button and repeat steps 13 and 14 for the manager role and the other
of your employees.

The website is now configured for access. You can close the configuration tool.

Configuring the Authentication Web Service
To authenticate the user and check his access rights, we will need two Windows
Communications Foundation (WCF) services. However, we will implement only one. The
other one is already implemented and part of ASP.NET. We just need to provide an
endpoint for this service. Follow these steps:

1. Right-click the website, and add a new item.

2. In the Add New Item dialog, select a text file and enter the name
AuthenticationService.svc. Because the service is built-in ASP.NET, we just need a
façade file for the service.

3. Enter the markup shown in Listing 19.1 in the new file.

LISTING 19.1 AuthenticationService Endpoint

<%@ ServiceHost Language=”C#”

Service=”System.Web.ApplicationServices.AuthenticationService” %>

4. Open the file web.config on the web server and enter the configuration information
shown in Listing 19.2. This goes within the configuration tag.

LISTING 19.2 Configuring the Service

1 <system.serviceModel>

2 <behaviors>

3 <serviceBehaviors>

4 <behavior name=”AppServicesBehavior”>

5 <serviceMetadata httpGetEnabled=”true”/>

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

542

 From the Library of Wow! eBook

ptg

6 </behavior>

7 </serviceBehaviors>

8 </behaviors>

9

10 <bindings>

11 <basicHttpBinding>

12 <binding name=”userHttp”>

13 <security mode=”None”/>

14 </binding>

15 </basicHttpBinding>

16 </bindings>

17

18 <services>

19 <service

20 name=”System.Web.ApplicationServices.AuthenticationService”

21 behaviorConfiguration=”AppServicesBehavior”>

22 <endpoint

23 contract=”System.Web.ApplicationServices.AuthenticationService”

24 binding=”basicHttpBinding”

25 bindingConfiguration=”userHttp”

26 bindingNamespace=”http://asp.net/ApplicationServices/v200”/>

27 </service>

28 </services>

29 <serviceHostingEnvironment aspNetCompatibilityEnabled=”true”/>

30 </system.serviceModel>

31

32 <system.web.extensions>

33 <scripting>

34 <webServices>

35 <authenticationService

36 enabled=”true”

37 requireSSL=”false”/>

38 </webServices>

39 </scripting>

40 </system.web.extensions>

Logging In with Authentication 543

1
9

WA R N I N G

Choosing the Right Security

On line 13 of Listing 19.2, the security is set to None. Although this makes things easier
during development, it is of course recommended to choose a better security mode when
publishing the application to the server, depending on the security modes that your web
server supports.

 From the Library of Wow! eBook

ptg

Checking the Access
The authentication service was available “in the box” and merely needed to be exposed
and configured. Checking access for a group of employees can also be implemented as a
service with the following steps:

1. Add a new item to the website again. This time, select a Silverlight-enabled WCF
Service. Name the new service CheckAccessService.svc.

2. Implement the CheckAccessService class as shown in Listing 19.3. This method
checks the currently authenticated user and his role and returns true if the user is a
manager.

LISTING 19.3 CheckAccessService Class

[ServiceContract(Namespace = “http://www.mydomain.com”)]

[AspNetCompatibilityRequirements(RequirementsMode

= AspNetCompatibilityRequirementsMode.Allowed)]

public class CheckAccessService

{

[OperationContract]

public bool CanAccessManagerZone()

{

if (HttpContext.Current.User.IsInRole(“manager”))

{

return true;

}

return false;

}

}

Adding References to the Services
The Silverlight application needs to access the WCF services. We already saw that Visual
Studio is able to create proxies for the services with the following steps:

1. Right-click the References folder of the Silverlight project and select Add Service
Reference from the context menu.

2. Click the Discover button. Both services are shown in the Add Service Reference
dialog.

3. Select AuthenticationService; enter the name AuthenticationService in the
Namespace field, and then click OK.

4. Repeat Steps 1 to 3, but this time select CheckAccessService.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

544

 From the Library of Wow! eBook

ptg

With these steps, the services are known from the Silverlight application and can be used.
Note that if changes are made on the server, they will be visible only in the Silverlight
client after right-clicking the reference and selecting Update Service Reference from the
context menu.

Implementing the Client
Now it’s time to interact with the user on one hand and with the service on the other
hand. Follow these steps:

1. Open MainPage.xaml. This page has a StackPanel in the middle of the page named
LoginPanel, with a UserNameTextBox and a PasswordTextBox. Also available are two
Button elements (Login and Cancel) and a MessageTextBlock to inform the user.

2. Open MainPage.xaml.cs.

3. Modify the LoginClick event handler as shown in Listing 19.4.

LISTING 19.4 LoginClick Event Handler

1 private void LoginClick(object sender, RoutedEventArgs e)

2 {

3 MessageTextBlock.Text = “Logging in”;

4 var client

5 = new AuthenticationService.AuthenticationServiceClient();

6 client.LoginCompleted += client_LoginCompleted;

7 UserNameTextBox.IsEnabled = false;

8 PasswordTextBox.IsEnabled = false;

9 client.LoginAsync(

10 UserNameTextBox.Text,

11 PasswordTextBox.Password,

12 string.Empty,

13 true,

14 UserNameTextBox);

15 }

. On lines 4 and 5, a new client is created for the AuthenticationService. This client
was generated when the service reference was added.

. Line 6 sets an event handler (implemented in Listing 19.5) for the LoginCompleted
event. This is where the application will find out whether the username and pass-
word are valid.

. Lines 9 to 14 call the service in an asynchronous manner, passing the username and
the password. Note that since we didn’t add security to the configuration (such as
Secure Sockets Layer [SSL]), the username and password will be sent in clear text to
the web server. This is, of course, not acceptable for a production environment.

4. Implement the LoginCompleted event handler shown in Listing 19.5.

Logging In with Authentication 545

1
9

 From the Library of Wow! eBook

ptg

LISTING 19.5 LoginCompleted Event Handler

1 void client_LoginCompleted(

2 object sender,

3 LoginCompletedEventArgs e)

4 {

5 if (e.Result)

6 {

7 MessageTextBlock.Text = “Logged in, Checking access”;

8

9 var client

10 = new CheckAccessService.CheckAccessServiceClient();

11 client.CanAccessManagerZoneCompleted

12 += client_CanAccessManagerZoneCompleted;

13 client.CanAccessManagerZoneAsync();

14 }

15 else

16 {

17 MessageTextBlock.Text = “Access denied”;

18 }

19 }

. The result of the authentication is a bool flag that can be true (success) or false
(failure). This is the content of e.Result that is checked on line 5.

. If the authentication is successful, the access rights for the current user are checked
with the CheckAccessService created and called on line 9 to 13.

5. Implement the client_CanAccessManagerZoneCompleted event handler (called when
the CheckAccessService call is completed) as shown in Listing 19.6.

LISTING 19.6 client_CanAccessManagerZoneCompleted Event Handler

1 void client_CanAccessManagerZoneCompleted(

2 object sender,

3 CheckAccessService.CanAccessManagerZoneCompletedEventArgs e)

4 {

5 LoginPanel.Visibility = Visibility.Collapsed;

6

7 if (e.Result)

8 {

9 ShowManagerPage();

10 }

11 else

12 {

13 ShowEmployeePage();

14 }

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

546

 From the Library of Wow! eBook

ptg

15 }

16

17 private void ShowEmployeePage()

18 {

19 MessageBox.Show(“Employee”);

20 }

21

22 private void ShowManagerPage()

23 {

24 MessageBox.Show(“Manager”);

25 }

. After the CheckAccessService returns, the LoginPanel should be hidden, because the
user is authenticated already. Depending on the result, we will display the manager
zone user interface or the employee zone.

. The CanAccessManagerZoneCompletedEventArgs class is generated by Visual Studio
when the Add Service Reference dialog is closed. Its Result property is of the same
type as the CanAccessManagerZone method on the service.

. The service returns a bool that is checked on line 7. Depending on the value, the
method ShowManagerPage or ShowEmployeePage is called.

These methods are not implemented here and just show a MessageBox, as you will see by
starting the application and entering one of the usernames and passwords you defined.
Depending on the type of application, the methods could navigate to a different page (in
a navigation application), or hide/show/enable/disable some controls, and so forth.

This method of authentication is named Forms Authentication and is quite simple. It is a
bit annoying to have to define all the users on the server, though, when some existing
services can be leveraged. For example, using Windows Live ID is possible. An example for
RIA Services is shown at http://www.galasoft.ch/sl4-windowslive. Nonetheless, the sample
in this chapter shows how Silverlight leverages existing ASP.NET infrastructure to handle
authentication.

Binding an Event to a Command
We talked a lot about commands and how they can be used to bind a click event on
certain controls (Button, CheckBox, RadioButton, and so on) to a property of type ICommand
(such as a RelayCommand or another custom implementation). Although the Command prop-
erty (and its CommandParameter companion) was absent of Silverlight 3 entirely, it has been
added to Silverlight 4. However, having this property only on certain controls and only
for a Click event is very limiting. It would be great to be able to bind, for example, the
SelectionChanged event of a DataGrid, or the LostFocus event of a TextBox to a command
on a viewmodel.

Binding an Event to a Command 547

1
9

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-windowslive

ptg

Thankfully, this is possible by using an Action attached to an EventTrigger. We talked
about these helper classes in Chapter 11, “Mastering Expression Blend,” and saw how to
implement and use a trigger/action pair to encapsulate functionality in a developer-
friendly, reusable way. We also saw how to attach them to an element in XAML and in
Expression Blend.

There are currently two main implementations of an Action allowing invoking an
ICommand:

. The Expression Blend team implemented an Action named InvokeCommandAction. It
can be added from the Assets library in Blend onto an element.

. The open source MVVM Light Toolkit that was mentioned already in Chapter 15,
“Developing Navigation Applications and Silverlight for Windows Phone 7,” has an
Action named EventToCommand that aims to the same functionality but with a few
more features.

Adding either InvokeCommandAction or EventToCommand to your application adds a depen-
dency on external DLLs that will be added to your XAP file:

. System.Windows.Interactivity.dll is the base assembly for all behaviors, triggers, and
actions. It is very often used by Silverlight developers, and there is a good chance
that it has in fact already been added to your Silverlight application’s dependencies.

. For EventToCommand, the MVVM Light Toolkit is needed in addition. This toolkit
contains more than EventToCommand, and provides helper classes to help implement
loosely coupled application, as you already saw in this book, and will again in
Chapter 20, “Building Extensible and Maintainable Applications.”

Choosing between InvokeCommandAction and EventToCommand depends on the functionality
that you want to achieve. Although both components are overlapping for the basics,
EventToCommand offers more features, such as disabling the attached control based on the
value of the ICommand’s CanExecute method, and a possibility to pass the triggering event’s
EventArgs down to the ICommand’s parameter, to handle special cases such as drag and drop
(as explained at http://www.galasoft.ch/sl4-e2cblog).

Executing a Command When a TextBox Loses Focus
EventToCommand can, for instance, be used to execute a saving operation when a TextBox
loses the focus with the following steps:

1. Download, unblock, and extract the start application from
http://www.galasoft.ch/sl4-e2c.

2. In the folder you just extracted, start the solution named TextBoxHandling.sln in
Visual Studio.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

548

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-e2cblog
http://www.galasoft.ch/sl4-e2c

ptg

Take a look at the application. It is an application built with the MVVM Light framework
that is explained in more detail in Chapter 20, and very much similar to other MVVM
applications we covered earlier in this book:

. In MainPage.xaml, two TextBox elements are defined and bound to a customer’s
FirstName and LastName. The customer itself is defined as a CustomerViewModel class.

. An Ellipse is also present in MainPage.xaml, with an animation (named
WaitAnimation). This animation should be started when a saving operation is active.

. To start/stop the animation, an IAnimationService is defined in the ViewModel
folder. The MainPage class implements this interface, and is responsible for finding,
starting, and stopping the animation.

. In the Model folder, an INetworkService interface is defined with a single method
Save. Because it is an asynchronous operation, a callback parameter must be passed
to the Save method. We already used this asynchronous pattern in Chapters 7,
“Understanding the Model-View-ViewModel Pattern,” 9, “Connecting to the Web,”
and later chapters.

. The INetworkService interface is implemented by the NetworkService class in the
Model folder. To simulate a busy network, every Save operation starts a background
thread and lets it sleep for 5,000 milliseconds. You’ll learn more about multithread-
ing in Chapter 22, “Advanced Development Techniques.” After these 5,000 millisec-
onds, the callback is executed.

. The MainViewModel class is responsible for holding the CustomerViewModel instance to
which the two TextBox elements are data bound.

This is a fairly common setting for MVVM applications in Silverlight. Now, a command
should be added that saves the data to the network when both the FirstName and the
LastName have been entered. During a save operation, both TextBox elements should be
disabled, and the animation should run. To perform this functionality, follow these steps:

1. In the MainViewModel class, add a command as shown in Listing 19.7. The
RelayCommand class used here is part of the GalaSoft.MvvmLight.dll assembly, which
is referenced by the sample application. We already used this class in other listings
in this book.

LISTING 19.7 Adding a Command

public RelayCommand CheckAndSaveCommand

{

get;

private set;

}

Binding an Event to a Command 549

1
9

 From the Library of Wow! eBook

ptg

2. Add a property named IsSaving as shown in Listing 19.8. This property raises the
CanExecuteChanged on the CheckAndSaveCommand property. As you will see in Listing
19.9, the state of CanExecute for this command depends on the value of the
IsSaving property. In addition, the property orders the IAnimationService to start or
stop the animation.

LISTING 19.8 IsSaving Property

private bool _isSaving;

public bool IsSaving

{

get { return _isSaving; }

set

{

if (_isSaving == value)

{

return;

}

_isSaving = value;

CheckAndSaveCommand.RaiseCanExecuteChanged();

if (AnimationService != null)

{

if (_isSaving)

{

AnimationService.StartAnimation(WaitAnimationName);

}

else

{

AnimationService.StopAnimation(WaitAnimationName);

}

}

}

}

3. Instantiate the CheckAndSaveCommand property by modifying the MainViewModel
constructor as shown in Listing 19.9.

LISTING 19.9 Instantiating the Command

1 public MainViewModel(INetworkService networkService)

2 {

3 _networkService = networkService;

4 CurrentCustomer = new CustomerViewModel();

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

550

 From the Library of Wow! eBook

ptg

5

6 CheckAndSaveCommand = new RelayCommand(

7 CheckAndSave,

8 () => !IsSaving);

9 }

. On lines 6 to 8, the command is created.

. Line 7 assigns the method CheckAndSave (defined in Listing 19.10) to the Execute
delegate. This method will be executed when the command is invoked.

. Line 8 is the CanExecute delegate, and returns true if the MainViewModel is not saving
and false otherwise. This will determine the state of the two TextBox elements in
the UI: enabled or disabled.

4. Define the CheckAndSave method as shown in Listing 19.10.

LISTING 19.10 CheckAndSave Method

1 private void CheckAndSave()

2 {

3 if (CurrentCustomer != null

4 && !string.IsNullOrEmpty(CurrentCustomer.FirstName)

5 && !string.IsNullOrEmpty(CurrentCustomer.LastName))

6 {

7 IsSaving = true;

8 _networkService.Save(SaveCompleted);

9 }

10 }

11

12 private void SaveCompleted(bool sucess)

13 {

14 IsSaving = false;

15 }

. On lines 3 to 5, the state of the CurrentCustomer is checked. If both the FirstName
and the LastName have been filled, the operation can continue.

. The IsSaving property is set to true on line 7. This will trigger the animation in the
UI and cause it to reevaluate the state of the CheckAndSaveCommand as we saw in
Listing 19.8.

. Line 8 calls the Save method in the INetworkService class and passes if the
SaveCompleted method defined on lines 12 to 18 as a callback.

. When the operation is completed and the callback is called by the NetworkService
class, the IsSaving property is set back to false on line 14.

Binding an Event to a Command 551

1
9

 From the Library of Wow! eBook

ptg

Setting an EventToCommand in XAML
The EventToCommand action can be added in XAML or in Blend, as usual. For completeness,
we will see how to perform both operations. For XAML, follow these steps:

1. Open MainPage.xaml and add the xmlns prefixes shown in Listing 19.11. This maps
the i prefix to System.Windows.Interactivity, which is the assembly where the
behavior infrastructure is located. The cmd prefix is mapped to
GalaSoft.MvvmLight.Command in the GalaSoft.MvvmLight.Extras.SL4 assembly. This is
where the EventToCommand action is located. Both assemblies are into the External
folder and referenced in the application.

LISTING 19.11 Adding xmlns Prefixes

xmlns:i=”clr-

namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity”

xmlns:cmd=”clr-

namespace:GalaSoft.MvvmLight.Command;assembly=GalaSoft.MvvmLight.Extras.SL4”

2. Find the TextBlock with the binding to CurrentCustomer.FirstName. Modify its
markup as shown in Listing 19.12.

Listing 19.12 Adding EventToCommand in XAML

1 <TextBox Margin=”10,0,10,10”

2 FontSize=”20”

3 Text=”{Binding CurrentCustomer.FirstName, Mode=TwoWay}” >

4 <i:Interaction.Triggers>

5 <i:EventTrigger EventName=”LostFocus”>

6 <cmd:EventToCommand

7 Command=”{Binding CheckAndSaveCommand}”

8 MustToggleIsEnabled=”True”/>

9 </i:EventTrigger>

10 </i:Interaction.Triggers>

11 </TextBox>

. On lines 4 to 10, the attached property named Interaction.Triggers is defined.
This is a collection of Triggers that can hold multiple ones.

. Lines 5 to 9 define an EventTrigger that reacts to the LostFocus event of the
TextBox. We already talked about EventTrigger in Chapter 11 and mentioned that
when a Trigger is fired, it invokes the list of Action elements that it contains.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

552

 From the Library of Wow! eBook

ptg

. Lines 6 to 8 add an Action of type EventToCommand to the EventTrigger. Its Command
property is data bound to the CheckAndSaveCommand property on the MainViewModel
class (which is set as the DataContext of the whole page).

. Line 8 sets the MustToggleIsEnabled to true. This instructs the EventToCommand class
that the IsEnabled property must be set according to the CanExecute method of the
command. This is what allows disabling and enabling the TextBox elements based
on the state of the Save operation.

Setting an EventToCommand in Blend
In Expression Blend, the same operation requires no hand coding, thanks to the user
friendliness of behaviors. Follow these steps:

1. Save everything, build the application and open the solution in Blend.

2. Select the Assets tab and the Behaviors category.

3. Drag an EventToCommand element from the Assets library onto the second TextBox in
the Objects and Timeline as shown in Figure 19.2.

Binding an Event to a Command 553

1
9

FIGURE 19.2 Setting the EventToCommand in Blend.

4. In the Properties panel, set the EventName property to LostFocus.

5. Using the data binding editor, set a binding between the Command property and the
CheckAndSaveCommand property of the MainViewModel class as shown in Figure 19.3.
Then close the dialog by clicking OK.

 From the Library of Wow! eBook

ptgFIGURE 19.3 Setting a binding on the Command property.

6. Finally, in the Properties panel, check the MustToggleIsEnabled check box.

Testing the Application
Run the application, either from Expression Blend or from Visual Studio. Enter your first
name and last name, and then click the Tab key to cause the second TextBox to lose the
focus. This triggers the save operation for five seconds, starts the animation, and disables
the two TextBox elements during this time.

EventToCommand is a powerful addition to the toolbox of the developer wanting to create
rich decoupled applications. It builds on the concept of commands and allows extending
it to any event of any UI element.

Building Random Animations
When a rich UI experience is created, it is often desirable to create random animations.
For example, this could be a simulation of snowflakes falling according to a random path,
bubbles or balloons floating on the screen, and so forth. In this section, you will learn
how to build a random animation in Blend and in code.

Creating the Base Animation in Blend
To start, it is a good idea to create a base animation in XAML. Building animations in
code from scratch is possible, but it is a long process, and hard to test because of the need
to run the application to visualize every little change. By using Blend, it is much easier to

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

554

 From the Library of Wow! eBook

ptg

visualize the animation’s parameters. Later, code will be used to randomize them. Follow
these steps.

1. Download the zip file named RandomAnimationSample-Start.zip from
http://www.galasoft.ch/sl4-random. As usual, unblock the file with the Unblock
button in the file Properties dialog (if available), and extract the content to your
hard drive.

2. Open the solution RandomAnimationSample.sln in Expression Blend.

3. Click the small + button on top of the
Objects and Timeline panel, as shown on
Figure 19.4.

4. In the Create Storyboard Resource dialog,
enter the name RandomAnimation and
then click OK. Blend turns in animation
record mode. If you want, you can press the F6 key to toggle between Animation
workspace and Design workspace, and back.

5. On the Objects and Timeline panel, place the yellow timeline on 2 seconds.

6. Select the Grid named Ellipses and click
the Record Keyframe button shown in
Figure 19.5.

7. In the Properties panel, in the Transform
section, select the Scale tab and set X and
Y to 0.5.

8. Select the Rotate tab in the Transform
section of the Properties panel and set the
Angle to 360 degrees.

9. Click the keyframe indicator on the
yellow timeline in the Objects and
Timeline panel, as shown in Figure 19.6.

10. In the Properties panel, select an
EasingFunction for the animation (for
example, Exponential InOut).

11. Play the animation using the controls in the Objects and Timeline panel. You can
tweak it until you are satisfied. Then, select File, Save All.

Randomizing the Animation
Now that the base animation is ready, code needs to be written to randomize its parame-
ters and start it with the following steps:

Building Random Animations 555

1
9

FIGURE 19.4 Creating a new story-
board.

FIGURE 19.5 Record keyframe button.

FIGURE 19.6 Selecting the keyframe.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-random

ptg

1. Open the same solution in Visual Studio.

2. Open MainPage.xaml.cs and modify the MainPage constructor as shown in Listing
19.13.

LISTING 19.13 Getting the Animation in Code

1 private readonly Storyboard _randomAnimation;

2 private readonly Random _random;

3

4 public MainPage()

5 {

6 InitializeComponent();

7

8 _random = new Random();

9 _randomAnimation = Resources[“RandomAnimation”] as Storyboard;

10 _randomAnimation.Completed += (s, e) => StartNextAnimation();

11 StartNextAnimation();

12 }

. Line 1 declares an attribute to store the animation that we retrieve from the
resources on line 9.

. Line 2 declares an attribute of type Random. This class is very useful to calculate
pseudo-random numbers. This attribute is created at line 8.

. Line 10 handles the Completed event of the animation. It simply calls the
StartAnimation method again, so that the movement never ends. This code will be
executed only when the animation is completed.

. Then line 11 begins the first animation cycle by calling the StartNextAnimation
method shown in Listing 19.14.

LISTING 19.14 StartAnimation Method

1 private void StartNextAnimation()

2 {

3 // Calculate target size

4 (_randomAnimation.Children[0] as DoubleAnimation).To

5 = (_randomAnimation.Children[1] as DoubleAnimation).To

6 = (double) _random.Next(4, 20) / 10;

7

8 // Calculate target angle

9 (_randomAnimation.Children[2] as DoubleAnimation).To

10 = _random.Next(0, 720);

11

12 // Calculate duration

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

556

 From the Library of Wow! eBook

ptg

13 _randomAnimation.Duration

14 = TimeSpan.FromMilliseconds(_random.Next(800, 2000));

15 _randomAnimation.Begin();

16 }

. Lines 4 to 6 calculate the target size for the Ellipses Grid. The Random class’ Next
method is used to calculate the new value between 0.4 and 2. Note that the anima-
tion is retrieved by its index, which is dangerous, as explained in the “Finding the
Right Animation” box.

. Lines 9 and 10 calculate a random angle between 0 and 720 degrees.

. Finally, lines 13 and 14 calculate the duration for the animation between 800 and
2,000 milliseconds, before the animation is started on line 15.

Implementing Multitouch in Silverlight 557

1
9

WA R N I N G

Finding the Right Animation

Unfortunately, there is no good way to retrieve an animation included within a Storyboard. In
Listing 19.14, the index within the Children collection of the Storyboard is used, which is
dangerous: If someone changes the order of the animations in the XAML markup, the code
will not work anymore. This is the first thing you should look for in case the animation does
not work as expected!

3. Start the application and watch how the animation plays.

With this simple code, it is possible to give a lifelike feel to an application by making it
less predictable. Of course, this is not applicable to all the animations in the application,
but depending on the scene you are building, this can come very handy.

Implementing Multitouch in Silverlight
Multitouch computing is one of the most exciting developments in modern-age client
application development. Controlling a computer with one’s fingers is not really new, and
touch devices have existed for many years already (such as the Palm devices), but multi-
touch is something different:

. Contrary to these classic devices, multitouch computers can recognize multiple
points of contact. Typical multitouch screens nowadays can handle up to four points
of contact, sometimes more.

. Instead of using “taps” on the screen with the finger or a stylus, multitouch applica-
tions react to gestures, normally executed with the fingers. For example, Internet
Explorer can react to different flicks (that is, a swiping movement with the fingers).
One finger can create multiple actions depending on the direction of the flick. Also,
the speed of the flick is relevant and influences the action.

 From the Library of Wow! eBook

ptg

. Multitouch is now found on many devices, ranging from very small (smartphones
for instance) to quite large (such as the Microsoft Surface device) to very large
(multitouch walls found in some venues). The cost of multitouch displays is drop-
ping, so enabling multitouch on new devices is becoming less of a luxury. This is a
cascading effect: People are confronted to multitouch more often, so they are more
likely to purchase a multitouch device, which makes the technology more afford-
able for others.

. More and more research is put in making multitouch a first-class citizen, and even
replacing the mouse devices in certain cases (tablet computers, kiosk applications,
and so on). Eventually, it is possible that the (physical) keyboard will also be
replaced by touch input, although this is more difficult.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

558

T I P

Using Multitouch on a Microsoft Surface Device

Microsoft Surface is a project from Microsoft Research that made its way to a device: A
computer is enclosed in a table with a large unpolished glass top. In the table, a computer
running a multitouch shell on top of Windows Vista is driving the functions of the table.
Infrared cameras placed within the table detect the presence of touch devices: fingers,
shapes, or “blobs” (that is, larger objects that can be a hand, a glass, and so forth).
Because the object detection is visual thanks to the infrared cameras, it allows the table to
be completely enclosed, which protects it from spills and dirt. This is perfect for a table that
is often used in bars, restaurants, and hotel lobbies.

Applications for Microsoft Surface are written in Windows Presentation Foundation (WPF), and
a lot was learned from that experience: a device with a new form factor, used with fingers
and interacting with its environment. This experience flows into Silverlight and Windows
Phone 7 devices. Most important for the developer, developing multitouch experiences for
Surface, WPF, Silverlight, and Windows Phone 7 is very similar!

Microsoft Surface is a relatively expensive device, but can be found nonetheless in many
conference venues, hotels, and restaurants. It is a very convivial and innovative device that
up to five or six people can use at the same time.

Getting the Right Computer
To develop a multitouch application, it is really recommended to use a multitouch
computer. Although certain solutions exist to emulate multitouch input with multiple
mouse devices, it is cumbersome at best. To understand the experience that the user is
facing in your application, it is really better to use a touch-enabled computer.

Nowadays, buying a touch-enabled laptop is quite easy and not very expensive if the
screen size is reasonable. Some developers have a main computer on which they develop
(for example, a desktop or a powerful laptop) and a second, smaller touch-enabled

 From the Library of Wow! eBook

ptg

computer on which they can test their multitouch applications. This is a nice combina-
tion that is acceptable in terms of price. Of course, there are also high-end computers that
are touch enabled.

Another lesser-known solution is to apply a touch-enabled overlay on a normal display.
For example, firms such as NextWindow (http://www.galasoft.ch/sl4-nextwin) produce
overlay touch screens that can be mounted on top of any large plasma or LCD monitor
with a PC running Windows 7. This is a way to get multitouch input without having to
purchase a new monitor or a new laptop.

Implementing Multitouch in Silverlight 559

1
9

WA R N I N G

Using the Right Operating System

At the moment, Silverlight supports multitouch operations only on operating systems that
promote touch events to the applications running on it. This is the case for Windows 7, but
other operating systems do not support Silverlight multitouch at the moment, unless specific
touch devices are used.

Unfortunately at this time, multitouch is not supported when the application runs in full
screen. Simple touch events are supported (for example, tapping on a button), but scale,
rotate, and translate manipulations do not work in that mode.

Investigating Existing Elements
Some existing controls in Silverlight 4 support basic touch gestures. Most notably, the
following controls react to touch:

. The Silverlight framework promotes taps on the Silverlight application to
MouseLeftButtonDown and MouseLeftButtonUp events. For controls deriving from
ButtonBase (such as Button, ToggleButton, CheckBox, RadioButton, and so on), this
translates to a Click event. For other controls, the mouse events are raised.

. Tap and drag gestures are also supported automatically, so that a Thumb control can
be dragged on the screen using a finger. For example, the Thumb of a ScrollBar can
be dragged with a finger.

. A scale gesture (putting two fingers down on the Silverlight application and moving
them away from each other or toward each other) is interpreted by the web browser
and the Silverlight content is zoomed. However, note that this is not a feature of
Silverlight proper, but of some web browsers. This feature is supported in Internet
Explorer and Google Chrome on Windows 7 at least. Because this is not a Silverlight
feature, availability depends on the web browser’s implementation. Also, this is not
supported when the application runs out of the browser.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-nextwin

ptg

Using Multitouch Libraries
Unfortunately, multitouch events are not first-class citizens in Silverlight 4 yet. Browsing
through the documentation, you can see that some high-level multitouch events are
available in the API: ManipulationStarted, ManipulationDelta, and ManipulationCompleted
(with their corresponding EventArgs) are listed. However, do not get confused: These
events are here only for compatibility with Windows Phone 7 and should not be used in a
Silverlight 4 application. Trying to use them in code will not cause a compilation error.
However, the events are not listed in Visual Studio IntelliSense, and they will not work as
expected.

Instead, a low-level event is available. Its presence is less for direct consumption by a
Silverlight application (although, of course, this is possible) than as the basis for future
developments of higher level APIs to bring Silverlight (5 maybe?) up to par with WPF and
(ironically) with Windows Phone 7 where some high-level gestures are supported (see the
“Using Multitouch in Windows Phone 7 Applications” section, later in this chapter).

Using the Microsoft Surface Library for Silverlight
Thankfully, it is possible to build multitouch applications with high-level functionalities
in Silverlight 4 by using helper libraries, such as the one published by the Microsoft
Surface team at http://www.galasoft.ch/sl4-surface. Although the documentation on this
page states that it is available for educational use only and without support, this is actu-
ally a pretty solid library that helps a lot when building applications by abstracting the
low-level events. Be careful though, because the license does not allow commercial appli-
cations to be built with this library.

Using a Multitouch Behavior
Even the Microsoft Surface library is quite complex to use and understand, especially for
simple applications. In many cases, only scaling, rotating, and translating are needed.
(These operations are explained in the section of the same name.) In that case, a Blend
behavior can be used to abstract the complexity even more. Davide Zordan (a Silverlight
MVP) published such a behavior in open source on CodePlex
(http://multitouch.codeplex.com/).

Scaling, Rotating, and Translating
The three basic manipulations in 2D are
scaling, rotating, and translating, as shown
in Figures 19.7, 19.8, and 19.9.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

560

FIGURE 19.7 Scaling an element.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-surface
http://multitouch.codeplex.com/

ptg

The manipulations can also be combined. In
Silverlight 2 Unleashed, Chapter 3 explained that
Silverlight has four affine transforms, three of
which can be used to apply scaling, rotating,
and translating to the element.

Detecting a Manipulation Frame
At the lowest level, Windows 7 reports the
multitouch manipulations through an event
named Touch.FrameReported. This event is fired
every time that something relevant to multi-
touch occurs: when one or more finger are
pressed on the screen, when the fingers are
moving, and when they are lifted up.
To handle manipulations, the
TouchFrameEventArgs class has all
necessary information. The TouchPoint
instances can be retrieved by calling
GetTouchPoints and
GetPrimaryTouchPoint on this class in
the Touch.FrameReported event handler.
This class has details about the number
of fingers on the screen, their Position,
Size, Action (Down, Move or Up) and a
unique ID. Using math, it is possible to
calculate all the transformations to be
applied to the element.

Using Inertia
When a physical object is dragged on a surface such as a table or a wooden floor, the
movement does not stop immediately after the fingers are lifted and the object is let go.
The translation will continue because of the momentum of the object. If the fingers had
impressed a rotating movement on the object just before they were lifted, the rotation
will also continue for a while.

To calculate the deceleration of an element, the ManipulationDelta event should be
handled and the ManipulationDeltaEventArgs.Velocities property used in the calcula-
tions.

Implementing a Multitouch Application
A simple multitouch sample application can be created with the following steps:

1. Point your web browser to http://multitouch.codeplex.com.

2. At this time, the project does not have binaries for release for Silverlight 4. We will
build the source code instead. Select the source tab.

Implementing Multitouch in Silverlight 561

1
9

FIGURE 19.8 Rotating an element.

FIGURE 19.9 Translating an element.

 From the Library of Wow! eBook

http://multitouch.codeplex.com

ptg

3. On the right of the screen, find the Download link and click it.

4. Save the zip file on your computer. As usual, open the file Properties in Windows
Explorer and unblock the file if needed. Then extract everything to a known loca-
tion on your hard drive.

5. Create a new Silverlight application in Visual Studio or in Expression Blend and
name it MultiTouchSample.

6. Right-click the solution in the Solution Explorer and select Add, Existing Project
from the context menu.

7. In the Add Existing Project dialog, navigate to the location where you extracted the
MultiTouch behavior code from CodePlex. The file you are looking for is inside the
folder MultiTouch.Behaviors.Silverlight4 and is named
MultiTouch.Behaviors.Silverlight4.csproj. Select this file and click Open.

8. In the Solution Explorer, right-click the References folder of the MultiTouchSample
application, and select Add Reference from the context menu.

9. In the Add Reference dialog, select the Projects tab and the
MultiTouch.Behaviors.Silverlight4 project, and then click OK.

10. Repeat Steps 6 to 9 for another project loaded from CodePlex named
MultiTouch.ManipulationLib.Silverlight4. This is the Surface manipulation library
for Silverlight mentioned earlier.

11. Build the application.

Adding the Behavior in Blend
Behaviors can be added in XAML or in Blend, as you saw in Chapter 11. Adding it in
Blend is really much easier, as shown with the following steps.

1. Open the MultiTouchSample solution in Expression Blend 4.

2. In MainPage.xaml, right-click LayoutRoot in the Objects and Timeline panel and
select Change Layout Type, Canvas from the context menu. The parent element for
the transformed element is expected to be a Canvas panel.

3. Add a red Rectangle to the Canvas.

4. Open the Assets library and locate the MultiTouchBehavior in the Behaviors category.
Drag and drop it on the red rectangle, either on the screen or in the Objects and
Timeline panel.

5. With the behavior selected in the Objects and Timeline panel, check the Properties
panel. You can select to enable scaling, rotation, translating, and/or inertia.

6. Run the application on a multitouch computer. Using one finger, you can translate
the Rectangle on the screen. Using two fingers, you can rotate and scale it. Finally,
note the effect of inertia: You can “throw” the Rectangle like you would a real
object on a plane surface.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

562

 From the Library of Wow! eBook

ptg

The multitouch behavior is a work in progress, and at the time of this writing it is going
through changes. The bottom line is that in the current state of the affairs, multitouch is
quite complex to use in Silverlight 4 because it is very low level, and that abstraction
libraries are offering a welcomed help. Also, because the code is open source, you can
learn a lot from browsing through the source on CodePlex.

Using Multitouch in Windows Phone 7 Applications
Ironically, even though Windows Phone 7 is based on Silverlight 3, the support for multi-
touch in this framework is better than in Silverlight 4. This is in fact not surprising,
considering that multitouch will be the main input mechanism on the phone, while it is
still marginal for Silverlight applications on the desktop.

In Windows Phone 7, high-level multitouch manipulations are handled by using the
UIElement.ManipulationStarted, UIElement.ManipulationDelta, and
UIElement.ManipulationCompleted events. ManipulationDelta has all information you need
to translate and scale a UIElement, using the TranslateX, TranslateY, ScaleX, and ScaleY
properties of the ManipulationDeltaEventArgs class. Note, however, that manipulation
events handle only scale and translate manipulations at this time and that inertia is not
supported. For more advanced manipulations, using Touch.FrameReported is needed, or
else downloading the multitouch behavior for Windows Phone 7 from CodePlex
(http://multitouch.codeplex.com/).

Finding More Information
For more information about multitouch in Silverlight (and other technologies), Joshua
Blake has a video presentation about NUI at http://www.galasoft.ch/sl4-joshnui, and is
working on a book titled Multitouch on Windows (NUI development with WPF and Silverlight)
that will be published at Manning in the end of 2010. This should be a great resource to
dive much deeper into the wonderful world of the natural user interface.

Enabling Local Communication
There are multiple scenarios in which it is beneficial to have two Silverlight applications
running on the same computer communicating together. In early versions of Silverlight,
there were only very few options:

. Sending a message through the web server. The receiving application had to poll the
server or use duplex polling until the message was sent by the sending application.

. (Only when both Silverlight applications run on the same web page) Using the
HTML Bridge to communicate through JavaScript.

Neither solution was really satisfying. Thankfully, this is not an issue anymore, with the
introduction of local messaging.

Enabling Local Communication 563

1
9

 From the Library of Wow! eBook

http://multitouch.codeplex.com/
http://www.galasoft.ch/sl4-joshnui

ptg

Understanding the Restrictions
Before a sample is implemented, it is necessary to talk about restrictions for this feature:

. Only string messages can be sent. Of course, this can be a serialization (in XML,
JSON or any other protocol) of an object.

. The sent message can only be 40KB in size.

. A Silverlight application running in HTTP cannot send a message to an application
running in HTTPS (or vice versa).

For most scenarios, these restrictions are not an issue, and it is fairly easy to enable local
messaging, as you will see in the following sample.

Building a Receiver
The local messaging system uses a sender and a receiver and enables a one-to-one or one-
to-many communication system. It is a targeted system, meaning that messages are sent
and received with an identifier. Applications can register for local messages (sent from an
application running in one network domain such as www.mydomain.com to another
application running in the same domain) or global messages (sent from applications in
any domain). Follow these steps:

1. Create a new Silverlight application in Visual Studio and name it
MessagingReceiver.

2. Modify MainPage.xaml’s LayoutRoot to look as shown in Listing 19.15.

LISTING 19.15 Receiver’s User Interface

<StackPanel x:Name=”LayoutRoot” Background=”Red”>

<TextBlock TextWrapping=”Wrap”

Text=”- no message yet -”

x:Name=”MessageTextBlock”

Margin=”20”/>

</StackPanel>

3. Then, modify MainPage.xaml.cs as shown in Listing 19.16.

LISTING 19.16 Subscribing and Receiving a Message

1 public MainPage()

2 {

3 var receiver = new LocalMessageReceiver(

4 “MessagingApplication2”,

5 ReceiverNameScope.Global,

6 LocalMessageReceiver.AnyDomain);

7

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

564

 From the Library of Wow! eBook

www.mydomain.com

ptg

8 receiver.MessageReceived += receiver_MessageReceived;

9 receiver.Listen();

10

11 InitializeComponent();

12 }

13

14 void receiver_MessageReceived(object sender, MessageReceivedEventArgs e)

15 {

16 MessageTextBlock.Text = e.Message;

17

18 e.Response = “Message received, thanks!”;

19 }

. On lines 3 to 6, a LocalMessageReceiver instance is created. There are two overloads
for this constructor, one allowing to receive local messages only (same network
domain) and this one allowing to receive global messages (any domain).

. Line 8 subscribes to the MessageReceived event with an event handler defined on
lines 14 to 19.

. Line 9 starts listening to messages.

. In the MessageReceived event
handler, the message received is
read on line 16. Optionally, a
Response can be sent back to the
sender with the code on line 18.

Building a Sender
The sender in this messaging system is
equally easy to build, as follows:

1. Create another Silverlight application and name it MessagingSender. Because it is a
separate solution in Visual Studio, running it in debug mode will use a separate
domain name (for example, http://localhost:12345 versus http://localhost:98765).
Silverlight considers these two domains to be unrelated, which is why the global
namescope must be used here.

2. Modify MainPage.xaml’s LayoutRoot as shown in Listing 19.17.

LISTING 19.17 Markup for the Receiver

<StackPanel x:Name=”LayoutRoot”

Background=”Blue”>

<TextBox x:Name=”SendingMessageTextBox”

Text=”Enter a message”

TextWrapping=”Wrap”

Margin=”20”

Enabling Local Communication 565

1
9

WA R N I N G

Registering in the Global Namescope

When registering for global messages, the
identifier used must be unique. In Listing
19.16, if another unrelated application regis-
ters with the identifier
MessagingApplication2, an exception will be
thrown. Keep that in mind when using global
identifiers!

 From the Library of Wow! eBook

ptg

Height=”300” />

<Button Content=”Send”

Click=”SendClick”

Margin=”20” />

<TextBlock TextWrapping=”Wrap”

Text=”- no message yet -”

x:Name=”MessageTextBlock”

Margin=”20” />

</StackPanel>

3. Implement the sender in MainPage.xaml.cs as shown in Listing 19.18.

LISTING 19.18 Sending a Message

1 private LocalMessageSender _sender;

2

3 public MainPage()

4 {

5 _sender = new LocalMessageSender(

6 “MessagingApplication2”,

7 LocalMessageSender.Global);

8 _sender.SendCompleted += _sender_SendCompleted;

9

10 InitializeComponent();

11 }

12

13 void _sender_SendCompleted(object sender, SendCompletedEventArgs e)

14 {

15 if (e.Error != null)

16 {

17 MessageTextBlock.Text = e.Error.Message;

18 return;

19 }

20

21 if (!string.IsNullOrEmpty(e.Response))

22 {

23 MessageTextBlock.Text = e.Response;

24 return;

25 }

26

27 MessageTextBlock.Text = “Message sent”;

28 }

29

30 private void SendClick(object sender, RoutedEventArgs e)

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

566

 From the Library of Wow! eBook

ptg

31 {

32 _sender.SendAsync(SendingMessageTextBox.Text);

33 }

. Line 1 declares a LocalMessageSender, the counterpart to the LocalMessageReceiver
that we saw before.

. Lines 5 to 8 create a new instance with the same identifier in the global namescope
as the receiver we built in the previous section. Then, an event handler is registered
for the SendCompleted event. This is optional, but recommended to handle errors
when sending the message, and also to receive the optional Response.

. Lines 15 to 19 handle errors, for example, what happens if no suitable receiver is
found.

. Lines 21 to 25 handle the Response, which is a string.

. Finally, lines 30 to 33 send the message in an asynchronous manner.

Testing the Application
To test the application, run the sender first and click the button. An error message should
appear, because no suitable receiver is found. Then, without stopping the sender, run the
receiver and send the message again. This time the message appears in the receiver’s
window, and the response is shown in the sender’s window. You can change the message
and send again.

Sending and receiving messages works between applications running out of the browser,
too, which provides a possible solution to some scenarios where multiple windows are
needed. This is, of course, not as convenient as the possibility to open another window
programmatically (as in WPF, for example), but is nonetheless good to keep in mind.
Generally speaking, the messaging system is very useful to build distributed applications.

Mapping with the Bing Maps Control
Many applications nowadays can benefit from embedding geographical maps in their user
interface: calculating driving routes, setting markers to pinpoint a location, showing a
venue, and so forth. The Bing Maps team made this extremely easy by offering a free
Silverlight control that can easily be added to any Silverlight application. There are
samples available online, with a good starting point at http://www.galasoft.ch/sl4-maps.
This section shows how to download and install the control, and how to create a very
simple application with the following steps:

1. Before you start, it is necessary to register with the Bing Maps portal. Follow the
instructions at http://www.galasoft.ch/sl4-bingmapsportal.

2. Download the Silverlight Bing Maps control from
http://www.galasoft.ch/sl4-mapsdownload. Then run the MSI file.

The last step installs the binaries and documentation on your computer.

Mapping with the Bing Maps Control 567

1
9

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-maps
http://www.galasoft.ch/sl4-bingmapsportal
http://www.galasoft.ch/sl4-mapsdownload

ptg

Adding the Map
Adding the map in XAML is very straightforward with the following steps:

1. Create a new Silverlight application named BingMapsSample. Note that the applica-
tion must be hosted in a web application, to avoid cross-schema issues (from file
protocol to HTTP).

2. Set the BingMapsSample.Web application as Startup and the
BingMapsSampleTestPage.html as Startup page.

3. Right-click the Silverlight application’s References folder in the Solution Explorer
and add a reference to the Bing Maps DLLs that you installed in Step 2. These are
Microsoft.Maps.MapControl.dll and Microsoft.Maps.MapControl.Common.dll and
can be found in C:\Program Files\Bing Maps Silverlight Control\V1\Libraries. On
Windows 64 bits, the folder is in Program Files (x86).

4. Open MainPage.xaml and add an xmlns prefix as shown in Listing 19.19.

LISTING 19.19 Adding an xmlns Prefix

xmlns:bing=”clr-namespace:Microsoft.Maps.MapControl;assembly=Microsoft.Maps.MapCon-

trol”

5. Add the markup shown in Listing 19.20 within the LayoutRoot. Make sure that you
replace the YourAppIdHere text with the ID you got from the Bing portal at Step 1.

LISTING 19.20 Adding a Map Control

<bing:Map CredentialsProvider=”YourAppIdHere”

x:Name=”MyMap”/>

6. Run the application. You should see the Bing Maps control as shown in Figure
19.10.

The map control has a few built-in features that are very nice:

. Toggle between Road and Aerial (satellite) view

. Seamless zoom with the controls or with the mouse wheel

. Pan the map using the mouse

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

568

 From the Library of Wow! eBook

ptg

FIGURE 19.10 Bing Maps control.

Getting Location Information and Marking It
Interaction with the user is also possible (for example, getting a mouse click, adding a
marker, and displaying location information), with the following steps:

1. Modify the MainPage.xaml.cs code as shown in Listing 19.21.

LISTING 19.21 Getting a Mouse Click and Adding Information

1 private readonly MapLayer _mapLayer;

2

3 public MainPage()

4 {

5 InitializeComponent();

6 _mapLayer = new MapLayer();

7 MyMap.Children.Add(_mapLayer);

8 MyMap.MouseClick += MapClick;

9 }

10

11 private void MapClick(

12 object sender,

13 Microsoft.Maps.MapControl.MapMouseEventArgs e)

14 {

Mapping with the Bing Maps Control 569

1
9

 From the Library of Wow! eBook

ptg

15 var location = MyMap.ViewportPointToLocation(

16 e.ViewportPoint);

17

18 var marker = new Ellipse

19 {

20 Fill = new SolidColorBrush(Colors.Red),

21 Height = 10,

22 Width = 10,

23 };

24

25 var ToolTipPanel = new StackPanel();

26

27 ToolTipPanel.Children.Add(new TextBlock

28 {

29 Text = “Lat: “ + location.Latitude

30 });

31

32 ToolTipPanel.Children.Add(new TextBlock

33 {

34 Text = “Lon: “ + location.Longitude

35 });

36

37 ToolTipService.SetToolTip(

38 marker, ToolTipPanel);

39

40 var position = PositionOrigin.Center;

41 _mapLayer.AddChild(marker, location, position);

42 }

. Line 1 declares a layer that will be placed on top of the Map control. This is where
you can draw any overlay. The Map control will take care of moving the markers as
the map is zoomed or panned.

. This MapLayer is created and added to the Map on lines 6 and 7; a Click event
handler is added on line 8.

. Lines 11 to 42 handle the Click event. First the location is retrieved on lines 15 and
16. This object has information about Latitude and Longitude at the mouse click.

. On lines 18 to 23, a new Ellipse is created. This will be a marker for the location.

. A StackPanel is created, and two TextBlock elements added to it on lines 25 to 35.
The TextBlock elements display the Latitude and Longitude.

CHAPTER 19 Authentication, Event to Command Binding, Random Animations,
Multitouch, Local Communication, and Bing Maps Control

570

 From the Library of Wow! eBook

ptg

. The StackPanel is passed to the ToolTipService, a class that is in charge of display-
ing ToolTips when the mouse is passed over an element (in this case, the marker
Ellipse).

. Finally, the marker is added to the MapLayer on lines 40 and 41.

Run the application, zoom and move to a location, and then click the map. A marker is
displayed. Passing the mouse over it will show the location information.

Getting More Information
This small sample does not do justice to the Silverlight Bing Maps control, which has
many more features. For more information, check the tutorials and documentation avail-
able at http://www.galasoft.ch/sl4-maps.

Summary
This chapter was the third of a series with a collection of features that are not large
enough to fill a whole chapter but very important to help you enhance your Silverlight
applications with advanced functionality. From authenticating your users to using the
Bing Maps control, this chapter also showed how to bind any event to a command when
using a loosely coupled architecture, build random animations that are more lifelike and
less predictable, use multitouch in Silverlight, and enable local messaging between
Silverlight applications. All these features come handy and represent a big progress to
make Silverlight, a very rich application development platform.

In the next chapter, we talk about frameworks that help to build extensible Silverlight
applications according to modern development techniques and architecture.

Summary 571

1
9

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-maps

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Talk about frameworks allow-
ing you to build applications
that can easily be extended
and maintained.

. Explain what dependency
inversion is and use the Unity
framework to build samples.

. Use the Managed
Extensibility Framework MEF
to split an application in
components.

. Download XAP files on
demand to enhance the user
experience at startup and
make it easy to add new func-
tionalities in existing applica-
tions.

. Talk about the MVVM Light
Toolkit, a framework making it
easier to build decoupled
applications.

CHAPTER 20

Building Extensible and
Maintainable
Applications

In this chapter, we investigate three frameworks for
Silverlight available at no cost and that allow building
loosely coupled applications that are easy to maintain and
extend:

. Unity by Microsoft Patterns and Practices: This
dependency injection (DI) container allows building
decoupled applications by providing a way to
construct and retrieve objects according to certain
criteria.

. Managed Extensibility Framework (MEF): Used to
extend and compose applications, this framework is
relatively easy to use and quite lightweight. It is in
fact part of the Silverlight SDK.

. MVVM Light Toolkit: We already used parts of this
toolkit in previous chapters to build Silverlight appli-
cations according to the Model-View-ViewModel
pattern.

Inverting Dependencies with
Unity
Modern applications are often object oriented, and can be
composed of a multitude of classes. Organizing them can
get very confusing and lead to code that is impossible to
maintain, modify, or test. To bring clarity, techniques and
patterns were developed by software developers over the
years. There are many discussions about the best way to
implement a solution, and things are evolving constantly.

 From the Library of Wow! eBook

ptg

In this quest, people from the open source community such as Robert C. “Uncle Bob”
Martin proposed a series of principles called SOLID. You can find more information about
these five principles on Uncle Bob’s website at http://www.galasoft.ch/sl4-solid.

The last letter of the acronym stands for dependency inversion. This principle recom-
mends a cleaner implementation of complex classes by externalizing some of their tasks
to other objects (low level components) that are then injected into higher level compo-
nents. In addition, it recommends abstracting the low level components to avoid depend-
ing on a concrete implementation that would make it hard to use the high level
component in another context.

One possible implementation of the dependency inversion principle is by using depen-
dency injection (DI). For example, consider the code in Listing 20.1.

LISTING 20.1 View-Model Without Dependency Injection

1 public class ViewModelWithoutDependencyInjection

2 {

3 public string ServiceAddressUri { get; set; }

4 public ObservableCollection<Item> Items

5 {

6 get; private set;

7 }

8

9 public ViewModelWithoutDependencyInjection()

10 {

11 Items = new ObservableCollection<Item>();

12 if (DesignerProperties.IsInDesignTool)

13 {

14 for (var index = 0; index < 100; index++)

15 {

16 Items.Add(new Item());

17 }

18 }

19 else

20 {

21 var client = new WebClient();

22 client.DownloadStringCompleted += ClientDownloadStringCompleted;

23 client.DownloadStringAsync(new Uri(ServiceAddressUri));

24 }

25 }

26

27 private void ClientDownloadStringCompleted(

28 object sender,

29 DownloadStringCompletedEventArgs e)

30 {

CHAPTER 20 Building Extensible and Maintainable Applications574

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-solid

ptg

31 Items = new ObservableCollection<Item>(ParseResult(e.Result));

32 }

33

34 private IEnumerable<Item> ParseResult(string serial)

35 {

36 var result = new List<Item>();

37 // Parse the result and return items

38 return result.AsEnumerable<Item>();

39 }

40 }

. Lines 14 to 16 create 100 “design-time items” and fill them into the Items
ObservableCollection.

. Lines 21 to 23 are executed in “runtime mode” and connect to a web service.

. Lines 27 to 32 handle the WebClient’s Completed event, and parse the result using
the ParseResult method defined on lines 34 to 39.

This class is not very complex, but already we see some issues:

. The class needs to know whether it is running in design or runtime mode.

. It needs to connect to a web service, and know how to parse the result. If the format
used by the web service changes, the view-model class also needs to be updated.

. It is not easy to test because one single class handles too many scenarios. It is not a
“single responsibility class” as recommended by the S in SOLID.

Developing this kind of “almighty objects” is a sure recipe for headaches later. When the
developer comes back to the class a few weeks (or months or years) later, it is really hard
to remember and understand everything that the class is doing.

Refactoring to Smaller and Simpler Classes
A better way is to decouple the dependencies by introducing abstraction in the applica-
tion to help to extend the application later. We create smaller, more compact classes that
fulfill one single role.

Defining a Contract
An interface is defined for a service in charge of getting the Item instances. Having an
interface-based dependency decouples the objects. This is a contract expressing what the
service can do, but not how it does it. We already mentioned these advantages in
Chapter 7, “Understanding the Model-View-ViewModel Pattern.” The IDataService is
shown in Listing 20.2.

Inverting Dependencies with Unity 575

2
0

 From the Library of Wow! eBook

ptg

LISTING 20.2 IDataService Interface

public interface IDataService

{

void GetItems(Action<IEnumerable<Item>> callback);

}

Because web communication in Silverlight is asynchronous, the GetItems method takes a
callback that should be stored and executed later, when the web service sends the
response. Thanks to the Action generic class, asynchronous programming is much easier
than it used to be.

Injecting the Service
With these preparations, the view-model can be refactored to Listing 20.3. It does not
need to know any more whether it is running in design or runtime mode; instead it gets a
service whose interface is well known. Note also that we can build the view-model before
the services are even built. All we know is the contract. This is beneficial when different
teams work on different parts of the application.

LISTING 20.3 Injecting the Service

1 public class ViewModelWithDependencyInjection

2 {

3 public ObservableCollection<Item> Items

4 {

5 get;

6 private set;

7 }

8

9 public ViewModelWithDependencyInjection(IDataService service)

10 {

11 service.GetItems(items =>

12 {

13 Items = new ObservableCollection<Item>(items);

14 });

15 }

16 }

. On line 9, the constructor now takes one parameter, of type IDataService. This is
the dependency injection that we are talking about: The dependency on the function-
ality (getting the items) is not embedded within the view-model class anymore, it is
injected into it.

Implementing for the Runtime
To get the actual items from the web service at runtime, the DataService class implements
the IDataService interface as shown in Listing 20.4.

CHAPTER 20 Building Extensible and Maintainable Applications576

 From the Library of Wow! eBook

ptg

LISTING 20.4 DataService Implementation

public class DataService : IDataService

{

public string ServiceAddressUri { get; set; }

public void GetItems(Action<IEnumerable<Item>> callback)

{

var client = new WebClient();

client.DownloadStringCompleted += ClientDownloadStringCompleted;

client.DownloadStringAsync(new Uri(ServiceAddressUri), callback);

}

private void ClientDownloadStringCompleted(

object sender,

DownloadStringCompletedEventArgs e)

{

var callback = e.UserState as Action<IEnumerable<Item>>;

callback(ParseResult(e.Result));

}

private IEnumerable<Item> ParseResult(string serial)

{

var result = new List<Item>();

// Parse the result and return items

return result.AsEnumerable<Item>();

}

}

The DataService class is the most complex of the application. It does, however, only one
single thing: It connects to the asynchronous web service and handles the result. This
functionality can be tested extensively using automated tests, and it is easy to make sure
that all the scenarios are working as they should.

Creating Another Implementation for Design Time
Because the interface introduces a neat separation between the consumer of the service
and its provider, it is easy to isolate the design-time code in a separate class. In fact, with
a little more work it would even be possible to move all design-time code to a separate
assembly that is not shipped with the production application. The design time implemen-
tation is shown in Listing 20.5.

LISTING 20.5 DesignDataService Class

public class DesignDataService : IDataService

{

public void GetItems(Action<IEnumerable<Item>> callback)

{

Inverting Dependencies with Unity 577

2
0

 From the Library of Wow! eBook

ptg

var items = new List<Item>();

for (var index = 0; index < 100; index++)

{

items.Add(new Item

{

Message = “Dummy item #” + index

});

}

return items.AsEnumerable<Item>();

}

}

This class has the same GetItems method (as specified by the IDataService interface), but
provides a very different implementation.

Using Other Implementations and Other Services
If needed, it is possible to create other implementations (for example, an implementation
of IDataService used only when the view-model must be tested). In that case, the
TestDataService class should offer the possibility to create different scenarios (for
example, simulating offline mode or returning an empty list of Item instances).

Following this design makes it easy to identify, understand, and maintain service classes,
each with a well-defined functionality.

Setting Up the Services
Listing 20.3 shows a view-model with an injected service. However, nothing shows who is
injecting that service into the constructor. In applications, the creation of objects is typi-
cally handled ad hoc, where it is needed. It is difficult to create the objects in a consistent
manner, taking in account all the dependencies. Also difficult is the resolving of the
objects (that is, finding the right object to use its methods).

To solve these issues, the concept of dependency injection container (sometimes also called
inversion of control (IOC) container) was developed. In short, it is a framework that handles
the creation of objects and that acts as a registry to serve these objects to consumers.
There are multiple dependency injection containers available as open source, such as the
following:

. NInject (http://ninject.org), an open source project that is available for Windows
Presentation Foundation (WPF), Silverlight, and recently for the Windows Phone 7.

. CastleWindsor (http://www.galasoft.ch/sl4-windsor) is a widely used IOC container.

. StructureMap (http://www.galasoft.ch/sl4-structuremap), another open source
project that offers the basic functionality of a DI container plus a lot of additional
features. StructureMap is best suited for large and complex applications.

. Unity (http://unity.codeplex.com) developed by Microsoft’s Patterns and Practices
group, which is lightweight and extensible.

CHAPTER 20 Building Extensible and Maintainable Applications578

 From the Library of Wow! eBook

http://ninject.org
http://www.galasoft.ch/sl4-windsor
http://www.galasoft.ch/sl4-structuremap
http://unity.codeplex.com

ptg

There are also other DI containers available for Silverlight. The four mentioned here are
probably the most used ones at the time of this writing.

Installing Unity
In this sample, the Unity DI container is used to show the principles of DI. A typical DI
container works in two steps: setting up the objects and then resolving the objects. Let’s
see how to do that with Unity with the following steps:

1. Navigate to
http://www.galasoft.ch/sl4-
unityload and download the Unity
2.0 for Silverlight installer (an MSI
file) from the Download section.
Unity is distributed under the MS-
PL license, which is very permis-
sive. You are free to reuse,
distribute, and modify the code as
you want. The complete text of
the MS-PL license can be found at
http://www.galasoft.ch/sl4-mspl.

2. Execute the MSI to install Unity.

3. Download the WhyDependencyInjection application’s start state from
http://www.galasoft.ch/sl4-whydi. Excerpts from this application are shown in list-
ings 20.2 to 20.5. After the zip file is downloaded, unblock it by right-clicking it in
Windows Explorer, selecting Properties, and clicking the Unblock button (if avail-
able). Then, extract all the files on your hard drive.

4. Start the WhyDependencyInjection.sln file in Visual Studio 2010.

5. Right-click the References folder and select Add Reference from the context menu.

6. In the Add Reference dialog, select the Browse tab and find the folder C:\Program
Files\Microsoft Unity Application Block 2.0 for Silverlight\Bin. On Win64
machines, this folder is in Program Files (x86).

7. Select the DLL named Microsoft.Practices.Unity.Silverlight.dll and click OK.

Setting Up the Container
The DI container must be configured to know which object to return when certain condi-
tions are met. We can setup the container within our ViewModelLocator class with the
following steps:

1. In the folder ViewModel, open the file named ViewModelLocator.cs.

2. In the ViewModelLocator.cs file, add a using directive to the namespace
Microsoft.Practices.Unity at the top of the page.

3. Modify the ViewModelLocator class as shown in Listing 20.6.

Inverting Dependencies with Unity 579

2
0

WA R N I N G

Using the Silverlight Version of Unity

The documentation available for Unity online
often refers to the full .NET version, and not
to the Silverlight version. Some features
(such as XML-based configuration) are not
available in the Silverlight version. Do not get
confused!

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-unityload
http://www.galasoft.ch/sl4-unityload
http://www.galasoft.ch/sl4-mspl
http://www.galasoft.ch/sl4-whydi

ptg

LISTING 20.6 ViewModelLocator Class

1 public class ViewModelLocator

2 {

3 public static IUnityContainer Container

4 {

5 get; private set;

6 }

7

8 public static void Setup()

9 {

10 if (Container != null)

11 {

12 // Setup already done

13 return;

14 }

15

16 Container = new UnityContainer();

17

18 // Setup the service

19 if (DesignerProperties.IsInDesignTool)

20 {

21 Container.RegisterType<IDataService, DesignDataService>();

22 }

23 else

24 {

25 Container.RegisterType<IDataService, DataService>();

26 }

27

28 // Setup the viewmodel

29 Container.RegisterType<ViewModelWithDependencyInjection>(

30 new ContainerControlledLifetimeManager());

31 }

32

33 public ViewModelWithDependencyInjection Main

34 {

35 get

36 {

37 return Container.Resolve<ViewModelWithDependencyInjection>();

38 }

39 }

40 }

. Lines 3 to 6 declare a Container of type IUnityContainer.

. Lines 8 to 31 perform the Setup operation. This method must be called once when
the application starts. We will take care of that later in this chapter.

CHAPTER 20 Building Extensible and Maintainable Applications580

 From the Library of Wow! eBook

ptg

. Line 16 creates the new UnityContainer instance. This class implements the
IUnityContainer interface.

. Line 21 is executed if the application is running in design mode (in Expression
Blend or Visual Studio designer). It registers the concrete type DesignDataService for
the interface IDataService. This instructs the Container to create and return an
instance of DesignDataService every time that the IDataService interface is specified
in the code.

. Line 25 registers the concrete type DataService for the same interface. This will
happen at runtime.

. Lines 29 and 30 register the view-model type. Note that we do not use an interface
here, because it is not strictly speaking necessary to abstract this simple viewmodel
class.

. Line 37 resolves the instance of the ViewModelWithDependencyInjection class. To
facilitate the work in Expression Blend, this instance is exposed through the Main
property.

Inverting Dependencies with Unity 581

2
0

T I P

Using a Generic ViewModelLocator

It would be nicer to use a generic ViewModelLocator instead of declaring one property per
view-model type. There is a lot of discussion and research going on in the programmer
community around this topic. The most promising approach is one using indexers to resolve
the view-model according to a key, in a generic manner. There is a bug in Silverlight 4
making this method cumbersome, as explained by John Papa (Silverlight evangelist) at
http://www.galasoft.ch/sl4-vml. Also, some blendability is lost because Blend cannot display
properties for the indexed view-models.

4. In MainPage.xaml, set the DataContext of the root UserControl to a data binding as
shown in Listing 20.7. The ViewModelLocator is already available as a global resource
(named Locator) in the file App.xaml.

LISTING 20.7 Setting the DataContext

DataContext=”{Binding Source={StaticResource Locator}, Path=Main}”

Using a Lifetime Manager
Notice that line 30 of Listing 20.6 passes a new ContainerControlledLifetimeManager
instance to the Container’s RegisterType method. This special class handles the lifetime of
the ViewModelWithDependencyInjection instance. There are multiple lifetime managers
available in Unity, such as the following (nonexhaustive list):

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-vml

ptg

. TransientLifetimeManager: Instructs the Container to return a different instance of
the registered object every time that Resolve is called. This is the default lifetime
manager, and the one that is used when RegisterType is called without arguments.

. ContainerControlledLifetimeManager: Instructs the Container to register an object as
a singleton instance. The same instance will always be returned when the Resolve
method is called.

. ExternallyControlledLifetimeManager: Provides a way for external classes to control
the object’s lifetime.

. PerThreadLifetimeManager: Instructs the Container to return the same instance of
the registered object every time that Resolve is called, within the same thread.
Within another thread, another instance will be used. This lifetime manager can be
especially useful to avoid cross-thread access exceptions. You’ll learn more about
these exceptions in Chapter 22, “Advanced Development Techniques.”

Other Ways to Register
In addition to the RegisterType method used in Listing 20.6, it is possible to use the
RegisterInstance method. This is useful when you already have an instance of the given
type that was created somewhere else in the application, and you want to pass it to the
Container so that consumers can resolve it.

Calling the Setup Method and Wiring Up
The application is now ready to call the ViewModelLocator’s Setup method. This can be
done as follows:

1. In ViewModelLocator.cs, add a static constructor as shown in Listing 20.8.

LISTING 20.8 Calling Setup

static ViewModelLocator()

{

Setup();

}

2. Open MainPage.xaml and add a ListBox to the LayoutRoot Grid as shown in Listing
20.9.

LISTING 20.9 Adding a ListBox

<Grid x:Name=”LayoutRoot”

Background=”White”>

<ListBox Margin=”10”

ItemsSource=”{Binding Items}”>

<ListBox.ItemTemplate>

CHAPTER 20 Building Extensible and Maintainable Applications582

 From the Library of Wow! eBook

ptg

<DataTemplate>

<TextBlock Text=”{Binding Message}” />

</DataTemplate>

</ListBox.ItemTemplate>

</ListBox>

</Grid>

Run the application to test it. After a short wait (due to the asynchronous loading of a
text file from the Internet, the parsing and populating of the Items collection), a series of
words appear in the ListBox.

Testing in Blend
Thanks to the way that the view-model is set up in resources within the
ViewModelLocator, and thanks to the DesignDataService class, design-time data can be
seen in Expression Blend, making the work of the designer much easier. You can verify
this by right-clicking the MainPage.xaml in the Visual Studio Solution Explorer and
choosing Open in Blend from the context menu. The ListBox appears populated.

Discovering More About Unity
Unity has other interesting features, too, such as the following:

. The ability to register child containers to create a hierarchy of containers if needed

. Wiring up existing objects by using the BuildUp method

. Cleaning up existing objects by using the Teardown method

. And more

For more information about Unity and its features, start on the Codeplex site at
http://unity.codeplex.com.

DI is a very useful mechanism to simplify the lifetime management of complex applica-
tions. In this section, we talked about the Unity DI container created by the Microsoft
Patterns and Practices group, but this is not the only DI container. Make sure to do some
research before you pick the best suited DI container for your needs!

Composing an Application with MEF
The Managed Extensibility Framework (MEF) is an effort from Microsoft similar to the
Unity DI container. The goal of this innovative framework is to facilitate the composition
of applications to make them extensible. This was developed in the first place to help the
Visual Studio team with their task of rewriting parts of Visual Studio 2010 in Windows
Presentation. MEF is not just for large applications like Studio, however, but also brings a
lot of values to smaller WPF or Silverlight applications.

Composing an Application with MEF 583

2
0

 From the Library of Wow! eBook

http://unity.codeplex.com

ptg

One interesting feature of MEF is the possibility to automatically discover components
without needing a central object to do the setup, such as the ViewModelLocator class we
implemented in the section about Unity. Instead, the information is passed to MEF using
attributes.

Another great feature of MEF, especially when it comes to Silverlight, is the ability to
download parts of the application on demand. Instead of packing all the components in a
large XAP file that takes a long time to download, the user can load a basic framework
first; then the application will download parts on demand and make them available to
the user.

Exporting and Importing
Although MEF can be used to replace (at least partly) a DI container, it does not exactly
work the same way, as shown at http://www.galasoft.ch/sl4-mefioc. MEF relies on an
export/import mechanism, where exports are services that a component offers, and
imports are services that a component consumes.

Using a Simple Export
To witness a simple export/import, follow these steps:

1. Create a new Silverlight application and name it MefSample.

2. Right-click the References folder, select Add Reference, and then select the .NET tab.

3. Select the two DLLs named System.ComponentModel.Composition and
System.ComponentModel.Composition.Initialization, and then click OK.

4. Right-click the Silverlight project and select Add, Class from the context menu.
Name the new file IMessageService.cs.

5. Implement IMessageService as shown in Listing 20.10.

LISTING 20.10 IMessageService Interface

public interface IMessageService

{

void ShowMessage(string message);

}

6. Add a new class to the project and name it MessageService.cs. Its implementation is
shown in Listing 20.11.

LISTING 20.11 MessageService Class

1 [Export(typeof(IMessageService))]

2 public class MessageService : IMessageService

3 {

4 public void ShowMessage(string message)

CHAPTER 20 Building Extensible and Maintainable Applications584

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-mefioc

ptg

5 {

6 MessageBox.Show(message);

7 }

8 }

7. Modify the MainPage class as in Listing 20.12.

LISTING 20.12 Importing the Service

1 public partial class MainPage : UserControl

2 {

3 [Import]

4 public IMessageService MyMessageService

5 {

6 get;

7 set;

8 }

9

10 public MainPage()

11 {

12 CompositionInitializer.SatisfyImports(this);

13 InitializeComponent();

14 MyMessageService.ShowMessage(“Page is created”);

15 }

16 }

8. Run the application. The MessageBox should appear.

This small sample shows the heart of MEF: the import/export system. There are three
important components:

. Line 1 in Listing 20.11 defines that the MessageService class is an import for the
IMessageService interface. This is roughly equivalent to the way that we registered
types in Unity in the previous section of this chapter.

. Lines 3 to 8 in Listing 20.12 declare a property of type IMessageService and specify
that it must be imported.

. Line 12 in the MainPage constructor (Listing 20.12) composes the parts by calling the
CompositionInitializer.SatisfyImports method.

When the CompositionInitializer is called, it searches all the referenced assemblies for
parts that satisfy the import specification. In this case, it finds the MessageService class
and calls the constructor on it.

Composing an Application with MEF 585

2
0

 From the Library of Wow! eBook

ptg

Refactoring in Multiple Assemblies
The interesting thing is that it does not matter where the classes are located, as shown
with the following steps:

1. Right-click the MefSample solution in the Solution Explorer and add a new project.

2. In the Add New Project dialog, select a Silverlight class library and name it
MefSample.Services. Then click OK.

3. In MefSample.Services, delete the file Class1.cs.

4. Right-click the References folder of the MefSample.Services project and select Add
Reference.

5. In the .NET tab, select the DLL System.ComponentModel.Composition.

6. Copy the MessageService.cs and IMessageService.cs files from MefSample to
MefSample.Services. (You can just drag them in the Solution Explorer.) Then delete
these two files in the MefSample project.

7. In MefSample, right-click the References folder and select Add Reference.

8. Select the Projects tab and add the MefSample.Services project to the references.

Run the application and see how the MessageBox appears again. Of course having the
service in its own assembly barely makes sense for such a small application, but consider
that the assemblies are now cleanly sorted according to their functionality. It is possible
to have different teams working on each project without interference. Also, we didn’t
have to change the client application; the import/export mechanism works in exactly the
same way.

Composing with Constructor Parameters
In the MefSample application, the default constructor of the MessageService class is
called. This is very limiting; instead, it is possible to define a constructor with parameters.
For instance, imagine that you have somewhere in the application a Logger class, imple-
menting an ILogger interface and being exported (just like we export the MessageService
class). This Logger can be passed to the MessageService constructor with the following
steps:

1. With the MefSample application open in Visual Studio, edit the MessageService class
as shown in Listing 20.13.

LISTING 20.13 Adding a Constructor to the MessageService Class

1 [Export(typeof(IMessageService))]

2 public class MessageService : IMessageService

3 {

4 private ILogger _logger;

5

6 [ImportingConstructor]

CHAPTER 20 Building Extensible and Maintainable Applications586

 From the Library of Wow! eBook

ptg

7 public MessageService(ILogger logger)

8 {

9 _logger = logger;

10 }

11

12 public void ShowMessage(string message)

13 {

14 MessageBox.Show(message);

15 _logger.Log(message);

16 }

17 }

. Lines 6 to 10 define the new constructor and mark it as the constructor to be used
when importing this type. The class can have multiple constructors, but only one
can be used for the import.

. On line 7, notice the parameter of type ILogger. When MEF composes the parts, it
will check whether such a class is available for this contract in the catalog of
exports.

2. Modify the MainPage constructor as shown in Listing 20.14.

LISTING 20.14 Using a Constructor with Parameters

1 public MainPage()

2 {

3 var catalog = new AssemblyCatalog(

4 typeof(IMessageService).Assembly);

5 var container = new CompositionContainer(catalog);

6 container.ComposeExportedValue(new Logger());

7 container.ComposeParts(this);

8

9 InitializeComponent();

10 MyMessageService.ShowMessage(“Page is created”);

11 }

. Lines 3 and 4 create an AssemblyCatalog that will be used to scan the assembly in
which IMessageService is defined. (This is the MefSample.Services assembly.)

. Line 5 creates a new CompositionContainer for this assembly.

. Line 6 adds a Logger to the catalog of exports. This will be passed to the logger
parameter in the MessageService constructor.

. Finally, line 7 composes the parts.

Composing an Application with MEF 587

2
0

 From the Library of Wow! eBook

ptg

This way of doing is more flexible but also more complex. In fact, the
CompositionInitializer.SatisfyImport is a shortcut that can be used for simple cases.

There are multiple kinds of catalogs, each able to scan different sources to get the classes
corresponding to a given Import attribute: AssemblyCatalog scans an assembly;
DeploymentCatalog (that we will use in the “Downloading on Demand” section) can
download content from the web server; AggregateCatalog combines multiple catalogs;
and more. Finally, should the built-in classes not be sufficient, you can also create your
own catalog and container class.

Composing a Hierarchy of Objects
It is very common that an imported object also needs to import other objects. MEF can
take care of this scenario quite easily, as shown with the following steps:

1. Download the MefHierarchy-Start.zip file from http://www.galasoft.ch/sl4-mef.
Unblock it by right-clicking it, selecting file properties, and clicking the Unblock
button (if available). Then, extract the files.

2. In this folder, open the MefHierarchy.sln solution in Visual Studio 2010.

3. The solution is similar to the application built before with Unity, but not exactly.
For example, there is no setup in the ViewModelLocator, because MEF will take care
of that.

4. The DataService is now an abstract class. We will see in a moment why. A concrete
class deriving from DataService (which in turn implements the IDataService inter-
face) is needed. Add a class to the ViewModel folder and name is
MorningDataService.cs.

5. Implement the MorningDataService class as shown in Listing 20.15. It is essentially
there just to provide the URI leading to a text file. The rest of the functionality is
implemented in the abstract class DataService. MorningDataService is also marked as
an Export for the IDataService interface.

LISTING 20.15 MorningDataService Class

[Export(typeof(IDataService))]

public class MorningDataService : DataService

{

public override string ServiceAddressUri

{

get

{

return “http://www.galasoft.ch/sl4u/Code/Chapter20/sampleam.txt”;

}

}

}

CHAPTER 20 Building Extensible and Maintainable Applications588

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-mef

ptg

6. Open ViewModelWithMef.cs and add an Export attribute to this class, as shown in
Listing 20.16.

LISTING 20.16 Adding an Export Attribute

[Export(typeof(ViewModelWithMef))]

public class ViewModelWithMef : INotifyPropertyChanged

7. In the ViewModelWithMef class, import the data service with the property shown in
Listing 20.17.

LISTING 20.17 Importing the IDataService

[Import]

public IDataService CurrentService

{

get;

set;

}

8. Implement the GetItems method shown in Listing 20.18.

LISTING 20.18 GetItems Method

public void GetItems()

{

CurrentService.GetItems(items =>

{

Items = new ObservableCollection<Item>(items);

});

}

9. Open the ViewModelLocator and modify it as shown in Listing 20.19. This class is
responsible for composing all the parts and then calling the GetItems method on
the ViewModelWithMef class.

LISTING 20.19 ViewModelLocator Class

public class ViewModelLocator

{

[Import]

public ViewModelWithMef Main

{

get;

set;

Composing an Application with MEF 589

2
0

 From the Library of Wow! eBook

ptg

}

public ViewModelLocator()

{

CompositionInitializer.SatisfyImports(this);

Main.GetItems();

}

}

10. Run the application. The content of the file gets loaded and parsed and then
displayed into a ListBox.

Contrary to what happened before in the Unity sample, all the exports and imports were
parameterized within the classes. This is an advantage of MEF: The configuration is less
complex and more distributed than with class DI containers. On the other hand, modify-
ing the configuration requires modifying the exported class.

Another thing to note is that CompositionInitializer.SatisfyImport was called only once
by the ViewModelLocator. The import within the ViewModelWithMef class (which needs to
import an IDataService) is handled automatically by MEF.

Importing Multiple Instances
MEF also offers the possibility to import multiple concrete classes for a given contract.
This is very useful if you are not sure at design time which class is going to be picked at
runtime. The following steps use metadata to define conditions. A lazy instantiation
mechanism is used. This means that the classes will be created in memory on demand,
and only if needed. Follow these steps:

1. Add an interface to the Model folder and name it IDataServiceInfo as in Listing
20.20. This interface will be used to define metadata information about the service,
and allow us to pick the correct one. It specifies that one bool property must be
available, named IsForTheMorning.

LISTING 20.20 IDataServiceInfo Interface

public interface IDataServiceInfo

{

bool IsForTheMorning

{

get;

}

}

2. Add a new class to the Model folder and name it AfternoonDataService. The imple-
mentation is shown in Listing 20.21.

CHAPTER 20 Building Extensible and Maintainable Applications590

 From the Library of Wow! eBook

ptg

LISTING 20.21 AfternoonDataService Class

1 [Export(typeof(IDataService))]

2 [ExportMetadata(“IsForTheMorning”, false)]

3 public class AfternoonDataService : DataService

4 {

5 public override string ServiceAddressUri

6 {

7 get

8 {

9 return “http://www.galasoft.ch/sl4u/Code/Chapter20/samplepm.txt”;

10 }

11 }

12 }

. On line 1, the Export attribute is specified. It uses the same contract (IDataService)
as the MorningDataService class.

. The ExportMetadata attribute is specified on line 2. Note that this attribute uses a
string to specify the name of the metadata to export (in this case, the
IsForTheMorning property that the IDataServiceInfo interface specified). Working
with strings is easy but dangerous because of the risk of typos. It is also possible to
use a custom attribute instead, as shown at http://www.galasoft.ch/sl4-metadata.

. Finally, the ServiceAddressUri property returns a different path than in the
MorningDataService class. (The filename is samplepm, whereas it was sampleam for the
morning!)

3. Add an ExportMetadata attribute to the MorningDataService class, too, as shown in
Listing 20.22. This time the IsForTheMorning metadata is set to true.

LISTING 20.22 MorningDataService Class

[Export(typeof(IDataService))]

[ExportMetadata(“IsForTheMorning”, true)]

public class MorningDataService : DataService

4. In the ViewModelWithMef class, remove the CurrentService property and instead add
the code shown in Listing 20.23.

LISTING 20.23 Importing the Services

1 [ImportMany]

2 public Lazy<IDataService, IDataServiceInfo>[] Services

3 {

4 get;

5 set;

6 }

Composing an Application with MEF 591

2
0

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-metadata

ptg

. Line 1 specifies the ImportMany attribute. This is used when multiple instances can
be found for a given contract. Note that in consequence, the property is an array.

. On line 2, the type of the content of the array is set to Lazy<IDataService,
IDataServiceInfo>. The advantage of using the Lazy generic class is that the
IDataService instance that the ViewModelWithMef class needs will be created on
demand. This way the memory consumption and the performance are optimized.

5. Because multiple services implement the contract now, the ViewModelWithMef class
needs to decide which instance to use, according to the metadata. This can be done
with the code in Listing 20.24, to be added to the ViewModelWithMef class.

LISTING 20.24 Getting the Right Data Service

1 private IDataService CurrentService

2 {

3 get

4 {

5 IDataService currentService = null;

6

7 foreach (var service in Services)

8 {

9 if (DateTime.Now.Hour < 12)

10 {

11 if (service.Metadata.IsForTheMorning)

12 {

13 currentService = service.Value;

14 break;

15 }

16 }

17 else

18 {

19 if (!service.Metadata.IsForTheMorning)

20 {

21 currentService = service.Value;

22 break;

23 }

24 }

25 }

26

27 return currentService;

28 }

29 }

. Lines 7 to 25 loop through all the imported services.

CHAPTER 20 Building Extensible and Maintainable Applications592

 From the Library of Wow! eBook

ptg

. On line 9, the time of the day is read. If the code is executed in the morning, lines
11 to 15 are run. Otherwise, lines 19 to 23 are run.

. On line 11, the Metadata property of the Lazy class is used to get information about
the type without actually creating it. The IDataServiceInfo interface is used for this,
and the metadata that was exported by the MorningDataService and
AfternoonDataService classes is read.

. If the condition is met, the Value property is used to get an instance of this class. It
is only at this instant that the instance is created.

. The same happens on lines 19 and 21 for the afternoon.

Run the application and observe how a different file is displayed depending on the time
of the day. You can simulate a different hour by changing the clock of your computer.
Having the possibility to import multiple instances implementing a contract is a very
handy feature, even more so thanks to the lazy instantiation. We will use this feature
again in the “Downloading on Demand” section.

Using Other Kinds of Export
The export mechanism in MEF can be configured quite precisely (for example, with the
following scenarios):

. In this sample, all the instances were created without any special policy. As a conse-
quence, a different instance of the class is created every time that an import is
taking place. This can be modified by adding a PartCreationPolicy attribute on the
exported class. You can find more information about PartCreationPolicy at
http://www.galasoft.ch/sl4-partcreation.

. Not just classes can be exported, but also single properties of a given class. This
allows selecting precisely which properties are visible by the importer. Also, it allows
exporting properties of a sealed class.

. Methods can be exported by using a type of Action<T> for the Export attribute’s
contract. The Import attribute must be placed on a property of the same Action<T>
type.

More information about MEF and its configuration can be found on the Codeplex site at
http://www.galasoft.ch/sl4-mefguide.

Using MEF in Blend (or Not)
Unfortunately, the export/import mechanism provided by MEF does not work in Blend.
Because of this, it is not possible to use MEF to create a design-time service like we did in
the section about Unity.

Using MEF to wire the views, viewmodels, and services is very convenient at runtime,
however. To mitigate the issue in Blend and provide design-time data, consider using
design-time data context as shown at http://www.galasoft.ch/sl4-datacontext or the

Composing an Application with MEF 593

2
0

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-partcreation
http://www.galasoft.ch/sl4-mefguide
http://www.galasoft.ch/sl4-datacontext

ptg

MEFedMVVM framework developed by Marlon Grech and available at
http://mefedmvvm.codeplex.com. Another solution to consider is Glenn Block’s Brook
available at http://github.com/glennblock/Brook.

Downloading on Demand
In the previous pages, you saw one aspect of MEF: the export/import mechanism.
Another great feature of the Managed Extensibility Framework is the ability to load and
integrate parts on demand, even if these parts are located in other DLLs or even other
XAP files. For Silverlight applications, this is very convenient: Imagine a large application
with hundreds of screens. It is unlikely that a user always consumes all the screens. By
splitting the application in multiple XAPs, the amount of data transferred is minimized:
only the screens that are needed by the user are downloaded. This also reduces the initial
loading time before the user can start using the application and improves the user experi-
ence. On the other hand, a delay will occur every time that a new XAP file is imported,
and this can complicate transitions.

Any object can be exported/imported by MEF; it doesn’t matter what the XAP file
contains: XAML (for example, a ResourceDictionary), libraries, UI elements, pictures, and
so forth. There are however a few caveats, listed at http://www.galasoft.ch/sl4-mefcatalog.
In this sample, we build a search application with multiple plug-ins using the Bing API.
Follow these steps:

1. Download the two files MefPlugins-Start.zip and MefPlugins.BingImageSearch-
Start.zip from http://www.galasoft.ch/sl4-mef. As usual, unblock the zip files if
needed (in the file properties dialog), and then extract all the files to your hard
drive.

2. In the MefPlugins-Start folder, open MefPlugins.sln in Visual Studio.

3. To use the Bing API, an App ID is needed. This is a unique key that is passed to the
web service with each call. To get an App ID, go to http://www.galasoft.ch/sl4-
bingappid and follow the indications. Then, copy the App ID into
BingTextSearch.xaml.cs in the MefPlugins.BingTextSearch project, where you see the
text “Copy your App ID here”.

4. In the MefPlugins.BingTextSearch project, expand the Service References folder.

5. Right-click the BingSearchService reference and select Configure Service Reference
from the context menu.

6. In the Service References Settings dialog, in the Address field, enter the same App ID
in the URL, where the text ENTERAPPID is found. Then click OK. Note that you need
to be online for this operation to succeed.

7. Check the code of the BingTextSearch class and see how the Bing service is used. For
more information (and samples) about the Bing web service, refer to
http://www.galasoft.ch/sl4-bing.

CHAPTER 20 Building Extensible and Maintainable Applications594

 From the Library of Wow! eBook

http://mefedmvvm.codeplex.com
http://github.com/glennblock/Brook
http://www.galasoft.ch/sl4-mefcatalog
http://www.galasoft.ch/sl4-mef
http://www.galasoft.ch/sl4-bingappid
http://www.galasoft.ch/sl4-bingappid
http://www.galasoft.ch/sl4-bing

ptg

8. Set the MefPlugins.Web project as
Startup project and the
MefPluginsTestPage.html page as
Start page; then run the applica-
tion. Enter a search query in the
TextBox, and then click the Search
button. After a short wait, web
results should be seen in the
ListBox.

9. Note that building this application
creates a new folder named
Contracts where the two zip files
were extracted in Step 1, and the
MefPlugins.Contracts.dll assembly
is copied into that folder.

Refactoring to MEF
In the current state, the BingTextSearch plug-in is added in the MainPage.xaml markup as
the fixed content of a tab item. This is not very flexible or extensible. Instead, we will
now refactor the application to use MEF. Then, we will see how to create and load
another plug-in dynamically.

1. In MainPage.xaml, find the TabControl named MyTabControl. Remove the TabItem
that it contains so that the result is like Listing 20.25.

LISTING 20.25 Empty TabControl

<sdk:TabControl Margin=”10,0”

Grid.Row=”1”

x:Name=”MyTabControl” />

2. In the MefPlugins project, add a reference to the two DLLs
System.ComponentModel.Composition and
System.ComponentModel.Composition.Initialization (with the Add Reference
dialog’s .NET tab). This last DLL is only needed when you want to call the
SatisfyImports method or the ExportFactory class.

3. In MainPage.xaml.cs, modify the Engines property as shown in Listing 20.26. Note
the usage of the ImportMany attribute with the AllowRecomposition parameter set to
true. This allows reloading the list of plug-ins after the application has started. In
this listing, we use a new class available in MEF for Silverlight 4, called Lazy. This
class helps us by creating the ISearchEngine instances only when they are really
needed (lazy instantiation).

Composing an Application with MEF 595

2
0

T I P

Using a Simpler Protocol

Using a SOAP based web service as in this
sample is probably the easiest way to
connect to Bing services, but it is not the
most efficient. Other alternatives exist, such
as using a JSON-based protocol (like we did
in Silverlight 2 Unleashed with the Flickr
services). For more information, refer to the
Bing API documentation.

 From the Library of Wow! eBook

ptg

LISTING 20.26 Importing the Engines

[ImportMany(AllowRecomposition = true)]

public Lazy<ISearchEngine>[] Engines

{

get;

set;

}

4. Note that the type of the contract used is ISearchEngine. This interface is defined in
the MefPlugins.Contracts assembly, which is referenced by both the MefPlugins
application and the MefPlugins.BingTextSearch plug-in assembly. It defines three
members:

. SearchType (string, returns a description of the kind of search that the plug-in
performs)

. SearchView (UIElement, a representation of the search results; for most plug-ins, this
is simply a reference to this, the main UserControl itself)

. The Search method that performs the query.

5. Modify the MainPage constructor as shown in Listing 20.27. The manual initializa-
tion of the Engines library is removed. Instead, MEF is used to scan the referenced
assemblies and load the local plug-ins.

LISTING 20.27 Initializing the Main Page

public MainPage()

{

InitializeComponent();

CompositionInitializer.SatisfyImports(this);

Compose();

}

6. Implement the Compose method as shown in Listing 20.28.

LISTING 20.28 Compose Method

1 private void Compose()

2 {

3 foreach (var engine in Engines)

4 {

5 var found = false;

6 foreach (TabItem tab in MyTabControl.Items)

7 {

8 if (tab.Header.ToString()

9 == engine.Value.SearchType)

CHAPTER 20 Building Extensible and Maintainable Applications596

 From the Library of Wow! eBook

ptg

10 {

11 found = true;

12 break;

13 }

14 }

15

16 if (found)

17 {

18 continue;

19 }

20

21 var newTab = new TabItem

22 {

23 Header = engine.Value.SearchType,

24 Content = engine.Value.SearchView

25 };

26

27 MyTabControl.Items.Add(newTab);

28 }

29 }

. Lines 3 to 14 inspect each engine that was loaded and compares their SearchType
property to the Header of each TabItem. This avoids reloading engines that are
already displayed in the TabControl.

. Should the inspected engine be new, a new TabItem is created on lines 21 to 25. The
Content property of the TabItem is set to the SearchView property of the plugin
(which in most cases returns the UserControl itself).

. Then on line 27 the new TabItem is added to the TabControl.

7. Modify the SearchClick event handler as shown in Listing 20.29.

LISTING 20.29 Modifying the SearchClick Event Handler

private void SearchClick(object sender, RoutedEventArgs e)

{

foreach (var engine in Engines)

{

engine.Value.Search(QueryTextBox.Text);

}

}

8. The BingTextSearch plugin needs to be adapted for MEF, too. First, in the
MefPlugins.BingTextSearch project, add a reference to the
System.ComponentModel.Composition assembly.

Composing an Application with MEF 597

2
0

 From the Library of Wow! eBook

ptg

9. Open BingTextSearch.xaml.cs and add an Export attribute to the BingTextSearch
class as shown in Listing 20.30. This class already implements the ISearchEngine
contract, so nothing else needs to be changed.

LISTING 20.30 Exporting BingTextSearch

[Export(typeof(ISearchEngine))]

public partial class BingTextSearch : UserControl, ISearchEngine

10. Run the application again. The exact same functionality is reproduced, but this time
MEF is integrated. Now we will modify the application to load an additional plug-in
dynamically.

Preparing a Service
The application needs a service on the web server to deliver information about available
plug-ins. This can be done with the following steps:

1. Right-click the MefPlugins.Web application. This is the web server that serves the
Silverlight application.

2. Add a new item and select a generic handler from the Web section. Name this
service PluginsService.ashx. This is a very simple Asp.NET service that can easily
process simple requests.

3. Open PluginsService.ashx.cs and modify the ProcessRequest method as shown in
Listing 20.31. This method scans the Plugins folder and returns a list of all the XAP
files found in this folder. The format of the Response is very simple: It simply has
one XAP file name per line. Note that the service could also have been implemented
with WCF for example.

LISTING 20.31 ProcessRequest Method in the PluginsService Class

private const string PluginsFolderName = “Plugins/”;

public void ProcessRequest(HttpContext context)

{

var pluginFolder = new DirectoryInfo(

HttpContext.Current.Server.MapPath(

PluginsFolderName));

var response = new StringBuilder();

if (pluginFolder.Exists)

{

foreach (var xap in pluginFolder.GetFiles(“*.xap”))

{

response.AppendLine(

PluginsFolderName + xap.Name);

CHAPTER 20 Building Extensible and Maintainable Applications598

 From the Library of Wow! eBook

ptg

}

}

context.Response.ContentType = “text/plain”;

context.Response.Write(response);

}

4. Add a new folder to the web project and name it Plugins.

Preparing a Plug-in
In Step 1 in the preceding section, you downloaded and extracted two zip files. The first is
the main application we modified earlier. The second is another plug-in that also imple-
ments the ISearchEngine interface. We can modify it to be loaded by MEF with the
following steps:

1. Open the MefPlugins.BingImageSearch.sln solution in the
MefPlugins.BingImageSearch folder.

2. Copy the Bing App ID into BingImageSearch.xaml.cs, where the text “Copy your App
ID here” is found.

3. Expand the Service References folder.

4. Right-click the BingSearchService reference and select Configure Service Reference
from the context menu.

5. In the Service References Settings dialog, in the Address field, enter the same App ID
in the URL, where the text ENTERAPPID is found.

6. Select the MefPlugins.BingImageSearch.Web project as Startup Project and the
index.html page as Start Page. Then run the application, enter a query and see the
result. The application is automatically loading a query for the search term
silverlight.

The plug-in is quite similar to the BingTextSearch that was used before, but instead of a
web search, an image search is performed. Note that this is a normal Silverlight applica-
tion with a MainPage.xaml, App.xaml, and so forth. When the application is built, a XAP
file is created, which is what MEF needs to dynamically download the code.

Strictly speaking, the MainPage.xaml and App.xaml pages are not needed when the plug-
in is loaded by the MefPlugins application, and could be safely removed. However,
leaving them in the application is convenient because it allows testing the plug-in as a
standalone application. Now we can convert this plug-in to MEF as follows:

1. In the MefPlugins.BingImageSearch project, add a reference to the
System.ComponentModel.Composition DLL.

2. Add an Export attribute to the BingImageSearch class, exactly as was done in Listing
20.30 for the BingTextSearch class.

3. Build the application.

Composing an Application with MEF 599

2
0

 From the Library of Wow! eBook

ptg

4. Right-click the MefPlugins.BingImageSearch project (not the Solution!) and select
Open Folder in Windows Explorer from the context menu.

5. Copy the file MefPlugins.BingImageSearch.xap from the Bin\Debug folder and paste
this file into the Plugins folder that was created in the web application earlier.

Modifying the Application to Load Plug-ins
Finally, the MefPlugins application needs to trigger the loading of the plug-ins with the
following steps:

1. In the MefPlugins project, modify the MainPage constructor as shown in Listing
20.32. Instead of using the CompositionInitializer.SatisfyImport shortcut, we are
using a catalog to scan the plug-in assembly. Later, other catalogs will be added to
load the additional XAP files over the wire.

LISTING 20.32 Modifying the MainPage Constructor

private static AggregateCatalog _aggregateCatalog;

private CompositionContainer _container;

private string _baseAddress;

private Dictionary<string, DeploymentCatalog> _catalogs

= new Dictionary<string, DeploymentCatalog>();

public MainPage()

{

InitializeComponent();

_aggregateCatalog = new AggregateCatalog();

_aggregateCatalog.Catalogs.Add(

new AssemblyCatalog(

typeof(BingTextSearch.BingTextSearch).Assembly));

_container = new CompositionContainer(_aggregateCatalog);

var xapUri = App.Current.Host.Source;

_baseAddress = xapUri.AbsoluteUri.Substring(

0, xapUri.AbsoluteUri.IndexOf(xapUri.AbsolutePath))

+ “/”;

_container.ComposeParts(this);

Compose();

LoadPlugins();

}

2. Implement the LoadPlugins method as shown in Listing 20.33. This method uses a
WebClient to ask the PluginsService implemented before what XAP files are found
in the Plugins folder. When the service returns the list of XAP files, the Result is
parsed, and the AddXap method is called for each XAP file.

CHAPTER 20 Building Extensible and Maintainable Applications600

 From the Library of Wow! eBook

ptg

LISTING 20.33 LoadPlugins Method

private void LoadPlugins()

{

var serviceAddress = _baseAddress

+ “PluginsService.ashx?”

+ DateTime.Now.Ticks;

var client = new WebClient();

client.DownloadStringCompleted += client_DownloadStringCompleted;

client.DownloadStringAsync(new Uri(serviceAddress));

}

void client_DownloadStringCompleted(

object sender,

DownloadStringCompletedEventArgs e)

{

var plugins = e.Result.Split(

new string[] { Environment.NewLine },

StringSplitOptions.RemoveEmptyEntries);

foreach (var plugin in plugins)

{

AddXap(_baseAddress + plugin);

}

}

3. Implement the AddXap method in Listing 20.34.

LISTING 20.34 AddXap Method

1 private void AddXap(string uri)

2 {

4 DeploymentCatalog catalog;

5 if (!_catalogs.TryGetValue(uri, out catalog))

6 {

7 catalog = new DeploymentCatalog(

8 new Uri(uri, UriKind.Absolute));

9 _aggregateCatalog.Catalogs.Add(catalog);

10 catalog.DownloadCompleted += (s, e) =>

11 {

12 if (e.Error == null

13 && !e.Cancelled)

14 {

15 Compose() ;

16 }

17 } ;

Composing an Application with MEF 601

2
0

 From the Library of Wow! eBook

ptg

18 catalog.DownloadAsync();

19

20 _catalogs[uri] = catalog ;

21 }

22 _aggregateCatalog.Catalogs.Add(catalog) ;

23 }

. Line 4 declares an instance of type DeploymentCatalog. This is a catalog able to load
classes dynamically over the network.

. The new DeploymentCatalog is added to the AggregateCatalog on line 9. The
AggregateCatalog has a list composed of the AssemblyCatalog created on Step 2 as
well as one DeploymentCatalog instance for each remote XAP file.

. Line 5 makes sure that the corresponding XAP file has not been loaded already. All
the catalogs are saved in a Dictionary to avoid loading the same plug-in twice.

. Lines 12 to 16 are executed when the remote XAP file is loaded. This is the
Completed event handler, expressed here as a lambda expression. If everything went
well, the Compose method is called.

. Finally, the asynchronous download is triggered on line 18.

4. Modify the RefreshClick event handler as shown in Listing 20.35.

LISTING 20.35 RefreshClick Event Handler

private void RefreshClick(object sender, RoutedEventArgs e)

{

LoadPlugins();

}

5. The initial download will be triggered when the application starts, but it can also be
re-executed at any time later. To demonstrate this, in the Plugins folder in the
MefPlugins.Web application, rename MefPlugins.BingImageSearch.xap to
MefPlugins.BingImageSearch.bak.

6. Run the MefPlugins.Web application. Only the Web search plugin is found.

7. Without exiting the application, rename MefPlugins.BingImageSearch.bak to
MefPlugins.BingImageSearch.xap on the server.

8. In the application, click the Refresh button. The Image plug-in is shown in the
TabControl now. Enter a query and click the Search button to execute the query in
both plug-ins.

CHAPTER 20 Building Extensible and Maintainable Applications602

 From the Library of Wow! eBook

ptg

Reducing the Size of the XAP File
With the steps executed in this chapter, the System.ComponentModel.Composition DLLs
is downloaded to the web client multiple times: once with the main application, and
then each time that a plugin (remote XAP file) is downloaded. This causes unneeded costs
(because of the wasted bandwidth) and is not necessary. It is easy to optimize this with
the following steps:

1. In the folder containing the MefPlugins.BingImageSearch project, find the
Bin\Debug folder and write down the size of the MefPlugins.BingImageSearch.xap
file.

2. Open the MefPlugins.BingImageSearch solution in Visual Studio and expand the
References folder.

3. Find the reference to the System.ComponentModel.Composition assembly. Select
this assembly and press F4 to display the properties.

4. Change the value of CopyLocal to false. Then build the application again. Do the
same for the MefPlugins.Contracts assembly.

5. Build the application and check the size of the XAP file: It should have shrunk by a
good 90KB.

6. Copy the smaller XAP file from the MefPlugins.BingImageSearch\Bin\Debug folder
to the MefPlugins.Web application’s Plugins folder.

7. For consistency, set CopyLocal to false on the
System.ComponentModel.Composition and MefPlugins.Contracts assemblies in the
References folder of the MefPlugins.BingTextSearch project, too.

8. Run the application again. The functionality should work in exactly the same way.

This is possible because the System.ComponentModel.Composition DLL is already loaded
by the main application. When the plug-in’s DLL is added to the application, the
Silverlight runtime engine looks for this DLL (from the list of references) and finds it. To
the Silverlight framework, it makes no difference where this DLL comes from, so long as
its name and version are correct.

If your application and its plug-ins need multiple assemblies, if you have multiple plug-
ins and a large number of users, the amount of bandwidth (and money) saved can be very
consequent.

What About Prism?
Prism is a guidance developed by Microsoft to create composite UI. It is supported by a
framework named the Composite Application Library CAL, which fulfills similar goals by
providing extensibility mechanisms for an application. While Prism is for UI applications
only, MEF and Unity can be used to create any kind of extensible applications.

Composing an Application with MEF 603

2
0

 From the Library of Wow! eBook

ptg

Prism is more complex to use than MEF. In fact, the next version of Prism (v4) will use
MEF under the covers for its modularity infrastructure. Although Prism absolutely makes
sense in certain situations, it may be too complex to use it to implement simple decou-
pled applications. It is recommended to carefully evaluate the use of Prism in an applica-
tion and to consider starting with MEF and an MVVM framework as a possible simpler
alternative.

Using an MVVM Framework
When working with MVVM a lot, it can be valuable to use a framework to avoid repeti-
tive tasks, whether you implement the framework yourself based on the recommenda-
tions and samples in this book or choose an existing framework developed by members of
the Silverlight community.

Discovering the Components
Quite a large number of MVVM frameworks are available developed by the community. A
few frameworks seem to emerge as the community’s choice: Caliburn (a powerful frame-
work developed over many years in a very professional way by Rob Eisenberg), nRoute (an
innovative framework exploring new ways to solve issues), Prism (of which some compo-
nents can be used specifically for MVVM), MVVM Light Toolkit (a small and easy-to-use
framework aimed at improving the work with Blend), and more.

Most frameworks offer the following components helping to build decoupled
applications:

. A base class for view-models, making it easier to raise the PropertyChanged event

. A messaging system to send messages in a decoupled manner from one object to
another

. A command helper such as the RelayCommand class that we used often in this book

. Helper classes to enable cross thread access

. Mechanisms to facilitate the communication between the view-model and the view

In addition, each framework brings its own components, functions, and concepts that
often go beyond MVVM.

Sending Messages
When working with plug-ins (like in the section about MEF), it can be quite complex to
let these plug-ins communicate together. In this section, we show how a messaging
system can make this painless and easy. The framework used here is the MVVM Light
Toolkit mentioned a few times in this book and developed by this author. You can find
more information about the MVVM Light Toolkit at
http://www.galasoft.ch/mvvm/getstarted and at http://mvvmlight.codeplex.com.

CHAPTER 20 Building Extensible and Maintainable Applications604

 From the Library of Wow! eBook

http://www.galasoft.ch/mvvm/getstarted
http://mvvmlight.codeplex.com

ptg

In this sample, we extend the MefPlugins application by providing a mechanism for the
plug-ins to pass information to the main application in a decoupled manner with the
following steps:

1. Install the MVVM Light Toolkit’s binaries by following the procedure described at
http://galasoft.ch/mvvm/installing.

2. Open the MefPlugins solution that was edited in the previous section.
If you didn’t keep it, the start state for this section can be downloaded from
http://www.galasoft.ch/sl4-messaging. Make sure to download, unblock and extract
both the Messaging-Start.zip and Messaging.BingImageSearch-Start.zip files.

3. In the MefPlugins project, right-click the References folder and add a reference to
the GalaSoft.MvvmLight.SL4.dll located in C:\Program Files\Laurent Bugnion
(GalaSoft)\Mvvm Light Toolkit\Binaries\Silverlight4. This is the DLL in which the
Messenger class is located.

4. Add a new class in the MefPlugins.Contracts project named Notifications.cs.

5. Edit the Notifications class as shown in Listing 20.36. In the current state there is
only one notification, but additional ones can be added as needed.

LISTING 20.36 Adding Notifications

public static class Notifications

{

public static readonly string NumberOfMessages

= Guid.NewGuid().ToString();

}

6. Open MainPage.xaml and modify the LayoutRoot Grid’s RowDefinitions and add a
TextBlock, as shown in Listing 20.37.

LISTING 20.37 Adding a Row and a TextBlock

<Grid.RowDefinitions>

<RowDefinition Height=”50” />

<RowDefinition />

<RowDefinition Height=”100” />

<RowDefinition Height=”50” />

</Grid.RowDefinitions>

<TextBlock x:Name=”MessageTextBlock”

Margin=”10,0,10,0”

Grid.Row=”3”

FontSize=”14” />

Using an MVVM Framework 605

2
0

 From the Library of Wow! eBook

http://galasoft.ch/mvvm/installing
http://www.galasoft.ch/sl4-messaging

ptg

7. In MainPage.xaml.cs, add a private attribute to keep track of the number of results
for a given query, as shown in Listing 20.38.

LISTING 20.38 Counting the Results

private int _numberOfMessages;

8. At the end of the MainPage constructor, add the code shown in Listing 20.39.

LISTING 20.39 Registering to Receive Messages

Messenger.Default.Register<int>(

this,

Notifications.NumberOfMessages,

n =>

{

_numberOfMessages += n;

MessageTextBlock.Text

= string.Format(

“There are {0} search results”,

_numberOfMessages);

});

. The code in Listing 20.39 instructs the default Messenger instance to watch for
messages where the payload is an int and the token is set to
Notifications.NumberOfMessages. If such a message is transmitted, the method
defined as a lambda expression should be executed: The number of messages is
increased, and a status message is shown.

9. In MefPlugins.BingTextSearch, add a reference to the same
GalaSoft.MvvmLight.SL4.dll as in Step 3 above.

10. With the GalaSoft.MvvmLight.SL4 DLL selected in the References folder, press F4 to
show the properties and set CopyLocal to false.

11. Open BingTextSearch.xaml.cs. At the end of the HandleResponse method, after the
Results collection is created, add the code shown in Listing 20.40.

CHAPTER 20 Building Extensible and Maintainable Applications606

T I P

Communicating with Objects

In addition to sending targeted messages with a token as in this sample, the Messenger
class can also broadcast messages to everyone (registration based on the type of the
payload) or send messages to all instance of a given type (or interface). You can find more
information about the Messenger class at http://www.galasoft.ch/sl4-messenger.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-messenger

ptg

LISTING 20.40 Sending a Message

Messenger.Default.Send(

Results.Count,

Notifications.NumberOfMessages);

12. Build the MefPlugins solution.

13. Open the MefPlugins.BingImageSearch solution.

14. Repeat the Steps 9 to 11 for the BingImageSearch class in the
MefPlugins.BingImageSearch project.

15. Build MefPlugins.BingImageSearch; then copy the new XAP file from the Bin\Debug
folder into the Plugins folder of the MefPlugins.Web application.

16. Build everything, and then view the MefPluginsTestPage.html page of the
MefPlugins.Web application inside the web browser. After both plug-ins are loaded,
enter a query and click the Search button. You should see the number of results
being updated.

The MVVM Light Toolkit Messenger class is a very powerful way to enable loose commu-
nication between an application’s elements. It is also implemented in a way that does not
create a strong link between the sender and the receiver, and enables garbage collection
even if an element omits to unregister before being disposed. Use it with care, however,
because a very loose coupling between elements is also more difficult to understand for
less-experienced people working on the code.

The MVVM Light Toolkit’s components and concepts were used at various occasions in
this book and in this chapter. The Messenger class, in particular, allows sending messages
in a much decoupled manner, without putting any constraint on the sender or the
receiver. The RelayCommand class was used in other samples in this book, and is a very
precious helper class when working with commands. In addition, the MVVM Light
Toolkit places a lot of importance in the Blendability and the creation of design-time
data.

Other frameworks are also available, each with their strengths and community. Here, too,
informing oneself before adopting one or the other framework is very important. More
information about MVVM in general and the MVVM Light Toolkit can be found at
http://www.galasoft.ch/sl4-understanding (video presentation).

Summary
In this chapter, we demonstrated the use of three frameworks used to create loosely
coupled, extensible applications in Silverlight 4.

. The Unity DI container allows registering and resolving objects in a simple manner
and without creating complicated dependencies.

Summary 607

2
0

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-understanding

ptg

. The Managed Extensibility Framework is a fantastic and innovative framework to
build decoupled and extensible applications. It exports and imports objects to
combine them in a loose manner. It also allows loading parts of the application on
demand, to enhance the download time and to create pluggable applications. A big
strength of MEF is that it is part of the Silverlight framework and easy to add. It
would not be surprising at all to see MEF become mainstream and be added to most
applications in the future.

. Finally, the MVVM Light Toolkit offers components to help with the creation of and
the communication within loosely coupled applications.

We also talked about other frameworks that fulfill the same functionality in a different
manner. This offers interesting alternatives for the developer to build modern applications
that are easy to maintain and extend.

In the next chapter, we talk about ways to optimize the performance of your Silverlight
applications to offer an even more enjoyable experience to your users.

CHAPTER 20 Building Extensible and Maintainable Applications608

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. See how we can improve the
download time of a Silverlight
application to make the initial
experience more enjoyable for
the user.

. Improve the way that data is
displayed on the screen by
virtualizing the user interface.

. Accelerate the user interface
to speed up and smoothen
animations.

. Talk about profiling and how
to avoid memory leaks.

CHAPTER 21

Optimizing
Performance

Silverlight applications are deployed over the Internet and
running on all kind of computers, from high-end desktop
machines to Windows Phone 7 devices. To guarantee a
pleasant user experience, some areas should be optimized
for performance:

. Reducing the size of the material (code, media, and
other assets) being downloaded

. Optimizing the speed of the application as it runs

. Reducing the size of the memory used and, most
important, avoiding losing memory

In this chapter, we explore techniques to improve these
areas.

Improving the XAP Download
Time
A Silverlight application needs to be downloaded to run.
When a user navigates to a HTML page containing a
Silverlight application, the following happens:

1. The web browser sends a request to the web server for
the HTML page.

2. When the HTML page is received, the web browser
parses it and sees that an object tag is embedded. The
Silverlight plug-in is started.

 From the Library of Wow! eBook

ptg

3. (If available) The plug-in downloads a custom splash screen for the user to see while
the XAP file is downloaded. You saw how to create custom splash screens in Chapter
18, “Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling,
Notification Windows, and Splash Screens.”

4. The splash screen is displayed in the plug-in, and the XAP download starts.

5. The download process uses the web browser’s network stack, so the cache is checked
first. If a file corresponding to the XAP’s URL is found in the cache, the download
doesn’t take place but the cached file is displayed instead.

6. If the XAP file is not found in the cache, it is downloaded from the web server.
Depending on the size of the XAP file, it can take a moment.

7. The Silverlight application is started and the user can interact with it.

Obviously, things are different for an out-of-browser application, where the XAP file and
all needed material are installed on the client computer. For an in-browser application,
however, files are cached in a temporary location that is cleaned periodically (either when
the user deletes his browsing history, or when the web browser cleans up to avoid filling
the hard drive).

A few things can be done to improve this experience:

. Make sure that the XAP is cached correctly, and that the cached version is used.
During development, it is common to force the web browser to reload the XAP file
every time that the web page is refreshed (for example, by using JavaScript to
append a unique number to the XAP’s URL, as a query string). Make sure that such
mechanisms are disabled for production!

. Reduce the size of the XAP file. We already saw in Chapter 20, “Building Extensible
and Maintainable Applications,” how a Silverlight application can be split in multi-
ple XAP files and loaded on demand with the Managed Extensibility Framework. In
this chapter, we will see how commonly used DLLs can be externalized so that the
web browser caches them and avoids downloading them every time that another
XAP file is loaded (see the “Caching Common Assemblies” section, later in this
chapter).

. Make sure that all the content packed into a XAP file is really needed. You can
inspect the content of a XAP file by renaming a copy to *.zip and then opening it in
Windows Explorer. Alternatively, tools like SilverlightSpy
(http://www.galasoft.ch/sl4-slspy) have a friendlier interface to inspect the content
of a XAP file.

. Avoid packing content (such as large pictures, videos) in the XAP file. You will see in
the “Loading Content on Demand” section how pictures and videos can be loaded
separately.

CHAPTER 21 Optimizing Performance610

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-slspy

ptg

Remember that bandwidth is still an issue in many places. It is possible to simulate low
bandwidth and various critical cases by using software such as the open source Wanem
(http://wanem.sourceforge.net). It is recommended to test your Silverlight application’s
download experience in such difficult conditions.

Loading Content on Demand
When content must be displayed by a Silverlight application, it is better not to include it
inside the XAP file to avoid long download times, as explained in the “Reducing the
Download Time” section.

Making Sure That the Content Is Not in the XAP
In case the content (images, videos, and so on) is referenced by the project file, it will
probably end up in the DLL or in the XAP file unless Visual Studio is instructed differ-
ently. To change this, use the following steps:

1. In Visual Studio, click the content that you want to exclude from the XAP file.

2. Show the file’s properties by pressing F4.

3. Check the Build Action and the Copy to Output Directory properties.

Content is typically added to a project with one of the three following settings:

. Build Action = Content: This is the most common setting. In this case, Copy to
Output Directory should be set to Copy If Newer (recommended) or Copy Always.
The content file will be packed inside the XAP file, but outside of the DLL. It can be
referenced using a simple relative URI, in XAML, or in source code.

. Build Action = Resource: For this action, Copy to Output Directory should be set to
Do Not Copy. The content file will be embedded inside the DLL. This is useful in
certain cases, although in general
the Content action is preferred.

. Build Action = None: In this case,
the content file is not included in
the DLL or in the XAP file. It
should be uploaded to the web
server separately, and will be
downloaded on demand by setting
the Source property or using a
WebClient, as shown later in this
section.

Improving the XAP Download Time 611

2
1

WA R N I N G

Referencing a Content File with a
Relative URI

Remember that when a content file is not
packed in the XAP file, using a relative URI to
reference it is dangerous because the path
is resolved relatively to the location of the
XAP file. It is preferable to construct an
absolute URI for example, with the code
shown in Listing 21.1.

 From the Library of Wow! eBook

http://wanem.sourceforge.net

ptg

LISTING 21.1 Constructing an Absolute URI

var xapUri = Application.Current.Host.Source;

var baseAddress = xapUri.AbsoluteUri.Substring(

0, xapUri.AbsoluteUri.IndexOf(xapUri.AbsolutePath))

+ “/”;

var imageUri = new Uri(baseAddress + “images/myimage.jpg”);

Setting the Source Property
The easiest way to start a download without any fuss is to simply set the Source property
of a BitmapImage element or of the MediaElement control as shown in Listing 21.2. This
triggers an asynchronous download of the desired media file.

LISTING 21.2 Setting the Source Property

private void LoadNextMedia(bool picture)

{

if (picture)

{

var image = new BitmapImage(

new Uri(“http://www.mydomain.com/myimage.jpg”));

MyMediaElement.Visibility = Visibility.Collapsed;

MyImage.Visibility = Visibility.Visible;

MyImage.Source = image;

}

else

{

MyMediaElement.Visibility = Visibility.Visible;

MyImage.Visibility = Visibility.Collapsed;

MyMediaElement.Source

= new Uri(“http://www.mydomain.com/myvideo.wmv”);

}

}

However, consider the following:

. For images, there is no way to inform the user about the download progress. There
is, however, a DownloadProgressChanged event on the MediaElement class.

. Once a download has been started, it cannot be stopped.

For large videos, it is better to use video streaming if possible. This optimizes the band-
width consumption. In addition, if the video is stopped, the download is immediately
interrupted and does not put strain on the video server. Combined with the smooth
streaming features of the Internet Information Services (IIS) Media Services, this ensures
an optimal user experience even with low bandwidth. You can find more information
about smooth streaming at http://www.galasoft.ch/sl4-smooth.

CHAPTER 21 Optimizing Performance612

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-smooth

ptg

Improving the XAP Download Time 613

2
1

WA R N I N G

Solving Cross-Schema Issues

When testing on-demand download, remember that a Silverlight application executed in
file:// mode may not access content from http://. To test, make sure to use a web appli-
cation set as Startup object! On the other hand, there are no cross-domain restrictions for
pictures and videos.

Downloading Using the WebClient
Another possibility is to download the bytes using a WebClient instance. This provides
more fine-grained control on the download operation. For example, it is possible to down-
load one media file from the Internet while another one is playing in the MediaElement.

Initiating a download with the WebClient uses the same code for pictures and videos as
shown in Listing 21.3.

LISTING 21.3 Initiating Media Download with the WebClient

private bool _isPicture;

private void LoadNextMedia(bool picture)

{

_client = new WebClient();

_client.DownloadProgressChanged += ClientDownloadProgressChanged;

_client.OpenReadCompleted += ClientOpenReadCompleted;

_isPicture = picture;

if (picture)

{

_client.OpenReadAsync(

new Uri(“http://www.mydomain.com/myimage.jpg”));

}

else

{

_client.OpenReadAsync(

new Uri(“http://www.mydomain.com/myvideo.wmv”));

}

_isPicture = picture;

}

Once the download is completed, a MediaElement or an Image can load the bytes from
memory to display them, as shown in Listing 21.4. In this listing, Progress is a
DependencyProperty of type double, MyImage is an Image control, and MyMediaElement is a

 From the Library of Wow! eBook

ptg

control of type MediaElement. Also, content can be saved in the isolated storage for later
consumption, which makes it perfect for offline use, for example.

Note, however, that downloading a whole video in memory might lead to issues if it is
big. For these scenarios, video streaming is really recommended instead.

LISTING 21.4 Handling the DownloadProgressChanged and OpenReadCompleted Events

private void ClientDownloadProgressChanged(

object sender,

DownloadProgressChangedEventArgs e)

{

Progress = e.ProgressPercentage;

}

private void ClientOpenReadCompleted(

object sender,

OpenReadCompletedEventArgs e)

{

MyMediaElement.Stop();

if (_isPicture)

{

var image = new BitmapImage();

image.SetSource(e.Result);

MyImage.Source = image;

MyImage.Visibility = Visibility.Visible;

MyMediaElement.Visibility = Visibility.Collapsed;

}

else

{

MyMediaElement.SetSource(e.Result);

MyMediaElement.Play();

MyImage.Visibility = Visibility.Collapsed;

MyMediaElement.Visibility = Visibility.Visible;

}

}

Using the WebClient, it is also possible to abort a download with the code shown in
Listing 21.5.

LISTING 21.5 Aborting the Download

public void Stop()

{

if (_client != null)

{

CHAPTER 21 Optimizing Performance614

 From the Library of Wow! eBook

ptg

_client.CancelAsync();

_client.DownloadProgressChanged

-= ClientDownloadProgressChanged;

_client.OpenReadCompleted

-= ClientOpenReadCompleted;

_client = null;

}

MyMediaElement.Stop();

}

Whichever mechanism you choose, by downloading the media content on demand, the
size of the XAP file is much smaller than if the content was embedded, and the experi-
ence is more enjoyable for the user.

Caching Common Assemblies
Another measure that can be taken to reduce a XAP file’s size and to speed up its down-
load is to externalize some of the assemblies it contains. With this process, when the XAP
is loaded, the Silverlight plug-in sends additional requests for the external assemblies, and
downloads them separately. The advantage is that if these assemblies are already in the
web browser’s cache, they do not need to be redownloaded for another Silverlight applica-
tion, but instead they will be loaded directly from the cache, which is much faster. The
disadvantage is, however, that sending multiple requests may take more time if the assem-
blies are not available in the cache (on the first load, or if the cache has been cleared).

Reducing Your XAP File’s Size
To externalize assemblies from the XAP file, and make them cachable, follow these steps.

1. Open the MefPlugins solution that was created in Chapter 20 about the Managed
Extensibility Framework. If you did not keep this application, it can be downloaded
from http://www.galasoft.ch/sl4-externalize. Make sure that you unblock the file
before extracting it to your hard drive.

2. Build the application.

3. Right-click the ClientBin folder in the MefPlugins.Web project and select Open
Folder in Windows Explorer.

4. Write down the size of the MefPlugins.xap file. This is the file that is downloaded to
the Silverlight plug-in.

5. Make a copy of the XAP file and rename it the copy with the .zip extension. Then
open it in Windows Explorer or in your favorite zip application. Inside the zip file,
you should see DLLs and a few other files. Among them, notice four System.*.dll
components accounting for about 1MB uncompressed.

6. Go back to Visual Studio, right-click the MefPlugins project, and select Properties.

Improving the XAP Download Time 615

2
1

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-externalize

ptg

7. In the Silverlight tab, check the Reduce XAP Size by Using Application Library
Caching check box.

8. Build the application again.

9. Go again to the ClientBin folder again and check the size of the XAP file now.

The XAP file has shrunk and three DLLs have been externalized as zip files, and placed in
the ClientBin folder, too. When the Reduce XAP Size check box is checked and the appli-
cation is built, Visual Studio looks into each referenced assembly’s folder if it can find a
file named <AssemblyFileName>.extmap.xml. For example, for the system assemblies, the
compiler looks into C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Libraries\Client.

If the extmap.xml file can be found, the indications in the file are used to pack the DLL
separately as a zip file. Because it is a separate file, the plug-in will send a separate request
for this file; if the same file is found in the web browser’s cache, the download is not
necessary. If multiple applications use the same cached assemblies, the gain in download
time can be very noticeable.

Making Your Own Assemblies Cacheable
It is possible to make your own assemblies cacheable by creating your own extmap.xml
file. This can be useful for class libraries that are used by multiple applications. Tim Heuer
(Microsoft Silverlight Program Manager) has a very good explanation of the process to
follow to create an extmap.xml file at http://www.galasoft.ch/sl4-extmap.

In this article, Tim explains that not only can assemblies be externalized in their own zip
file, but in addition it is possible to host these applications on a third-party web server.
This allows having a central server delivering class assemblies (for example, framework
components, utility classes). Obviously, this is a gain only if the third-party web server is
fast, reliable, and reachable through firewalls.

Not Externalizing Assemblies in OOB
It is not possible to use this feature for out-of-browser (OOB) applications. Trying to check
both the Reduce XAP Size check box and the Enable Running Application Out of the
Browser check box will cause Visual Studio to display a warning that asks you to uncheck
one or both. In fact, OOB applications do not need assemblies to be cached, since the
whole application and all its components are downloaded to the client computer when
the application is installed out-of-the-browser.

For in-browser applications, however, this feature can be an interesting way to reduce the
amount of data transmitted over slow connections, and to make the experience more
enjoyable.

Virtualizing the User Interface
When a Silverlight user interface is rendered, the number of objects created in memory
can be huge if the developer (and the designer!) is not careful. To visualize this, follow
these steps:

CHAPTER 21 Optimizing Performance616

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-extmap

ptg

1. Download the file named VirtualizationSample.zip from http://www.galasoft.ch/sl4-
virtualize. Unblock the file using the file properties’ Unblock button (if available)
and extract the content to your hard drive.

2. Open the VirtualizationSample.sln solution in Visual Studio.

3. Select the Output window. If you cannot see this window in Studio, select the menu
View, Output.

4. Run the application in debug mode by pressing the F5 key.

5. In the Output window, notice the debug messages written by the application. The
rendering of the items on the screen starts after the message “Assigned” is shown
and ends when the last message “One template loaded” is shown. Calculate the
difference between the time shown for the last template and the time shown for the
Assigned message. (Note that times are shown in MM:ss:mmm format, where mmm
are milliseconds.)

6. Open MainPage.xaml.

7. Add comment signs around the ListBox tag, and then remove the comment signs
around the ItemsControl tag.

8. Run the application again in debug mode with the F5 key.

9. Again, calculate the time difference between the “Assigned” message and the last
“One template loaded” message.

The time needed for the ItemsControl is much larger than for the ListBox. The problem is
that the ItemsControl’s items panel is not virtualized. The number of “One template
loaded” messages is very much larger. In fact, there is exactly one such message per item
loaded in the MainViewModel class. On the other hand, the ListBox control shows only a
handful of these messages.

When the ListBox renders items, it takes in account the visible surface and only creates
items until that surface is filled (plus a small buffer on the top and on the bottom of the
scroll viewer). If you scroll down when the items are rendered in the ListBox, new “One
template loaded” messages are added to the Output window all the time. Templates that
get out of sight are recycled and new templates are created for the items that come in
sight. There is no such mechanism by default for the ItemsControl.

Virtualizing the ItemsControl
ItemsControl is the base class for data controls in Silverlight, including the ListBox. It has
the same ability than the ListBox to display a collection of items by applying a
DataTemplate, but lacks the selection mechanism, the ScrollViewer and the virtualization.

This last function can, however, be added to an ItemsControl with the markup shown in
Listing 21.6.

Virtualizing the User Interface 617

2
1

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-virtualize
http://www.galasoft.ch/sl4-virtualize

ptg

LISTING 21.6 Virtualizing the ItemsControl

1 <ItemsControl Margin=”10”

2 ItemsSource=”{Binding Items}”

3 ItemTemplate=”{StaticResource MyDataTemplate}”

4 x:Name=”MyListControl”>

5 <ItemsControl.Template>

6 <ControlTemplate TargetType=”ItemsControl”>

7 <ScrollViewer>

8 <ItemsPresenter />

9 </ScrollViewer>

10 </ControlTemplate>

11 </ItemsControl.Template>

12 <ItemsControl.ItemsPanel>

13 <ItemsPanelTemplate>

14 <VirtualizingStackPanel />

15 </ItemsPanelTemplate>

16 </ItemsControl.ItemsPanel>

17 </ItemsControl>

. Lines 5 to 11 define a new ControlTemplate for the ItemsControl. This uses an
ItemsPresenter control, in charge of presenting a list of items without adding any
chrome to these items. This is the equivalent of the ContentPresenter used often
when creating a ControlTemplate for a ContentControl such as a Button.

. Note that the ItemsPresenter is wrapped into a ScrollViewer (lines 7 to 9). The
default ItemsControl ControlTemplate does not have a ScrollViewer. However, in
Silverlight, virtualization is turned on only when the content can be scrolled.

. Lines 12 to 16 set the ItemsPanel property of the ItemsControl to a
VirtualizingStackPanel. The default ItemsPanel for this control is normally a
StackPanel without virtualization.

The VirtualizationSample solution enables you to experiment with different virtualization
settings for a ListBox and an ItemsControl. Note that even with a very simple
DataTemplate and only 1,000 items in the collection, the difference in the loading time is
very noticeable.

CHAPTER 21 Optimizing Performance618

WA R N I N G

(Not) Setting IsVirtualizing

In Windows Presentation Foundation (WPF), an attached property named
VirtualizingStackPanel.IsVirtualizing can be set to true or false on controls using a
VirtualizingStackPanel such as the ListBox control. In Silverlight, however, this property is
read-only.

 From the Library of Wow! eBook

ptg

Unvirtualizing the ListBox
In some cases, the application may require virtualization to be turned off on a ListBox
control (for example, in the following scenarios):

. The content of a DataTemplate executes a long-lasting operation when it is loaded
(for example, a UserControl connects to a web service). Because virtualizing items
recycles the DataTemplate when it is brought out of sight, and creates a new one
when it is in sight again, this might cause more delays and unnecessary connec-
tions.

. A scrolling operation must be extremely fast and the content of the DataTemplate is
very complex. In this case, creating and rendering new DataTemplate elements while
scrolling might render the movement less smooth. It may be preferable to make the
user patient while the DataTemplate elements are initially rendered, and avoid delays
later.

These are marginal cases; in general, it is safe to leave the virtualization turned on the
ListBox control. Should that really be needed, however, the virtualization can be removed
from the ListBox by using the markup in Listing 21.7.

LISTING 21.7 ListBox Without Virtualization

<ListBox Margin=”10”

ItemsSource=”{Binding Items}”

ItemTemplate=”{StaticResource MyDataTemplate}”

x:Name=”MyListControl”>

<ListBox.ItemsPanel>

<ItemsPanelTemplate>

<StackPanel />

</ItemsPanelTemplate>

</ListBox.ItemsPanel>

</ListBox>

Simplifying the DataTemplate
A simple measure when working with list controls is to try and simplify the
DataTemplate’s tree that will be created and rendered for each item in the list.

Sometimes, a compromise has to be found between the amount of markup needed to
obtain the exact rendering that the designers have created in comps, and a minimum
amount of XAML to keep the user experience optimal. Optimizing templates is a
common task when working in XAML, and Silverlight developers should keep this in
mind when creating a DataTemplate.

Virtualizing the User Interface 619

2
1

 From the Library of Wow! eBook

ptg

Creating Items in Batches
Working with large quantities of data can introduce delays in the application, as you saw
in the “Virtualizing the User Interface” section. To improve the user experience, you saw
how simplifying the DataTemplate and turning virtualization on can help speed up the
rendering process.

However, even with these improvements, loading the items can take quite some time,
during which, if nothing is done to prevent it, the user interface is blocked. Observe this
effect by following these steps:

1. Download the file VirtualizationSample-Start.zip from
http://www.galasoft.ch/sl4-batches. Unblock the file by displaying the file properties
and pressing the Unblock button (if available). Then, extract the content of the file
on your hard drive.

2. Open the VirtualizationSample.sln solution in Visual Studio.

3. The class named ItemsService is in charge of creating the items. To simulate a long
lasting operation, this class sleeps 10 milliseconds after creating each item as shown
in Listing 21.8.

LISTING 21.8 ItemsService Creating the Items

public static IEnumerable<Item> GetItems(int numberOfItems)

{

var list = new List<Item>();

for (var index = 0; index < numberOfItems; index++)

{

list.Add(

new Item

{

Message = “This item was created at “

+ DateTime.Now.ToLongTimeString()

});

Thread.Sleep(10);

}

return list;

}

4. The MainViewModel class calls the GetItems method to create 10,000 items. Because
each item takes at least 10 milliseconds to create, the complete collection will need
at least 100 seconds to create. During this long time, the user interface is blocked
because everything happens on the same thread.

CHAPTER 21 Optimizing Performance620

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-batches

ptg

5. Run the application and wait until the items appear in the ListBox. The wait is very
long and the animation is blocked. (The sphere in the bottom-right corner should
be rotating instead of just sitting there.)

This is obviously a very bad way to handle a long-lasting operation. Instead, two things
can be improved:

. The GetItems method should be called in a background thread to avoid blocking
the UI.

. The items should be created in smaller batches so that the user has something to see
without waiting so long. For example, if items are created in batches of 100, the
user only has to wait one second before something appears on the screen. The total
loading time will be the same eventually, but the user will have the feeling that he
didn’t wait that long.

This technique has one small disadvantage: The vertical ScrollBar on the side of the
ListBox will gradually change until all the items are loaded. This is not very noticeable,
but can be disturbing, especially if the user attempts to drag the ScrollBar’s cursor before
all the items are loaded.

Working in Threads
Starting background threads in fairly easy in Silverlight. However, multithreading is a very
complex programming style because every operation is asynchronous and it is hard to
keep the overview on what is happening. You’ll learn more about multithreading in
Chapter 22, “Advanced Development Techniques.”

Note that for web service requests (such as a Windows Communication Foundation
(WCF) request, WCF RIA Services operation, or any other web-based service call), the
request is already happening on a background thread (asynchronous operation), and it is
not necessary to manually start a background thread like we do with the following step:

1. Modify the MainViewModel constructor as shown in Listing 21.9.

LISTING 21.9 Getting the Dispatcher and Starting the Background Operation

1 private const int BatchSize = 100;

2 private readonly Dispatcher _dispatcher;

3

4 public MainViewModel()

5 {

6 Items = new ObservableCollection<Item>();

7 _dispatcher = Deployment.Current.Dispatcher;

8 ThreadPool.QueueUserWorkItem(CreateItems);

9 }

. Line 2 declares a private attribute of type Dispatcher. You’ll learn more about this
type later in this section and also in Chapter 22.

Creating Items in Batches 621

2
1

 From the Library of Wow! eBook

ptg

. Line 7 saves the Dispatcher from the Deployment.Current object for later.

. Line 8 calls the static method QueueWorkItem on the ThreadPool class and passes to it
the CreateItems method that will create the 10,000 items.

Storing the Current Dispatcher
The Dispatcher class is crucial for threading operations. There is exactly one Dispatcher
per Thread. This class can be used to communicate (dispatch messages) from one Thread to
another, as you will see in a moment. The Deployment.Current object happens to store the
current Thread’s Dispatcher (in this case, it is the UI thread), so we can easily access it and
save it for later.

Starting a Background Thread
There are multiple ways to start a background thread n Silverlight. For operations that are
very local (such as the call to CreateItems), the ThreadPool class is a good alternative
because it doesn’t require creating or storing any object. All that is needed is a call to the
static QueueUserWorkItem method.

Another good way to perform work on a background thread is to use the
BackgroundWorker class. You’ll learn more about this class in Chapter 22.

1. Insert the CreateItems method as shown in Listing 21.10

LISTING 21.10 Creating the Items

1 private void CreateItems(object state)

2 {

3 // This method runs in a background thread!

4

5 int itemsCounter = 0;

6

7 while (itemsCounter < NumberOfItems)

8 {

9 IEnumerable<Item> batchItems;

10 if (itemsCounter + BatchSize < NumberOfItems)

11 {

12 batchItems = ItemsService.GetItems(BatchSize);

13 }

14 else

15 {

16 batchItems = ItemsService.GetItems(

17 NumberOfItems - itemsCounter);

18 }

19

20 foreach (var item in batchItems)

21 {

22 Items.Add(item);

CHAPTER 21 Optimizing Performance622

 From the Library of Wow! eBook

ptg

23 }

24

25 itemsCounter += batchItems.Count();

26 }

27 }

. Lines 7 to 26 are executed in a loop until all the items have been created.

. Line 10 checks how many items remain to be created. If more than 100 items
remain, the GetItems method is called for a batch of 100.

. If fewer than 100 items remain, lines 16 and 17 call GetItems for the remaining
items.

. Then, on lines 20 to 23, the items from the batch are added to the Items
ObservableCollection before the itemsCounter is incremented on line 25.

2. Place a breakpoint on line 22 of Listing 21.10 and run the application in debug
mode by pressing F5.

3. When the debugger reaches the breakpoint, press F10 to step one operation further.
The application crashes and an exception message is shown like in Figure 21.1.

The cause of the exception is a rule that every multithreaded application must respect:
When an object is created on a Thread, it may only be accessed by other objects from the
same Thread. In our case, the Items ObservableCollection is data bound to a ListBox that
belongs to the UI thread, and therefore the background thread may not save items in the
ObservableCollection without causing an exception. You’ll learn more about this issue in
Chapter 22.

Creating Items in Batches 623

2
1

FIGURE 21.1 UnauthorizedAccessException in CreateItems method.

To correct the issue, follow these steps:

1. Modify lines 20 to 23 of Listing 21.10 as shown in Listing 21.11.

 From the Library of Wow! eBook

ptg

LISTING 21.11 Dispatching the Operation

1 foreach (var item in batchItems)

2 {

3 _dispatcher.BeginInvoke(() => Items.Add(item));

4 }

. Line 3 now uses the Dispatcher instance that was saved before (on line 7 of Listing
21.9) to pass the operation to its Thread. Because Listing 21.10 was executed on the
UI thread, this Dispatcher may access the ObservableCollection and the ListBox,
and the application doesn’t crash.

2. Run the application. After about one second, 100 items have been created and
added to the ListBox. You can start scrolling down. After another second, notice
how the ScrollBar is reacting: The cursor is shrinking. This is because 100 more
items were added, and the scrolling area is larger. The cursor will continue to shrink
and move a little until all the items are created. This is the side effect that was
mentioned in the beginning of this section.

On the other hand, the wait is much shorter before something happens on the screen.
Also, the animation is not blocked because the creation of the items happens on the back-
ground thread, and the UI thread is not blocked.

Accelerating the User Interface
Modern computers have multiple processors, some of them specialized to execute certain
tasks only, and to execute them well. The best known is the graphic processor unit (GPU)
that is in charge of rendering the graphic elements to the screen. Depending on the age
and power of the graphic card on the client computer, this processor can be extremely
efficient for this task.

In the opposite, rendering graphics in the central processing unit (CPU) is slower. When
possible, complex graphic operations should be delegated to the specialized GPU, which
gives the CPU more cycles to take care of other tasks such as handling data, performing
calculations, running threads, and so forth.

Silverlight (from Version 3) can use the GPU to perform certain tasks and speed them up,
giving a smoother experience to the user. However, there are certain caveats with hard-
ware acceleration, as you will see in this section.

Enabling Hardware Acceleration in the Browser
To test hardware acceleration, download the file HardwareAcceleration-Start.zip at
http://www.galasoft.ch/sl4-gpuacceleration. Open the zip file properties and unblock it
using the Unblock button (if available), then extract the content to your hard drive.
Follow these steps:

1. Open the HardwareAcceleration.sln solution file in Visual Studio.

CHAPTER 21 Optimizing Performance624

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-gpuacceleration

ptg

2. Set the HardwareAcceleration.Web application as Startup project, and
HardwareAccelerationTestPage.html as Startup page.

3. Run the application. The scene shown in Figure 21.2 is shown, with a half transpar-
ent video playing. This video is used to “paint” (with a VideoBrush) a series of ellipse
that are animated (scale and rotation animations).

4. When the TextBlock with the text set to “Some text” is at its largest, notice that the
rendering of the text is crisp even though it is scaled at 200%.

Accelerating the User Interface 625

2
1

FIGURE 21.2 Scene for hardware acceleration.

5. Right-click the Windows taskbar and select Start Task Manager from the context
menu.

6. In the Windows Task Manager window, select the Performance tab and then click
Resource Monitor.

7. In the Resource Monitor window shown in Figure 21.3, in the Overview tab, check
the check box next to the process named iexplore.exe. This is the Internet Explorer
process in which the Silverlight plug-in runs the application. Note that depending
on the configuration of the computer, the Silverlight application might be running
in a different web browser (see the “Finding the Right Process” box).

8. Wait for a moment and write down the value of the column titled Average. This
shows, in average, how much CPU time the Silverlight application requires.
Remember that if your computer is a dual core, a value of 50% means that one core
is working 100% of the time to render the animations. Depending on your hard-
ware configuration, the animation might be choppy.

 From the Library of Wow! eBook

ptgFIGURE 21.3 Resource monitor.

CHAPTER 21 Optimizing Performance626

T I P

Finding the Right Process

Finding the right process to monitor depends on how the Silverlight application is running. For
in-browser applications, the Silverlight plug-in is hosted by the web browser in which it is
running. To find out which web browser is selected by Visual Studio as default browser, right-
click in the Solution Explorer on HardwareAccelerationTestPage.html and select Browse With
from the context menu. In the Browse With dialog, one of the choices is marked as (default).
This is the web browser that Visual Studio is picking to run the Silverlight application. Note
that you can also select a different web browser without changing the default thanks to this
dialog.

When running out-of-browser, the Silverlight application is hosted in a process named
sllauncher.exe.

If multiple instances of the web browser (or multiple OOB applications) are running at the
same time, multiple processes with the same name are found in the Task Explorer. In that
case, it is preferable to close the other windows to keep it simpler.

The most recent versions of Internet Explorer and the Chrome web browser run one process
for the window, and an additional process for each open tab (including the one in which the
Silverlight application is running). In general, it is easy to differentiate the tab’s process from
the window’s process (which should not be monitored) because it is using more CPU and
more memory.

 From the Library of Wow! eBook

ptg

Switching Acceleration On
By default, hardware acceleration is not enabled for a Silverlight application. To switch it
on, follow these steps:

1. To instruct the plug-in to be ready for hardware acceleration, a parameter must be
set in the HardwareAccelerationTestPage.html page on the object tag as shown in
Listing 21.12.

LISTING 21.12 Setting Hardware Acceleration on the Object Tag

<object data=”data:application/x-silverlight-2,”

type=”application/x-silverlight-2”

width=”100%” height=”100%”>

<param name=”source” value=”ClientBin/HardwareAcceleration.xap” />

<param name=”enableGPUAcceleration” value=”true” />

...

</object>

2. In MainPage.xaml, locate the Grid named Container and modify its tag as shown in
Listing 21.13. The CacheMode property governs the way that the element (in this
case, the Grid with the text and the Ellipse elements) is cached. Note that
Silverlight 4 supports only the BitmapCache mode.

LISTING 21.13 Switching On Hardware Acceleration in XAML

<Grid x:Name=”Container”

Margin=”50,47,252,95”

RenderTransformOrigin=”0.5,0.5”

CacheMode=”BitmapCache”>

3. Run the application again and check the iexplore.exe process in the Resource
Monitor. The Average column should display a much lower value than before, and
depending on your hardware configuration, the animation may run much more
smoothly.

4. When the TextBlock with the text set to “Some text” is at its largest, notice that
some pixels are visible. It is not as smooth as it was without hardware acceleration.
The same can be observed on each Ellipse. This effect is explained in the
“Accelerating with Care” section.

By turning on hardware acceleration, the load on the CPU was reduced (and for
some hardware configurations almost set to zero). This leaves much more time to this
processor to perform other tasks and lets the specialized GPU handle the heavy rendering
operations.

Accelerating the User Interface 627

2
1

 From the Library of Wow! eBook

ptg

Checking What Is Hardware Accelerated
Mixing accelerated and nonaccelerated surfaces can, in fact, create a worse performance
than not using acceleration at all. Because the surfaces are rendered by different proces-
sors, intertwining them complicates the rendering process and slows down the whole
scene.

To visualize what surfaces are hardware accelerated, the Silverlight plug-in can be set in a
visualization mode with the following steps. Note that this feature should be used during
development only.

1. Open HardwareAccelerationTestPage.html.

2. Set an additional parameter on the object tag as shown in Listing 21.14.

LISTING 21.14 Enabling Cache Visualization

<param name=”enableCacheVisualization” value=”true” />

3. Run the application again. The surfaces that are not hardware accelerated are
rendered through a colored layer as shown in Figure 21.4. Only the surfaces that are
rendered in GPU are not colored. Note that the pixilation is visible in this figure for
the text and the Ellipse elements.

CHAPTER 21 Optimizing Performance628

FIGURE 21.4 Hardware accelerated surfaces without coloring.

Enabling Hardware Acceleration Out of the Browser
Applications running out of the browser (OOB) are not hosted in a HTML page. Instead,
they are rendered in a window host, as shown in Chapter 14, “Enhancing Line-of-
Business Applications and Running Out of the Browser.” In these applications, a setting is
found in the project properties, as shown by the following steps:

 From the Library of Wow! eBook

ptg

1. Open the HardwareAcceleration Silverlight project properties.

2. In the Silverlight tab, check the Enable Running Application Out of the Browser
check box.

3. Open the Out-of-Browser Settings and check the Use GPU Acceleration check box.

4. Run the application again, and then right-click its surface and select Install
HardwareAcceleration Application onto this Computer.

5. In the OOB application, notice that the text is still pixilated, which is the case when
BitmapCache is used.

Accelerating with Care
Hardware acceleration works especially well on certain animations affecting a transform
as well as when working with opacity (for example, to create a reveal effect between two
surfaces). There are, however, a few things that one needs to consider when using hard-
ware acceleration:

. Because the scene on which BitmapCache is enabled is converted to a bitmap, it can
get pixilated. This is the effect that we noticed when the blue TextBlock is scaled to
200%. Although hardware acceleration works great on scale animations, it is prefer-
able to avoid using it if the ScaleX and/or ScaleY properties are set to more than
100%. Instead, start with a large scene in XAML and use the animation to shrink it
to less than 100%.

. As you saw earlier, it is best to avoid mixing accelerated and nonaccelerated surfaces
too much. This can be counterproductive.

. Some elements and effects cannot be hardware accelerated:

OpacityMask and nonrectangular clips. (We talked about OpacityMask and about clips
in Silverlight 2 Unleashed, Chapter 6.) Note that if a rectangular clip is rotated, it is
not accelerated either.

The WriteableBitmap class renders its content through a different medium and does
not benefit from hardware acceleration.

Contrary to Silverlight 3, elements with the following effects are hardware accelerated in
Silverlight 4:

. Perspective transforms

. DeepZoom scenes (discussed in Silverlight 2 Unleashed, Chapter 16)

Accelerating the User Interface 629

2
1

T I P

Accelerating Children

Even though an element with CacheMode=”BitmapCache” cannot be accelerated if a nonrec-
tangular clip or an OpacityMask is applied to it, the same is not true from its children. The
children of an accelerated UI element can be clipped or have their OpacityMask set.

 From the Library of Wow! eBook

ptg

Accelerating in the Windows Phone 7
In a Silverlight application running in a Windows Phone 7 device, a notable difference is
that most animations are running on a specialized thread named the render thread. This is
interesting because it allows smoother and faster animations on a platform with less
power than a desktop or laptop computer.

Also, the Silverlight application does not run in a HTML page, and the
EnableGPUAcceleration parameter is always true.

When the application runs in the Windows Phone 7 emulator, it is only accelerated on
computers sporting a graphic card compatible with DirectX10 with WDDM 1.1. Failing
this, the rendering will fall back to the CPU. On the Windows Phone 7 devices, however,
hardware rendering is always enabled.

Using a Code Profiler
If after the measures mentioned earlier in this chapter your Silverlight application still
runs slow, it is a good idea to use a profiler to find out which parts of the application
should be sped up. There are multiple types of profilers:

A code profiler attaches to an instru-
mented application and measures the
time that various parts of the applica-
tions require to run to completion. This
type of profilers is preferred to find
issues with I/O (writing and reading
files), memory related issues, etc.

Another type of profiler is called sample
based profiler and does not require
instrumenting the assemblies. Instead,
they take a sample periodically (such as
a stack trace, reading a performance counter, and so on). This kind of profilers is preferred
to investigate issues related to the CPU (for example, what methods need more time to
perform). For Silverlight applications, it is generally recommended to use a sample based
profiler to find issues.

After the application runs, the code profiler prepares a report where it is visible which
portions of the code need more time to be executed. The developer can dive deeper in
this portion and try to optimize, to let the application run faster.

Optimizing the performance of an application is a long and sometimes difficult process. It
is practically impossible to tune an application to the perfection, especially in the case of
cross platform frameworks such as Silverlight, where the available hardware can range

CHAPTER 21 Optimizing Performance630

T I P

Instrumenting an Assembly

Instrumenting an assembly is the process of
adding some hooks within the assembly to
which a utility can attach and perform calcu-
lation. For the profiler, the hooks are used to
determine how long a given portion of the
code is taking to run. The profiler typically
takes care of this during a preliminary step.

 From the Library of Wow! eBook

ptg

from quite old and slow computers without hardware acceleration to very fast top-of-the-
line machines. It is good to remember during development that many users have less
powerful computers than a developer typically owns, and to test often on slow computers
to find out areas where issues might arise later. As usual, the rule of developing in small
increments and testing these increments often applies here, too.

At the time of this writing, Visual Studio Premium and Ultimate editions come with a
sample based profiler for Silverlight 4. Instructions can be found at
http://www.galasoft.ch/sl4-vs10profiler. Also, the firm EQATEC has a commercial code
profiler available at http://www.galasoft.ch/sl4-profiler.

Avoiding Memory Leaks
Next to saving CPU and trying to speed up applications, another critical resource of
computers is the random access memory (RAM). Even though modern desktops and even
laptops are equipped with an amount of RAM that seemed just impossible just a few years
ago, applications have also become more complex, and the risk of memory leak is still
present and must be taken care of.

Saving an Object on the Stack or the Heap
In Silverlight and in .NET, there are two kinds of objects: Those held by value and those
held by reference. To make things a little more complicated, there are also two kinds of
memory in a computer: the stack and the heap.

Value types are simple types such as int, bool, double and other primitive types. These
values belong to the object that created them, but no other object can reference them.
Instead, if an object attempts to access them, a copy is created for this consumer.

Reference types on the other hand can be referenced by multiple objects, as shown in
Figure 21.5. A reference to such an object is sometimes known as a pointer (as it was called
in the C++ programming language), although nowadays C# developers rather speak of a
reference to an object.

Reference types are always stored on the heap memory. This kind of memory is optimized
for larger objects that have a longer lifetime. On the other hand, the stack is a kind of
memory that is optimized for faster access and frequent cleanups. Although the stack is
easy to clean up, the heap requires special attention, with the help of the so-called
garbage collector (GC).

Avoiding Memory Leaks 631

2
1

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-vs10profiler
http://www.galasoft.ch/sl4-profiler

ptg

FIGURE 21.5 Stack, heap, and objects references.

Collecting Garbage and Leaking Memory
.NET is a managed environment, which means that the .NET application does not typically
access the computer’s hardware directly. Instead, application programming interfaces
(APIs) are used. For the developer, this is interesting because the risk of crashes is reduced
compared to older technologies such as unmanaged MFC applications written in C++ for
instance.

A good example of this is memory management. Developers writing in non-managed
languages such as C/C++ had to manage memory manually, deleting unused objects
explicitly and freeing the memory. In the contrary, the garbage collector used by .NET
monitors periodically which objects are not used anymore, and removes them from
memory. Garbage collection is a very fascinating topic: On one hand, the garbage collec-
tion must occur from time to time to avoid that the computer runs out of memory. On
the other hand, collecting garbage is a slow process, and running the GC too often will
slow down the application and the computer. A lot more information about the garbage
collector in .NET can be found at http://www.galasoft.ch/sl4-gc (video with Patrick
Dussud, who was at the origin of the .NET garbage collector at Microsoft).

Finding Which Objects Can Be Collected
On every cycle, the garbage collector is looking for objects that the application is not
using anymore. In the great lines, here is how GC works:

CHAPTER 21 Optimizing Performance632

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-gc

ptg

. Starting at a root object, all the children, then the children’s children (and so on)
are marked (typically by setting a flag on the objects). For instance, if an object has
an array of other objects, these other objects are reachable and thus are marked.

. Of course, certain objects are marked multiple times because more than one object
is keeping a reference to them. This is not a problem because if there is at least one
reference to this object, it will be spared.

. Then, all objects are inspected. Those without the flag set are unreachable by any
other object. They are collected, and the memory they were using is freed.

One can see why this process is taking time. Also, during the inspection, it is crucial that
the tree of objects is not modified. During the garbage collection time, no other operation
may run.

In the past few years, GC has been very
much optimized and improved with
new algorithms. Concepts like this of
generation help the GC to identify faster
which objects are more likely to be
unused by the application.
Fundamentally, however, one fact
remains true: If an object holds a refer-
ence to another child object, the child is
considered in use by the application.
Note that this is the case even if the
object has been forgotten and is not
actually needed by the application
anymore. It is easy to understand that
keeping track of these references and
attempting to free them when possible
will help to optimize memory.

Freeing an Object
For the developer, freeing an object amounts to making sure that all the references to that
object are set to null:

. For local variables inside a block (such as a loop, a method, and so on), the refer-
ence will automatically be set to null when the block is exited.

. For global variables, the reference should be set to null manually to make sure that
the object can be garbage collected (given of course that no other references to
that object are found in the application). For example consider the classes in
Listing 21.15.

Avoiding Memory Leaks 633

2
1

T I P

Sorting Objects in Generations

In short, the concept of generation specifies
that objects that “survived” garbage collec-
tion a first time will be assigned to genera-
tion 1, and will be visited less often by the
garbage collector than new objects (in gener-
ation 0). Similarly, objects that survived a
generation 1 garbage collection will be
assigned to generation 2, and will be visited
even less often. This speeds up the garbage
collection by assuming that older objects are
less likely to be modified often than new
objects.

 From the Library of Wow! eBook

ptg

LISTING 21.15 Class Hierarchy

1 public class MyCustomObject

2 {

3 private MyChildObject _child;

4 public MyCustomObject(MyChildObject child)

5 {

6 _child = child;

7 }

8 // ...

9 }

10

11 public class MyOtherObject

12 {

13 private MyChildObject _child;

14 public MyOtherObject(MyChildObject child)

15 {

16 _child = child;

17 }

18 // ...

19 }

20

21 public class MyChildObject

22 {

23 // ...

24 }

Creating and freeing the classes can occur as in Listing 21.16.

LISTING 21.16 Creating and Freeing the Classes

1 public partial class MainPage : UserControl

2 {

3 private MyCustomObject _custom;

4 private MyOtherObject _other;

5

6 public MainPage()

7 {

8 InitializeComponent();

9

10 var child = new MyChildObject();

11 _custom = new MyCustomObject(child);

12 _other = new MyOtherObject(child);

13

14 // ...

15

CHAPTER 21 Optimizing Performance634

 From the Library of Wow! eBook

ptg

16 _other = null; // free the reference

17 }

18 }

. Both _custom and _other are kept as reference by the MainPage class (lines 3 and 4
declares them as private attributes).

. An instance of MyChildObject is created on line 10. Because it is local, this reference
will be deleted when the block exits; that is when the constructor finishes execu-
tion.

. However, this instance has been passed to the MyCustomObject and to the
MyOtherObject constructors who in turn store a reference to that instance (lines 3
and 13 of Listing 21.15).

. On line 16 the reference named _other is set to null explicitly. Because no one else
keeps a reference to that instance, it will be collected the next time that the GC
runs. However, the instance of MyChildObject is still referenced by the
MyCustomObject instance, and therefore it cannot be freed.

Here we see that it is critical to explicitly free large objects by setting all their references to
null, so that the GC considers them as unused. Forgetting even just one reference will
prevent the memory to be freed.

Living a Shorter Life
In-browser Silverlight applications typically have a shorter life than, for example, WPF
applications running on the desktop. Because of this, the risk of getting a really critical
memory leak in an in-browser Silverlight application is smaller: When the web page
hosting the plug in is either refreshed or navigated away from, the memory is cleaned up
and the computer is not at risk.

However, Silverlight 4 and the new advanced OOB applications are much more similar to
desktop applications than to web applications. Their lifetime is typically longer, and a
memory leak in these applications is much more dangerous. Generally speaking, it is
good to remember that Silverlight applications are rich applications, and that regardless
of where and how they are running, memory leaks should be avoided absolutely.

Unregistering Event Handlers
A typical mistake done by .NET programmers is related to event handling: Consider the
code in Listing 21.17.

LISTING 21.17 Strong Event Handling

1 public class MyObjectWithEvents

2 {

3 public event EventHandler<EventArgs> SomethingHappened;

4 // ...

5 }

Avoiding Memory Leaks 635

2
1

 From the Library of Wow! eBook

ptg

6

7 public partial class MainPage : UserControl

8 {

9 public MainPage()

10 {

11 InitializeComponent();

12

13 var myObject = new MyObjectWithEvents();

14 myObject.SomethingHappened += HandleSomethingHappened;

15 // …

16 }

17

18 private void HandleSomethingHappened(object sender, EventArgs e)

19 {

20 // …

21 }

22 }

. On line 13, an instance of MyObjectWithEvents is created. Note that it is stored as a
local variable, and therefore will be garbage collected as soon as the block (the
MainPage constructor) is finished executing.

. Line 14 assigns an event handler (the HandleSomethingChanged method) to the
SomethingChanged event of the MyObjectWithEvents instance.

This simple operation caused a potential memory leak: An event handler is creating a
strong reference between the object that raises the event (in that case, the myObject
instance) and the object that handles the event (MainPage). When the constructor exits,
myObject cannot be collected for deletion by the GC because of this strong reference.

To solve the issue, the event handler must be removed before the block exits with the line
of code shown in Listing 21.18, to be placed between lines 15 and 16 of Listing 21.17.

LISTING 21.18 Removing the Event Handler

myObject.SomethingHappened -= HandleSomethingHappened;

Properly removing all the event handlers on unused references before exiting a block or
before a class is deleted is a good practice that reduces the memory leaks and ensures that
your application will run more smoothly and provide a better user experience.

Using Commands Instead
In contrast to events, the Command property of a Button control is set through a Binding,
which creates a less strong dependency between two objects. Even though the Command
references another object (for example, a view-model), this does not prevent the view-
model object to be garbage collected if needed. Using commands rather than events is a
good practice because of the looser dependency that it creates between two objects.

CHAPTER 21 Optimizing Performance636

 From the Library of Wow! eBook

ptg

Disposing Objects
Another kind of objects should be cleaned up after the application is done using them:
the types implementing the IDisposable interface. When an object is defined as
IDisposable by its developer, it is a clear indication that this object might have used
resources that should be properly cleaned up. For example, this might be an access to the
file system (for the Stream, StreamReader, StreamWriter, and other classes), a connection to
a database, and so forth.

Closing and disposing such objects used to be an annoying process but in more recent
versions of .NET (and in Silverlight), it has become very easy thanks to the using
keyword. For example, a StreamReader and its Stream are automatically closed and
disposed by the code in Listing 21.19.

LISTING 21.19 Closing and Disposing a Stream and StreamReader

var dialog = new OpenFileDialog();

if (dialog.ShowDialog() == true)

{

using (var stream = dialog.File.OpenRead())

{

using (var reader = new StreamReader(stream))

{

// Read the file

}

}

}

You can find more information about the IDisposable pattern at
http://www.galasoft.ch/sl4-idisposable.

Using Weak References
One way to avoid strong references between objects is to use the WeakReference class. This
special class keeps a reference to an object but does not prevent it to be garbage collected.

For example, the sample shown in Listing 21.15 can be modified to avoid blocking the
MyChildObject instance, as shown in Listing 21.20.

LISTING 21.20 Using a WeakReference

1 public class MyCustomObject

2 {

3 private WeakReference _childReference;

4

5 public MyCustomObject(MyChildObject child)

6 {

7 _childReference = new WeakReference(child);

8 }

Avoiding Memory Leaks 637

2
1

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-idisposable

ptg

9

10 // ...

11

12 public void UseChild()

13 {

14 if (_childReference != null

15 && _childReference.IsAlive)

16 {

17 (_childReference.Target as MyChildObject).DoSomething();

18 }

19 }

20 }

. Line 3 declares a WeakReference instead of storing the instance of MyChildObject as
an attribute directly.

. Line 7 constructs a new WeakReference instance and passes it the child.

. Finally, when the child needs to be used, line 15 makes sure that the MyChildObject
instance is still alive. Because WeakReference does not prevent the GC to delete the
child object, this step is necessary to avoid calling disposed objects.

. If the object is still alive, the Target property of the WeakReference is used to access
the stored object.

As Listing 21.20 shows, using a WeakReference is more convoluted than using an attribute
directly. Although this class is very useful in some cases, it must be used with care. In
many cases indeed, an object referenced by another object should not be allowed to be
deleted. This is exactly the intent of the reference: to signal that the referenced object is
still needed. Instead, the WeakReference class can be used when two objects should have a
way to communicate, but neither object is responsible for the other object’s lifetime.

Finding a Leak
If, in spite of all the precautions mentioned in this section, a memory leak is suspected in
an application, you can use the WinDbg utility to find the cause. A detailed explanation
of the process can be found at http://www.galasoft.ch/sl4-windbg.

Also, Visual Studio Premium and Ultimate support some limited profiling of memory
garbage collection as well as allocation and object lifetime.

CHAPTER 21 Optimizing Performance638

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-windbg

ptg

Summary
Although it is easy in Silverlight to create beautiful applications, the topic of performance
should not be neglected: A smooth-running application participates as much to a beauti-
ful user experience than the user interface itself. This chapter showed some techniques
and tools that can be used to improve the application’s performance in multiple places:
When the application is downloaded, when it runs, and when it stores items in memory.
Applying these few rules should take care of many risks, but eventually tuning an applica-
tion is a process that requires time and experience. Make sure to plan enough time in
your projects to test the performance of the application and to find ways to make it run
faster and more smoothly.

In the next and last chapter, we talk about a few advanced software development tech-
niques related to .NET and especially Silverlight.

Summary 639

2
1

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

IN THIS CHAPTER, WE
WILL:

. Study new features of the C#
language such as lambda
expressions, the dynamic
keyword, and named
parameters.

. Localize applications to
prepare it for users of other
cultures.

. Encrypt and decrypt text to
store it or send it securely.

. Talk about multithreading and
understand how Silverlight
applications can be enhanced
with background workers.

. Use unit tests to develop our
applications

CHAPTER 22

Advanced Development
Techniques

In this last chapter, we will study advanced techniques
that Silverlight developers can use to solve programming
problems, extend their applications, or make them perform
better.

Using New C# and .NET Features
C# as a language and the .NET framework have been
continuously enhanced since they were first released in
2001. Early versions of C# were extremely static and type
safe: If the application didn’t show errors at compilation, it
meant that most errors had been already avoided. The
downside to this approach was that static languages are
limited in their abilities to be extended, to communicate
with interfaces that are not defined in advance, and so
forth. In the opposite, dynamic languages (such as
JavaScript, Ruby, Python, and so on) are very extensible
and flexible, but they are also more risky to program
against.

Using Modern Programming Syntax
To improve the situation and make C# more dynamic, a
few improvements were brought into C# in the latest
versions.

Using Lambda Expressions
We already used lambda expressions in this book. They are
a neat way to define anonymous delegates that can be
passed as argument to another method, for instance, or to
create event handlers as shown in Listing 22.1.

 From the Library of Wow! eBook

ptg

LISTING 22.1 Lambda Expressions

1 MouseMove += (s, e) =>

2 {

3 DoSomething(s);

4 DoSomethingElse(s, e);

5 };

6

7 MouseLeftButtonDown += (s, e) =>

8 HandleMousePosition(e.GetPosition(this));

. Lines 1 to 5 define an anonymous event handler for the MouseMove event. Because
the anonymous method’s body has more than one line, the block syntax is used.

. Lines 7 and 8 define another anonymous event handler for the MouseLeftButtonDown
event. Here, only one line of code is executed, so the block can be left out, allowing
for a very compact and elegant syntax.

Using Action and Func
The introduction of the Action and Func classes allow considering a method just like an
object. Such instances can be passed to another object, stored, and executed later. This
reduces the need for more complex object-oriented mechanisms such as defining inter-
faces, as shown in Listing 22.2.

LISTING 22.2 Action and Func

1 private Action<bool> _callback;

2

3 public void CallAsynchronousService(Action<bool> callback)

4 {

5 this._callback = callback;

6 var client = new WebClient();

7

8 client.DownloadStringCompleted

9 += ClientDownloadStringCompleted;

10 client.DownloadStringAsync(

11 new Uri(“http://www.silverlight.net”));

12 }

13

14 void ClientDownloadStringCompleted(

15 object sender,

16 DownloadStringCompletedEventArgs e)

17 {

18 if (_callback != null)

19 {

20 _callback(e.Error == null);

21 }

22 }

CHAPTER 22 Advanced Development Techniques642

 From the Library of Wow! eBook

ptg

. Line 1 declares a callback that will be passed to the CallAsynchronousService
method, and executed later when the asynchronous service call is completed.

. On lines 20, the callback is actually executed. The CallAsynchronousService method
can be called by a consumer, as shown in Listing 22.3.

LISTING 22.3 Calling the CallAsynchronousService Method

1 public void Test()

2 {

3 CallAsynchronousService(

4 result => MessageBox.Show(result ? “Success” : “Error”));

5

6 CallAsynchronousService(HandleResult);

7 }

8

9 public void HandleResult(bool result)

10 {

11 // Do something

12 }

. Lines 3 and 4 call the asynchronous method by providing an anonymous delegate
for the callback (expressed as a lambda expression).

. Line 6 uses a different syntax and passes a so-called method group, which is in fact
a named reference to the method defined on lines 9 to 12.

Func delegates are similar to the Action delegate, but they return a value as shown in
Listing 22.4.

LISTING 22.4 Using a Func to Filter Items

1 public IEnumerable<Customer> GetCustomers(string lastName)

2 {

3 return Customers.Where(c => c.LastName == lastName);

4 }

. On line 3, a Func<Customer, bool> is used as a filter for the Where query method.
This very compact syntax (again) is equivalent to the code shown in Listing 22.5.

LISTING 22.5 Verbose Syntax to Filter Items

public IEnumerable<Customer> GetCustomers(string lastName)

{

var foundCustomers = new List<Customer>();

foreach (var customer in Customers)

{

if (customer.LastName == lastName)

Using New C# and .NET Features 643

2
2

 From the Library of Wow! eBook

ptg

{

foundCustomers.Add(customer);

}

}

return foundCustomers.AsEnumerable();

}

Note that multiple overloads exist for the Func and Action constructors, allowing using
delegates with multiple parameters.

Chaining Methods
More attention has been put into creating classes that allow a fluent syntax such as the
one creating LINQ queries. Each method’s result can be chained to the next method. This
is a very elegant way to write code. Note that in the case of LINQ, another syntax is avail-
able, using keywords such as select, from, where, orderby and so forth. You are free to
choose which syntax you prefer.

Other frameworks allow using fluent syntax, too. The key to creating an object allowing
fluent syntax is to always return an instance that can be used by the next call. For
example, Listing 22.6 shows methods that can be chained.

LISTING 22.6 Fluent Syntax

public class Item

{

private int _counter;

public Item Increment()

{

_counter++;

return this;

}

public Item Execute()

{

if (_counter % 2 == 0)

{

// Do something...

}

return this;

}

}

//...

public void IncrementAndExecuteItem()

{

CHAPTER 22 Advanced Development Techniques644

 From the Library of Wow! eBook

ptg

var item = new Item();

item.Increment().Execute()

.Increment().Execute();

}

In Listing 22.6, notice how each method returns the current Item instance, allowing the
next method to be called directly. For more information about fluent interfaces, check out
this article: http://www.galasoft.ch/sl4-fluent. Note that, as Martin Fowler underlines,
building a good fluent interface is quite hard, which is why this programming style is not
available frequently.

Creating Extension Methods
Extension methods were already mentioned a few times in this book. They are a way to
add functionality to a class that cannot be modified (because you don’t have the source
code, or because you want the changes to be applied only in certain cases). Such a
method is shown in Listing 22.7.

LISTING 22.7 Creating an Extension Method

namespace ExtensionMethodSample.Helpers

{

public static class CustomerHelper

{

public static string GetFullName(

this Customer caller)

{

return caller.FirstName

+ “ “

+ caller.LastName;

}

}

}

The method in Listing 22.7 adds functionality to a WCF proxy object named Customer
(such as we used in Chapter 7, “Understanding the Model-View-ViewModel Pattern”).
This class has a FirstName and a LastName properties, but it lacks the FullName property.
Since the Customer class is generated by Visual Studio, it cannot be modified. Using an
extension method is a convenient way to add the desired property.

Note that extension methods can have additional parameters (but the this parameter
must always be first). They can be added in external assemblies too. Also, extension
methods can be added not only to classes, but also to interfaces (just like LINQ adds
extension methods to the IEnumerable interface as well as others).

Using New C# and .NET Features 645

2
2

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-fluent

ptg

Using the Extension Method
To use the extension method in your
code, you must take care of referenc-
ing the DLL that hosts the method (if
needed), and to add a using directive
at the top of the page, pointing to the
namespace in which the helper
method is defined. The extension
method will only appear in
IntelliSense after you add the using
directive, as shown in figure 22.1.

Using Extension Methods with Care
Extension methods can be confusing, especially for inexperienced programmers who may
have difficulties to understand why a method is available in some situations, but not in
others. While certain parts of the Silverlight frameworks (such as LINQ) make extensive
use of extension methods, you may want to think twice before adding such methods to
your libraries.

Consuming Dynamic Objects
The dynamic keyword is an addition that enables more flexibility in the C# language. For
example, this keyword can be used with the COM automation that we covered in Chapter
18, “Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling, Notification
Windows and Splash Screens,” to interact with applications such as Word, Excel, or even
the Windows operating system.

Another usage for the dynamic keyword is with dynamic languages such as IronRuby and
IronPython (the .NET versions of the languages Ruby and Python). This enables loading
and executing script files at runtime; for example, the user may be asked to load a script
file that will be read and executed. Or, Ruby/Python scripts may be embedded inside the
HTML file and used at runtime to customize the Silverlight experience.

More information about dynamic languages can be found at
http://www.galasoft.ch/sl4-dynamic. A very interesting experiment with dynamic
languages using Silverlight as an engine is called Gestalt and exposed at
http://www.galasoft.ch/sl4-gestalt.

Using Named/Optional Parameters
Another really nice improvement in C# 4.0 that is also available in Silverlight 4 is the
possibility to define named parameters in methods. This answers an issue that is often
found into frameworks: The need to define multiple overloads for a method, to allow for
different sets of parameters. In C# 4.0, this can be replaced by the code in Listing 22.8.

CHAPTER 22 Advanced Development Techniques646

FIGURE 22.1 The extension method in
IntelliSense.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-dynamic
http://www.galasoft.ch/sl4-gestalt

ptg

LISTING 22.8 Using Named Parameters

1 public void Execute(

2 bool flag = false,

3 string firstName = string.Empty)

4 {

5 // Do something

6 }

7

8 public void Test()

9 {

10 Execute(firstName: “Laurent”);

11 }

. Line 2 specifies that a bool parameter can be passed to the method. However, it is
optional. If the parameter is missing, its value is set to false.

. Similarly, a second optional parameter is defined, named firstName and its default
value set to string.Empty.

. Line 10 shows how the method can be called with only the firstName parameter.

With these improvements, C# 4.0 is a more dynamic and friendlier programming
language. The fact that Silverlight can execute script files in Python or Ruby and that it
can communicate with COM interfaces (on Windows and with elevated permissions only)
opens new possibilities in creating powerful applications. However, more power means
more responsibility, and there is a risk to create more unstable applications at runtime.

Localizing Applications
Localization is the process used to adapt an application to various regions of the world
and various cultures. This goes beyond translating the texts of the application! In some
cultures, colors have different meanings than in others. Icons can be interpreted very
differently. Also, some cultures use right-to-left languages.

Adding a Resource File
In .NET, resources are stored in RESX
files (that is, files named *.resx). When
the application is compiled, the
resources are parsed and embedded
inside the assembly. Visual Studio also
provides easy access to these resources
through a generated class. In most cases,
the localized resources stored in the
RESX file are strings, but the file can also
handle icons, images, audio files, and so
forth.

Localizing Applications 647

2
2

WA R N I N G

There Are Resources and Resources

Do not get confused! The resources we store
in a ResourceDictionary in XAML and the
resources used to localize an application are
quite different. In this section, we are not
talking about XAML resources.

 From the Library of Wow! eBook

ptg

Making an Application Localizable
In this sample, we take a simple application and localize it with the following steps:

1. Download LocalizationSample-Start.zip from http://www.galasoft.ch/sl4-localize. As
always, unblock the file and extract the content to your hard drive. Then open
LocalizationSample.sln in Visual Studio.

2. Make LocalizationSample.Web the Startup project and
LocalizationSampleTestPage.html the Startup page.

3. Run the application. A single TextBlock displays a text in English.

4. Right-click the Silverlight project and select Add, New Item from the context menu.

5. In the Add New Item dialog, under General, select a Resources file and name it
Resources.resx.

6. In Resources.resx, add a new text with the name “TestString” and the value “This
is a test string”. It is a good idea to use the same text for the Value and for the
Comment columns.

7. Still in Resources.resx, make sure that the Access Modifier combo box is set to
Public, as shown in Figure 22.2.

CHAPTER 22 Advanced Development Techniques648

FIGURE 22.2 Changing the access modifier.

8. Close Resources.resx. Then, copy this file in the Solution Explorer and paste it.
Rename the copy Resources.fr-FR.resx.

9. Open the new file and replace the value with the translation C’est une chaîne de
caractères pour tests.

10. It is better to keep RESX files into the Properties folder, so select both and move
them into this folder in the Solution Explorer.

Including the Resource DLL in the XAP
When the application is built, the fr-FR resources are placed in an external assembly in
the folder bin\Debug\fr-FR. This assembly is called LocalizationSample.resources.dll and
contains only resources. For the assembly to be placed in the XAP file and made available
to the Silverlight application, the project file needs to be edited manually with the follow-
ing steps:

1. Right-click the Silverlight project and select Unload Project from the context menu.

2. Right-click the unloaded project and select Edit LocalizationSample.csproj.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-localize

ptg

3. Look for the SupportedCultures tag and modify it to <SupportedCultures>fr-
FR</SupportedCultures>. If you have multiple cultures, enter their code separated
with commas.

4. Save and close the CSPROJ file.

5. Right-click the unloaded project and select Reload Project.

When the application is built next, the satellite DLL will be added to the XAP file. Note
that if you need to support multiple cultures, this can add quite a lot of bulk to the XAP
file, which is annoying. To improve this, check the “Downloading Resources on Demand”
section.

Using a ResourceManager for Data Binding
Visual Studio generates a class named LocalizationSample.Properties.Resources that
allows easy access to the embedded localized resources. For example, this class in the
current sample has a property named TestString that can be used to access the localized
string. Depending on the current culture, the framework will try to find a corresponding
resource. For example, if the culture is set to fr-FR, the Resources.fr-FR.resx file will be
used. If the culture is set to it-IT, no corresponding file is found. In that case, the
Resources.resx file is used. This is called the fallback resources. Note that if traditionally
fallback resources are localized in American English (en-US), this is by no means an
obligation.

In a perfect world, it would be possible to use the Properties.Resources class to directly
data-bind a UI element’s property to a localized value. Unfortunately, there is a small bug
in the current version of Visual Studio that needs a quick workaround with the following
steps:

1. Add a new class to the Silverlight project and name it Localizer.cs.

2. Implement the Localizer class as shown in Listing 22.9. This class is exposing an
instance of the Resources class so that we can indirectly data bind to its properties.
This takes care of the small bug previously mentioned.

LISTING 22.9 Localizer Class

public class Localizer

{

private static readonly Properties.Resources _resources

= new Properties.Resources();

public Properties.Resources Localize

{

get { return _resources; }

}

}

Localizing Applications 649

2
2

 From the Library of Wow! eBook

ptg

3. Open App.xaml and add an instance of the Localizer class to the
Application.Resources as shown in Listing 22.10.

LISTING 22.10 Adding a Localizer to the Global Resources

<Application.Resources>

<local:Localizer x:Key=”Localizer”

xmlns:local=”clr-namespace:LocalizationSample”/>

</Application.Resources>x

4. Then, in MainPage.xaml, change the Text property of the TextBlock as shown in
Listing 22.11.

LISTING 22.11 Binding Through a Localizer

Text=”{Binding Source={StaticResource Localizer},

Path=Localize.TestString}”

5. Run the application. The string
should appear just like before.

Changing the Culture
In this sample, we use the URL of the
HTML page to select a different culture.
To do this, open App.xaml.cs and
modify the App constructor as shown in
Listing 22.12.

LISTING 22.12 Loading the Culture

private const string QueryParameter = “culture=”;

public App()

{

var query = HtmlPage.Document.DocumentUri.Query;

if (!string.IsNullOrEmpty(query)

&& query.IndexOf(QueryParameter) > -1)

{

var queryParameters = query.Split(new char[] { ‘&’ });

foreach (var parameter in queryParameters)

{

if (parameter.StartsWith(QueryParameter)

|| parameter.StartsWith(“?” + QueryParameter))

{

CHAPTER 22 Advanced Development Techniques650

T I P

Changing the Neutral Language

If you decide to change the fallback culture,
it is good to also set the corresponding
value in the assembly information by opening
the Silverlight project properties, selecting
Silverlight, Assembly Information, and then
choosing the correct neutral culture.

 From the Library of Wow! eBook

ptg

var values = parameter.Split(new char[] { ‘=’ });

Thread.CurrentThread.CurrentCulture

= Thread.CurrentThread.CurrentUICulture

= new System.Globalization.CultureInfo(values[1]);

}

}

}

this.Startup += this.Application_Startup;

this.Exit += this.Application_Exit;

this.UnhandledException += this.Application_UnhandledException;

InitializeComponent();

}

The code in Listing 22.12 checks the query string in the URL of the HTML page and
detects whether a parameter named culture was passed. Then, it sets the
Thread.CurrentThread.CurrentCulture (for numbers formats, dates, phone numbers, and
so on) and the Thread.CurrentThread.CurrentUICulture (for UI elements).

To test this, make sure that the web project is set as StartUp Project and the page
LocalizationSampleTestPage.html is set as Startup page, run the application, add
?culture=fr-FR after the .html extension in the location bar and press Enter. You should
now see the string displayed in French.

There are multiple ways to instruct the Silverlight application to select a different current
culture, including the following:

. The culture set by the operating system should be picked automatically by the
Silverlight framework. It is also available in
System.Globalization.CultureInfo.CurrentUICulture and CurrentCulture.

. You can define an additional initialization parameter in the HTML page’s object tag.
We saw how to do that in Silverlight 2 Unleashed, Chapter 21, in the “Setting
Initialization Parameters and Retrieving Initialization Parameters” section.

Unfortunately, it is not possible to change the culture during runtime. To do this, when
the user selects a different culture, save the state of the application and then reload the
HTML page with a different query string.

Using Tools
Not many tools are available to automate the process of localizing Silverlight
assemblies. One promising tool seems to be Alchemy Catalyst, of which version 8.0
supports Silverlight. More information about this tool can be found at
http://www.galasoft.ch/sl4-catalyst.

Localizing Applications 651

2
2

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-catalyst

ptg

Downloading Resource Applications on Demand
As mentioned before, adding multiple resource assemblies to a XAP file increases its size,
even though only one such DLL is needed for the application to work. The solution is to
load these assemblies on demand.

Unfortunately, describing the whole process would take too much space, but a working
sample is provided at http://www.galasoft.ch/sl4-localize. Download the zip file named
LocalizationSample-OnDemand.zip, unblock it, and extract the content. Then you can
open the solution file in Visual Studio and check how the on-demand loading is done in
App.xaml.cs. Note that if you want to download resource assemblies on demand, you
must not include them in the XAP file, so the step described in “Including the Resource
DLL in the XAP” section must be avoided!

Encrypting and Decrypting
Silverlight provides everything needed for strong encryption/decryption directly in the
framework. We will not go too deep in the details here because this is a very complex
topic for the time that we have. However, a sample is included at
http://www.galasoft.ch/sl4-encrypt. Download this file, unblock it, and extract the
content to your hard drive. Then open EncryptionSample.sln in Visual Studio and run the
application.

To test the encryption/decryption, enter some text in the TextBox on the left. Then, enter
a password in the PasswordBox directly beneath and click the Encrypt button. Select a
name and location for the file and save it. Then end the application.

Open the file you just saved in a text editor. As expected, the result should is unreadable.
The content has been encrypted.

To decrypt the file, run the application again. Enter the same password you used in the
encryption phase and then click the Decrypt button. The decrypted content appears in
the TextBox on the right.

You can also try what happens when the password is not valid: Enter a different password
and click Decrypt: A message is shown warning you that it is impossible to decrypt the
file.

Understanding the Encryption/Decryption Mechanism
There are a few classes able to encrypt and decrypt text in Silverlight, located within the
System.Security.Cryptography namespace. Each class corresponds to a different encryp-
tion algorithm, such as Advanced Encryption Standard (AES), Data Encryption Standard
(DES), Elliptic Curve Diffie-Hellman (ECDH), Hash-based Message Authentication Code
(HMAC), and more.

To encrypt a text, a key is prepared using the password you provided as well as a piece of
text named the “salt” (hard coded in the application) which creates additional random-
ization of the key. Upon decryption, the password and the salt must be provided in the
exact same spelling and capitalization.

CHAPTER 22 Advanced Development Techniques652

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-localize
http://www.galasoft.ch/sl4-encrypt

ptg

The actual encryption/decryption is done using a class named CryptoStream, which is a
specific implementation of the Stream base class. This can be used to write to (or read
from) any place that a Stream can be used for, such as isolated storage, memory, file
system, or of course, sending requests on the web and receiving responses to protect the
web traffic.

Studying the provided sample should provide enough material to get started with encryp-
tion. You can find more information about the Cryptography namespace at
http://www.galasoft.ch/sl4-crypto.

Multithreading
When an application needs to wait for a long time before continuing to perform an oper-
ation, it would be impractical to block the whole user interface and simply let the user
wait. This is what happens in traditional websites (which do not use advanced JavaScript
functionalities known as AJAX). For example, when a user performs a search on a search
engine, he has to wait until the search results return. Granted, search engines are very
much optimized for speed, but the experience could be better nonetheless.

Similarly, when a long-lasting operation needs to be performed (for example, a calculation
involving a large number of data rows), the user should get information about the
progress. This can be done only if the user interface is not blocked during the operation.
This also provides a possibility to let the user start a different operation, for example, or
to show him something to let the time go faster (animation, video, even advertisement).

To handle this, modern application frameworks such as Silverlight have the possibility to
start multiple threads.

What Is a Thread?
Normally, desktop applications run in a process. This is what you can see when you open
the Task Explorer by right-clicking on the taskbar in Windows and selecting the corre-
sponding context menu item. This can be, for example, Word.exe (for Microsoft Word),
iexplore.exe (for Internet Explorer), chrome.exe (for Google Chrome), and so forth.

For Silverlight, it is slightly more complex because all Silverlight instances run within the
process named iexplore.exe (for in-browser applications) or sllauncher.exe (for out-of-
browser applications). This process is just a host for the Silverlight application, which
runs in its own isolated environment.

Each application (and each Silverlight application as well) has, in addition, the possibility
to spawn one or more threads. Note that there is always at least one thread, often called
the main thread. For Silverlight, the main thread is also often called the UI thread, because
this is the thread which is responsible for rendering all the UI elements.

In addition to the UI thread, Silverlight is able to spawn threads automatically (for
example, when an asynchronous web request is sent). We noted already that the user
interface is not blocked while the application waits for the response. The Silverlight
framework takes care of everything here, and the developer does not need to explicitly

Multithreading 653

2
2

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-crypto

ptg

start this new thread. For other multithreaded operations, however, Silverlight must be told
exactly what to do, when to start and when to stop doing it.

Using the ThreadPool
One way to spawn new threads is to use the ThreadPool static class. When it is started,
each Silverlight application creates a small number of threads and places them in the
ThreadPool. These threads can be consumed by the application, and returned automati-
cally to the ThreadPool when the task is completed.

The ThreadPool class is useful typically when a large number of threads are needed for a
short time. The Silverlight framework takes care of managing the resources, and creates
new threads on demand if enough memory is available. If resources become too sparse,
the requests are queued, and will get processed as soon as one thread becomes available
again.

Although starting a threaded operation on the ThreadPool is the easiest method from a
syntax point of view, it is recommended to use a BackgroundWorker instead for longer
operations, as you will see in the “Creating a BackgroundWorker” section.

The following sample creates an application calculating all prime numbers from 0 to
10,000. Such a calculation is a small “unit of work” that can be delegated to a background
thread. This is a good usage for a ThreadPool, a large amount of short-lived threads.
Follow these steps:

1. Create a new Silverlight application in Visual Studio and name it
ThreadPoolSample.

2. Modify the MainPage.xaml as shown in Listing 22.13.

LISTING 22.13 Modifying the UI

<ScrollViewer>

<StackPanel x:Name=”PrimeNumbersPanel”

Background=”White”>

</StackPanel>

</ScrollViewer>

3. Modify the MainPage constructor (in MainPage.xaml.cs) as shown in Listing 22.14.

LISTING 22.14 MainPage Constructor

1 private const int NumberOfPrimes = 10000;

2

3 public MainPage()

4 {

5 InitializeComponent();

6

CHAPTER 22 Advanced Development Techniques654

 From the Library of Wow! eBook

ptg

7 for (var index = 0; index < NumberOfPrimes; index++)

8 {

9 CalculatePrime(index);

10 }

11 }

. Line 1 defines how many numbers must be tested to find prime numbers.

. Lines 7 to 10 call the CalculatePrime method 10,000 times. This method (defined in
Listing 22.16) tests whether a number is a prime number.

4. Define the DisplayPrimeNumber method as shown in Listing 22.15.

LISTING 22.15 Preparing the Display and Testing the Numbers

1 private void DisplayPrimeNumber(int prime)

2 {

3 var text = new TextBlock

4 {

5 Foreground = new SolidColorBrush(Colors.Red),

6 FontSize = 24,

7 Text = prime.ToString()

8 };

9

10 PrimeNumbersPanel.Children.Add(text);

11 }

. Lines 3 to 8 create a new TextBlock and assign the prime number found to its Text
property.

. Then the new TextBlock is added to the StackPanel.

5. Add the new method to calculate prime numbers as shown in Listing 22.16.

LISTING 22.16 Calculating a Prime Number

1 private void CalculatePrime(int index)

2 {

3 ThreadPool.QueueUserWorkItem(

4 o =>

5 {

6 Thread.CurrentThread.Name

7 = “Worker # “ + index;

8 var root = (int) Math.Ceiling(Math.Sqrt(index));

9 var isPrime = false;

10

11 while (root > 1)

Multithreading 655

2
2

 From the Library of Wow! eBook

ptg

12 {

13 if (root != index

14 && index % root == 0)

15 {

16 isPrime = false;

17 break;

18 }

19 else if (!isPrime)

20 {

21 isPrime = true;

22 }

23

24 root—;

25 }

26

27 if (isPrime)

28 {

29 Dispatcher.BeginInvoke(

30 () => DisplayPrimeNumber(index));

31 }

32 });

33 }

Because the CalculatePrime method is called 10,000 times, and because each calculation
can take a different time, blocking the user interface during the operation would provide
a very bad user experience. Instead, spawning multiple background threads as we do here
provides a better experience: The user interface is not blocked, so it is possible to provide
user information. Also, the computer’s resources are optimized: The ThreadPool class takes
care of reusing and recycling existing Thread instances, of creating new ones when
needed, and of queuing incoming requests to process them as soon as possible.

The following happens in Listing 22.16:

. Line 3 requires the ThreadPool class to start an operation in a Thread. The parameter
of the QueueWorkItem method is an instance of the WaitCallback class. In many
cases, however, an anonymous delegate can be used for this task, as provided on
lines 4 to 30 (as a lambda expression).

. When resources are available to actually start the thread, the content of the anony-
mous delegate is executed on a background thread. This starts on lines 6 to 23 by
checking whether the provided number is a prime number. We won’t go into
explaining the algorithm here; it is available in multiple places online.

. A name is given to the current Thread on lines 6 to 7. We will see why it is impor-
tant in the “Enhancing Multithreaded Code” section.

CHAPTER 22 Advanced Development Techniques656

 From the Library of Wow! eBook

ptg

. If the number is indeed a prime, the method DisplayPrimeNumber needs to be called.
This is done on lines 27 and 28. Note, however, that a direct call to this method will
cause an exception to occur. Instead, a Dispatcher is used. We already talked about
the Dispatcher object as early as Chapter 5, “Understanding Dependency
Properties,” and will explain it in details in “Dispatching Back to the UI Thread”
section.

Multithreading 657

2
2

WA R N I N G

Synchronizing the Threads

The code in this section does not take care of synchronizing the threads. This can lead to
unexpected results: Because each threaded operation can take a various length of time to
execute (depending on the complexity of the task, on the CPU’s load, and so on), there is no
guarantee that the prime numbers will be displayed in order. If the output needs to be in
ascending order, the DisplayPrimeNumber method will need to take care of checking the
already displayed numbers and inserting the new one at the correct location.

Typically, the ThreadPool class is rather used on servers, where resource management is
critical, and where applications are typically very long lived. They can have their usage in
Silverlight, too, as shown in this example. For other threading scenarios, the
BackgroundWorker class that we will study in the “Creating and Using a
BackgroundWorker” section is typically preferred.

Dispatching Back to the UI Thread
In Listing 22.16, lines 27 and 28 are using the BeginInvoke method of a Dispatcher. This is
needed, because the DisplayPrimeNumber method (defined in Listing 22.15) creates a
TextBlock element and adds it to an existing StackPanel. However, in Silverlight an
instance of a control belongs to the Thread on which it was created (in that case, the UI
thread). If another Thread attempts to access and modify it, this causes an
UnauthorizedAccessException to be thrown with the message “Invalid cross-thread access.”
To try this, just replace lines 27 and 28 in Listing 22.16 with DisplayPrimeNumber(index);
Then run the application and see how the exception is displayed.

To make sure that a method has the right to access another object, and to perform the
actual call safely, the Dispatcher class can be used. There is exactly one instance of a
Dispatcher per Thread. This instance is accessible through a number of ways, including the
following:

. Each DependencyObject has a property named Dispatcher. (Do not get confused by
the fact that the property has the same name as the class it holds.) This property can
be used to access the BeginInvoke method. However, it is not always possible to use
this property, as explained in the “Using the RootVisual’s Dispatcher” box.

. The UI dispatcher is also accessible through the System.Windows.Deployment class.
This is probably the most convenient way to access the Dispatcher.

 From the Library of Wow! eBook

ptg

As a rule of thumb, if multithreaded code is executed within a DependencyObject (such as
within the MainPage class like in Listing 22.16, or within a custom Control), using the
object’s own Dispatcher property is the most convenient way to execute code on the UI
thread. For other cases, the System.Windows.Deployment class as shown in Listing 22.17.

LISTING 22.17 Using System.Windows.Deployment’s Dispatcher

System.Windows.Deployment.Current.Dispatcher.BeginInvoke(

() => DoSomething());

CHAPTER 22 Advanced Development Techniques658

WA R N I N G

Using the RootVisual’s Dispatcher

It is tempting to try and access the UI thread’s Dispatcher through accessing the static prop-
erty called Application.Current.RootVisual. This property holds the element that is set as
the RootVisual of the application, typically in App.xaml.cs, in the Application_Startup event
handler.

However, access to this property will throw the same UnauthorizedAccessException that we
are trying to avoid. This happens because the RootVisual belongs to the UI Thread, and may
not be accessed by the worker Thread.

Checking Access Before Dispatching
Using the BeginInvoke method is needed to enable cross-thread access, as we saw, but it
also has a side effect: It adds the call into a queue on the destination Thread. The code will
be executed only when the queue reaches this particular entry. Depending on what is
currently running on the main thread, this can take some time.

If the call should be executed as soon as possible, it is possible to check whether a direct
call is possible, without passing through the BeginInvoke method, by using the undocu-
mented CheckAccess method on the Dispatcher class. It may seem a little weird that this
method is not documented in the official Silverlight documentation and that it does not
appear in IntelliSense. However, it is perfectly safe to use it as shown in Listing 22.18.

LISTING 22.18 Checking Access

1 if (Deployment.Current.Dispatcher.CheckAccess())

2 {

3 DoSomething();

4 }

5 else

6 {

7 Deployment.Current.Dispatcher.BeginInvoke(

8 () => DoSomething());

9 }

 From the Library of Wow! eBook

ptg

. Line 1 uses the Dispatcher to check whether the current Thread has access to its
objects.

. If access is okay, the DoSomething method can be called directly. It will be executed
synchronously, without any delay.

. If CheckAccess returns false, however, the BeginInvoke method is used. This causes
the DoSomething method to be executed asynchronously, with a small delay.

Using BeginInvoke on the Current Thread
In some occasions, it can be useful to use BeginInvoke on the current thread to add asyn-
chronicity to the current operation. For example, before starting a lengthy calculation,
you may want to finish the current method first. Consider the code in Listing 22.19.

LISTING 22.19 Initializing a Page

1 public MainPage()

2 {

3 Items = new ObservableCollection<string>();

4 InitializeComponent();

5

6 Loaded += (s, e) => MessageBox.Show(“Loaded”);

7 OutputMany();

8 OutputOne();

9 }

10

11 private void OutputOne()

12 {

12 Items.Add(“One”);

13 }

14 private void OutputMany()

15 {

16 for (var index = 0; index < 10; index++)

17 {

18 Items.Add(index.ToString());

19 }

20 }

With the code in Listing 22.19, the ListBox in MainPage.xaml displays numbers from 0 to
9 first, then the string “One”, and only then will the MessageBox be displayed. The
OutputMany method is blocking the initialization of the page, and if it lasts for a long time
(unlike here), it can be disturbing. Instead, it is possible to modify line 7 of Listing 22.19
to render the call to OutputMany asynchronous, as shown in Listing 22.20.

LISTING 22.20 Making an Asynchronous Call on the Current Thread

Dispatcher.BeginInvoke(() => OutputMany());

Multithreading 659

2
2

 From the Library of Wow! eBook

ptg

After modifying the application and running it, we first see the string “One”, then the
MessageBox is displayed, and only after the MessageBox is closed will the numbers 0 to 9
appear. Note, however, that all the operations occur on the UI thread, so this is not multi-
threaded code!

Dispatching to Other Thread Instances
Every Thread has a Dispatcher, not just the UI Thread. The techniques detailed here work
between two background Thread instances, too.

Creating and Using a BackgroundWorker
As mentioned earlier, a BackgroundWorker instance is preferred in certain scenarios: When
one Thread instance may be invoked multiple times; when it might be running long-
lasting operations; when a reference to the running Thread is needed in multiple places in
the application.

BackgroundWorker is a higher-level class than ThreadPool, and it provides a few advantages
to the programmer:

. An ongoing operation can be cancelled by calling the CancelAsync method. This is
very handy and less complicated than with the ThreadPool class.

. A special event named ProgressChanged is available to report the progress of the
ongoing operation.

. A property named IsBusy indicates whether the ongoing operation is still running
or is completed already.

. Some events of the BackgroundWorker class (ProgressChanged, RunWorkerCompleted)
can be handled on the UI thread directly, without having to use the Dispatcher.
This makes the code more legible and easier to implement and test.

The following sample is a Silverlight application that checks periodically whether the site
it originates from is active. This can be useful, for example, if you want to monitor the
outage of a web server. Follow these steps:

1. Download the start application from http://www.galasoft.ch/sl4-backgroundworker.
Unblock the downloaded file, and then extract the content to your hard drive.
Open WebServerMonitor.sln in Visual Studio.

2. This application has a web server running at http://localhost:60000. The Silverlight
application will periodically “ping” the web server by attempting to download a
very small text file named ping.txt. Note that we could have used any file on the
server (including index.html), but using a small text file minimizes the traffic.

3. Open MainPage.xaml.cs and add a property as shown in Listing 22.21.

CHAPTER 22 Advanced Development Techniques660

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-backgroundworker

ptg

LISTING 22.21 Adding a BackgroundWorker

public BackgroundWorker Worker

{

get;

private set;

}

4. Implement the StartMonitoring method as shown in Listing 22.22.

LISTING 22.22 StartMonitoring Method

1 private void StartMonitoring()

2 {

3 Worker = new BackgroundWorker

4 {

5 WorkerReportsProgress = true

6 };

7

8 Worker.DoWork += (s, e) =>

9 {

10 var client = new WebClient();

11 client.DownloadStringCompleted

12 += client_DownloadStringCompleted;

13

14 while (true)

15 {

16 Worker.ReportProgress(0,

17 “Pinging at “ + DateTime.Now.ToString());

18 client.DownloadStringAsync(_pingFileUri);

19 Thread.Sleep(PingDelay);

20 }

21 };

22

23 Worker.ProgressChanged += (s, e) =>

24 Entries.Add(e.UserState.ToString());

25

26 Worker.RunWorkerAsync();

27 }

. Lines 3 to 6 create the new BackgroundWorker and enable progress report. If this
property is not set, the ProgressChanged event will never fire.

. Lines 10 to 20 are executed when the RunWorkerAsync method is called. A new
WebClient is created on line 10, and its DownloadStringCompleted event is handled
on line 11. The actual event handler is shown in Listing 22.23.

Multithreading 661

2
2

 From the Library of Wow! eBook

ptg

. Line 14 starts an endless loop. This could cause the thread to hog the CPU and not
let any calculation time to any other task, which is why the Thread is put to sleep
for 5,000 milliseconds on line 19.

. Line 16 calls the ReportProgress method, which in turn raises the ProgressChanged
event on the UI thread. We use this to save a message into the Entries collection, as
you will see in Listing 22.23.

. A request is sent to the web server on line 18 before the Thread sleeps for five
seconds.

. Lines 23 and 24 handle the ProgressChanged event by adding the message into the
Entries collection. A ListBox is data bound to this collection in MainPage.xaml to
display the result. Notice that there is no call to Dispatcher.BeginInvoke here
because the ProgressChanged event is already raised on the UI thread.

. Finally, line 26 calls RunWorkerAsync, which causes the DoWork event to be raised, and
the whole process can begin.

5. Handle the DownloadStringCompleted event as shown in Listing 22.23. This is where
the code can find out whether the web server is running, by looking at the Error
property of the DownloadStringCompletedEventArgs parameter.

LISTING 22.23 DownloadStringCompleted Event Handler

void client_DownloadStringCompleted(

object sender,

DownloadStringCompletedEventArgs e)

{

if (e.Error == null)

{

Worker.ReportProgress(0, “Ping OK”);

}

else

{

Worker.ReportProgress(0,

“Ping Error: “ + e.Error.Message);

}

}

6. Build the application to make sure that all the files are available.

7. Right-click the WebServerMonitor.Web project and select View in Browser from the
context menu. This starts the web server in a window (or tab) of your favorite web
browser.

8. Open another window (or tab) and navigate to the URL
http://localhost:60000/index.html. The ListBox starts recording entries showing that
the web server is running.

CHAPTER 22 Advanced Development Techniques662

 From the Library of Wow! eBook

ptg

9. Use the small icon shown in Figure 14.3 (in Chapter 14, “Enhancing Line-of-
Business Applications and Running Out of the Browser,” the icon is located in the
Windows taskbar’s Notification area) to stop the web server. Immediately, some error
messages are shown in the ListBox. Even though the web server stops running, the
client application continues to work independently, and registers that the file
ping.txt is not returned anymore.

10. Repeat Step 6. The web server restarts, and the ListBox registers success messages
again.

Because the BackgroundWorker instance is exposed as a property, another object could
register for the ProgressChanged event (for example, to input the entries into a text file
and save it to isolated storage). Of course, in this sample, we should take care of removing
entries from the ListBox after a certain time, or else the memory consumption of the
application will grow too big and crash the application eventually.

Locking Critical Resources
When multiple threads need access to a resource (for example, a collection of objects),
and especially when these threads might be modifying the resource, some unexpected
side effects may happen. In this case, we talk about a critical resource, and its access should
be safeguarded. For example, implement a sample with the following steps:

1. Create a new Silverlight application and name it LockingResources.

2. Set the MainPage’s x:Name to “MyPage” in MainPage.xaml.

3. Still in MainPage.xaml, add a ListBox to the LayoutRoot Grid as shown in Listing
22.24.

LISTING 22.24 Adding a ListBox

<Grid x:Name=”LayoutRoot” Background=”White”>

<ListBox ItemsSource=”{Binding ElementName=MyPage, Path=Items}” />

</Grid>

4. Add a new ObservableCollection to MainPage.xaml.cs and initialize the page as
shown in Listing 22.25.

LISTING 22.25 Adding a Collection and Initializing

public ObservableCollection<string> Items

{

get;

private set;

}

Multithreading 663

2
2

 From the Library of Wow! eBook

ptg

public MainPage()

{

Items = new ObservableCollection<string>();

InitializeComponent();

StartThreadedOperation();

}

5. Implement the StartThreadedOperation and the threads as in Listing 22.26.

LISTING 22.26 Starting the Threaded Operations

1 private void StartThreadedOperation()

2 {

3 for (var index = 0; index < 3; index++)

4 {

5 CreateAndStartWorker(index);

6 }

7 }

8

9 private void CreateAndStartWorker(int workerIndex)

10 {

11 var worker = new BackgroundWorker

12 {

13 WorkerReportsProgress = true

14 };

15

16 worker.DoWork += (s, e) =>

17 {

18 Thread.CurrentThread.Name

19 = “Worker # “ + workerIndex;

20 for (var index = 0; index < 10; index++)

21 {

22 Thread.Sleep(100);

23 worker.ReportProgress(

24 index * 10,

25 string.Format(

26 “Worker # {0}, Operation # {1}”,

27 workerIndex, index));

28 }

29 };

30

31 worker.ProgressChanged += (s, e) =>

32 {

33 Items.Add(e.UserState.ToString());

34 };

CHAPTER 22 Advanced Development Techniques664

 From the Library of Wow! eBook

ptg

35

36 worker.RunWorkerAsync();

37 }

. The CreateAndStartWorker method is called three times.

. On lines 11 to 14, this method creates a new BackgroundWorker and enabled progress
report.

. Lines 20 to 28 are executed 10 times. First the Thread sleeps for 100 milliseconds on
line 22. Then, an item is sent to the UI thread through the ProgressChanged event.

. This event is handled on line 33: The sent item is simply added to the
ObservableCollection. Through the data binding set in Listing 22.24, the display
will automatically be updated.

6. Run the application and observe the result. Results may vary
depending on the computer’s configuration, but typically
some of the threads are competing for the access to the Items
collection: The items are intermingled, as shown in Figure
22.3.

The operation implemented here is completely unpredictable.
Running the application 10 times will likely create 10 different
results. Depending on the actual operation, this can lead to very
annoying or even catastrophic results. For example, if a Thread
modifies a collection while another iterates through it, the applica-
tion will crash. To avoid these side-effects, critical resources should
be locked for access, for example, with the following step:

1. Modify the worker.DoWork event handler as shown in Listing 22.27.

LISTING 22.27 Locking the Critical Resource

worker.DoWork += (s, e) =>

{

Thread.CurrentThread.Name = “Worker # “ + workerIndex;

lock (Items)

{

for (var index = 0; index < 10; index++)

{

Thread.Sleep(100);

worker.ReportProgress(

index * 10,

string.Format(

“Worker # {0}, Operation # {1}”,

workerIndex,

Multithreading 665

2
2

FIGURE 22.3
Uncontrolled
access to a
critical resource.

 From the Library of Wow! eBook

ptg

index));

}

}

};

The change in Listing 22.27 from Listing 22.26 is that the access to the Items collection is
now protected by a lock. When a Thread reaches this statement, it checks whether the
instance is locked already. If that is not the case, it locks it and then proceeds with the
operation. If the collection is locked, however, the Thread has to wait until the collection
becomes unlocked. The result is that the output of worker # 0 will appear grouped
together, followed by worker # 1 and worker # 2’s outputs. Note that depending on the
circumstances, it is possible that worker # 1 appears first, or worker # 2. But all the entries
belonging to one worker will appear together anyway.

Any reference type can be used in a lock statement, but not value types. In fact, nothing
forces you to use the critical resource itself as the lock. Instead, it can be any object that
all the threads can access, for example, as shown in Listing 22.28.

LISTING 22.28 Using an object as lock

private object _lock = new object();

private void CreateAndStartWorker(int workerIndex)

{

var worker = new BackgroundWorker

{

WorkerReportsProgress = true

};

worker.DoWork += (s, e) =>

{

lock(_lock)

{

// ...

}

};

// ...

}

Enhancing Multithreaded Code
Programming multithreaded operations is probably one of the most complex coding
styles, but at the same time, it is the future of programming because of the increased
availability of multicore computers. It is important to understand what happens inside
the thread, how multiple threads influence each other, and to take a few measures to
make it easier to code and debug multithreaded applications:

CHAPTER 22 Advanced Development Techniques666

 From the Library of Wow! eBook

ptg

. Always give a name to the worker thread. We saw how to do that in the earlier
examples. This is important when the code is not working correctly and the devel-
oper needs to debug the code: If multiple threads run the same code asynchro-
nously, it becomes very hard to
know which Thread is currently
active. By setting the thread’s
name, you can open the
Threads window while debug-
ging in Visual Studio (Debug,
Windows, Threads). The
current thread is indicated with
its name, as shown in Figure
22.4.

. Always lock critical resources. If any unexpected result appears, the first suspect is
usually an unplanned concurrent access of a critical resource by multiple threads.

. In a worker thread, especially for long operations, give a little time to the other
threads by letting the current one sleep for a few milliseconds, as shown in Listing
22.26, line 22.

. Remember that when a background thread is active, it uses the CPU, which needs
power. Especially on mobile devices where battery life is critical, use background
threads with care.

. Test, test, and test some more. If possible, automate the tests by using a unit test
framework as shown in the “Unit Testing Silverlight Code” section. Note that
testing asynchronous code can be especially difficult.

Multithreading is a very complex topic, hard to debug, hard to understand exactly what
happens, and easy to make mistakes that can cause an application to run fine thousand
times and suddenly to start crashing. On the other hand, with the current trend in multi-
core computers, parallel programming becomes more and more important, and can really
enhance the speed of your application. In Silverlight (Version 4 but also for Windows
Phone 7), spawning new threads is quite simple, as you saw in this section, and Visual
Studio (with its Threads debug window) provides modern tools to debug multithreaded
code. Do not hesitate to enhance your code with threads, but proceed with care.

Unit Testing the Application
With ever-more complex applications, some mechanisms are needed to ensure that the
code runs in reproducible conditions with reproducible results. Most important, it must
be ensured that changes to the code do not break anything that was running before.

Such reproducible, automated tests are called unit tests. We already talked about this in
Silverlight 2 Unleashed, Chapter 24, and implemented a functionality using a development
process named test-driven development (TDD). In this section, we dig a little deeper and see

Unit Testing the Application 667

2
2

FIGURE 22.4 Threads window in Visual Studio.

 From the Library of Wow! eBook

ptg

how to use the new Silverlight Unit Test framework distributed with the Silverlight
Toolkit. Finally, we will talk about unit testing for a Windows Phone 7 application.

Installing a Unit Test Framework
Currently, the main unit test frameworks for Silverlight 4 are NUnit and the Silverlight
Unit Test framework. NUnit is a well-known, well-respected unit test framework.
Unfortunately, there is not much documentation about making it run for Silverlight.

The Silverlight Unit Test framework is a private initiative by Microsoft employee Jeff
Wilcox that was already available for Silverlight 2 and improved since then. Nowadays,
this framework is available as a part of the Silverlight toolkit. When the toolkit is
installed, the Silverlight Unit Test framework is automatically available, which is very
convenient. Note that much of the Silverlight framework itself is tested using Jeff’s unit
test framework.

In case this was not done already, download and install the latest version of the
Silverlight toolkit from http://silverlight.codeplex.com/.

Adding Functionality with TDD
In this section, we extend an existing application by testing it in various edge conditions,
to make it more robust. As a starting point, the dependency injection sample that was
developed in Chapter 20, “Building Extensible and Maintainable Applications,” is used. If
you didn’t keep this project, the file UnitTesting-Start.zip can be downloaded from
http://www.galasoft.ch/sl4-unittest. As usual, after the zip file is downloaded, it needs to
be unblocked in the file’s Properties dialog in Windows Explorer. Click the Unblock
button on the General tab (if available). Then, extract the files on your hard drive and
open WhyDependencyInjection.sln in Visual Studio.

Creating a Test Case
This application was not developed using TDD so far, and we will not start by adding test
cases for the existing features as we would in a real-life project. Instead, we will move
directly to the edge cases. True TDD requires a test to be written first, and to fail. Then,
the application should be modified to make the test pass. Follow these steps:

1. With the WhyDependencyInjection solution open in Visual Studio, right-click the
solution in the Solution Explorer, and select Add, New Project from the context
menu.

2. In the Silverlight category, select Silverlight Unit Test Application from the Add New
Project dialog. Name the new project WhyDependencyInjection.UnitTests.

3. In the New Silverlight Application dialog, choose to create a new website for the
unit test application. This avoids common permission issues, for example, when
trying to access Internet resources.

4. The Silverlight Unit Test application is an almost normal Silverlight application with
a few changes:

CHAPTER 22 Advanced Development Techniques668

 From the Library of Wow! eBook

http://silverlight.codeplex.com/
http://www.galasoft.ch/sl4-unittest

ptg

. There is no MainPage.xaml. In fact, the RootVisual is generated automatically
in App.xaml.cs, in the Application_Startup event handler.

. There is a reference to the DLLs named Microsoft.Silverlight.Testing and
Microsoft.VisualStudio.QualityTools.UnitTesting.Silverlight. The former contains
the unit test framework itself, whereas the latter contains the attributes (compatible
with the .NET version of the unit test framework) used to define test classes and
test methods.

5. Into the WhyDependencyInjection.UnitTests project, add a reference to the
WhyDependencyInjection project. Use the Projects tab into the Add Reference
dialog.

6. Rename the file Tests.cs into ViewModelTests.cs. If Visual Studio asks if you want to
rename the class too, say yes. Otherwise, rename the class manually to
ViewModelTests.

7. Rename the method TestMethod1 to TestViewModelInjectionNull.

8. Implement this method as shown in Listing 22.29.

LISTING 22.29 Implementing the TestViewModelInjectionNull Method

[TestMethod]

public void TestViewModelInjectionNull()

{

var vm = new ViewModelWithDependencyInjection(null);

Assert.IsNotNull(vm);

}

9. Set the WhyDependencyInjection.UnitTests.Web as StartUp project and the
WhyDependencyInjection.UnitTestsTestPage.html page as Startup page, and then
run the application.

10. The dialog shown in Figure 22.5 is
displayed when a new test run is
started. You can either click No,
Run All Tests or wait until the test
run starts.

11. The test fails. For more informa-
tion, click the
TestViewModelInjectionNull entry
in Figure 22.6 to display the test
results. The issue is a
NullReferenceException.

Unit Testing the Application 669

2
2

FIGURE 22.5 Starting a new test run.

 From the Library of Wow! eBook

ptgFIGURE 22.6 Failed test.

12. To make the test pass, open ViewModelWithDependencyInjection.cs in the
WhyDependencyInjection application and modify the code as shown in Listing
22.30.

LISTING 22.30 Making the Test Pass

public ViewModelWithDependencyInjection(IDataService service)

{

if (service == null)

{

return;

}

service.GetItems(items =>

{

Items = new ObservableCollection<Item>(items);

});

}

13. Run the test again. This time, the run is successful.

CHAPTER 22 Advanced Development Techniques670

 From the Library of Wow! eBook

ptg

Creating a Test Service and Injecting it
Now, we will test what happens when the service returns null instead of the
IEnumerable<Item> that is expected in the callback. To do this, we need an implementa-
tion of IDataService that is predictable, and that can be controlled. Follow these steps:

1. Create a new class in WhyDependencyInjection.UnitTests, name it
TestDataService.cs, and implement it as shown in Listing 22.31.

LISTING 22.31 Returning a null Collection

public enum TestCase

{

ReturnNull = 0

}

public class TestDataService : IDataService

{

private TestCase _whichTest;

public TestDataService(TestCase whichTest)

{

this._whichTest = whichTest;

}

public void GetItems(

Action<IEnumerable<Item>> callback)

{

switch (_whichTest)

{

case TestCase.ReturnNull:

callback(null);

break;

}

}

}

2. Implement a new test method in the ViewModelTests class as shown in Listing
22.32. If the service returns null, it is expected that the Items collection is not null,
but that it has zero items.

LISTING 22.32 TestGetItemsNull Method

[TestMethod]

public void TestGetItemsNull()

{

var service = new TestDataService(TestCase.ReturnNull);

Unit Testing the Application 671

2
2

 From the Library of Wow! eBook

ptg

var vm = new ViewModelWithDependencyInjection(service);

Assert.IsNotNull(vm.Items);

Assert.AreEqual(0, vm.Items.Count);

}

3. Run the application to see the test fail.

4. Modify the ViewModelWithDependencyInjection constructor as shown in Listing
22.33. Then run the application again to see the test pass. Note that if you need to
understand better what happens, you can also place breakpoints in the code and
run the debug mode instead.

LISTING 22.33 Making the Test Pass

public ViewModelWithDependencyInjection(IDataService service)

{

if (service == null)

{

return;

}

service.GetItems(items =>

{

if (items == null)

{

Items = new ObservableCollection<Item>();

return;

}

Items = new ObservableCollection<Item>(items);

});

}

CHAPTER 22 Advanced Development Techniques672

T I P

Customizing the Test Run

It is possible to avoid running all tests with every test run by passing tags to the dialog
shown in Figure 22.5. When the dialog is displayed, interrupt the countdown by clicking
anywhere on it. Then, enter the name of the method you want to test and click the Use Tag
Expression button. You can also enter multiple names of methods, or exclude one or more
methods. You can find more information at http://www.galasoft.ch/sl4-tests4.

Additional test cases are easy to write now (for instance, testing what happens if the
returned items collection is empty).

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-tests4

ptg

Using Code Coverage
The current version of the Silverlight Unit Test framework does not support test coverage.
However, because this framework uses the same syntax (TestClass, TestMethod, Assert,
and so on) as the desktop version (MSTest), it is possible to create a WPF application,
share the source code, and the test files and to run code coverage on the WPF assemblies.
This is not always possible, however, especially when using some Silverlight-only features.

Unit Testing Windows Phone 7 Applications
Jeff Wilcox also made the Silverlight Unit Test framework available for Windows Phone 7
applications. Using the same syntax, it is possible to run the tests directly into a Windows
Phone device.

The latest assemblies are available at http://www.galasoft.ch/sl4-testsphone.
Unfortunately, at the time of this writing, there are no unit test project templates for
Windows Phone 7, so “hooking up” the test framework must be done manually. More
information on this is available on Jeff Wilcox’s blog.

Unit Testing the Application 673

2
2

FIGURE 22.7 Unit test results in Windows Phone 7.

Unit tests are widely recognized as a best practice when the goal is to create stable, robust
applications that perform well in a variety of scenarios and can be modified and extended
easily without risking breaking existing functionality. Although not all the code can be
tested (some user interface specific code is really difficult to test automatically), most of
the lower layers of the application (view-model, model, data access, and so on) should be
unit tested. Although some functionality available in .NET unit test frameworks is not
available yet in Silverlight (especially code coverage), the existing infrastructure allows
creating unit tests and gathering information about the application in multiple test
scenarios.

 From the Library of Wow! eBook

http://www.galasoft.ch/sl4-testsphone

ptg

Summary
This last chapter in our long journey exposed some advanced techniques to enhance
Silverlight applications in a professional manner. Such techniques require a good under-
standing of the way that .NET and especially Silverlight work. Hopefully, this chapter
gives you a good head start in that direction. Be sure to exercise these techniques (as well
as everything you learned in this book) over and over again until you really understand
what is happening. In programming, just like in other arts, practice is the only way to
become a better craftsman.

CHAPTER 22 Advanced Development Techniques674

 From the Library of Wow! eBook

ptg

CONCLUSION

This concludes our journey through the Silverlight frame-
work. As you have seen, it is now a very powerful and
mature framework, able to cover multiple requirements for
your rich applications. In fact, it is wise to think of
Silverlight not as a web technology anymore, but rather as
a rich application development framework available on
multiple platforms (and this is just a start).

In a time when user experience is breaking its traditional
boundaries, when fingers are replacing the mouse and
keyboard devices, when users are expecting more from
their applications than the usual battleship gray and square
buttons, Silverlight offers a great way to build flexible,
decoupled, extensible applications. It also improves the
collaboration between designers and developers, which
allows building more beautiful applications at a fraction of
the effort (and the cost) that was necessary with classic
technologies.

You reaching the conclusion of this book (and kudos on
that, by the way) does not mean that you are done learn-
ing Silverlight. The best way to consolidate this knowledge
is to build applications and to publish them. You saw how
to do that, so now is the time to dig out that project you
always wanted to implement and to build it. You have the
choice between Silverlight for the Web, for the desktop, for
the Windows Phone, or all of them! And by all means,
when you are ready to show it to the world, let me know; I
am really anxious to see what you are going to build!

The End

 From the Library of Wow! eBook

ptg

This page intentionally left blank

 From the Library of Wow! eBook

ptg

A
Aborting the Download listing (21.5), 614-615
About page, navigation applications, 404
absolute URIs, creating, 611
abstractions, 351
accelerating UIs (user interfaces), 624-630
access

Clipboard, revoking, 373
code resources, 255
web headers, 231

Accessing Resources in Code listing (10.8), 255
Accessing TemplatedParent listing (6.3), 134
Accordian control (Toolkit), 97
Action and Func listing (22.2), 642
Action class (C#), 642-644
actions (Blend), 292, 314

creating, 298-299
SketchFlow, 314

ActivateStateAction (SketchFlow), 314
ActiveX controls, 15
adapting XAML markup, 345-346
Add New Domain Service Class dialog, 335
Add Service Reference dialog, 525-526
AddCommand, creating, 350
Adding a Command listing (19.7), 549
Adding a Double value to Resources and Using

It listing (3.1), 51
Adding a ListBox listing (20.9), 582
Adding a ListBox listing (22.24), 663
Adding a Map Control listing (19.20), 568
Adding a Message listing (14.9), 374
Adding a New xmlns Statement to Root Tag

listing (3.7), 59
Adding Accordion Control in XAML

listing (4.11), 93
Adding AddCommand listing (13.11), 350
Adding an Export Attribute listing (20.16), 589
Adding an Interface listing (13.14), 352
Adding an Order listing (13.13), 350
Adding an xmlns Mapping to a Local Element

listing (3.2), 52
Adding ApplicationBar listing (15.16), 429-430
Adding BackgroundWorker listing (22.21), 661
Adding Blend Behavior in C# listing (11.7), 293
Adding Blend Behavior in XAML

listing (11.6), 293
Adding Collection and Initializing

listing (22.25), 663
Adding Constructor to MessageService Class

listing (20.13), 586-587
Adding Context Menu in XAML listing (17.8), 477
Adding Converter in Resources and Using It

listing (6.8), 139
Adding Data to Excel Sheet listing (18.11), 516

 From the Library of Wow! eBook

ptg

Adding DataForm listing (8.22), 209
Adding DataGrid listing (8.15), 204
Adding DataPager Control listing (8.6), 196
Adding DeleteCustomerCommand

listing (17.6), 477
Adding DeleteOrderCommand listing (13.20), 355
Adding Dependency Property in

MyNewUserControl.xaml.cs listing (3.10), 62
Adding Dependency Property listing (11.8), 294
Adding Description listing (8.23), 211
Adding EventToCommand in XAML

listing (19.12), 552
Adding Fragment to URI listing (15.9), 411
Adding IDialogService in MainViewModel Class

listing (13.15), 352
Adding Input Elements listing (18.8), 513
Adding Localizer to Global Resources

listing (22.10), 650
Adding New UserControl in Main Grid

listing (3.8), 59
Adding Notifications listing (20.36), 605
Adding Rectangle and WebBrowserBrush

listing (17.36), 500
Adding Row and TextBlock listing (20.37), 605
Adding SaveCommand listing (13.8), 348
Adding the CaptureCommand listing (16.32), 457
Adding Validation Rule to Freight Column

listing (13.23), 357
Adding Validation Rule to ShipCity Column

listing (13.24), 358
Adding WaveEffect listing (16.4), 439
Adding xmlns Prefix listing (19.19), 568
Adding xmlns Prefixes listing (19.11), 552
Adding xmlns Statement listing (8.21), 209
AddXap Method listing (20.34), 601-602
Adobe AIR, 14
Adobe Flash, 12
Adobe Illustrator, importing from, 326
Adobe Photoshop, importing from, 326
AES (Advanced Encryption Standard), 652
AfternoonDataService Class listing (20.21), 591
AIR, 14
AJAX (Asynchronous JavaScript and XML),

12-13, 653
Alchemy Catalyst, 651
AllowDrop attribute, setting, 504
Alpha transparency, colors, 38
animation

base animations
creating, 554-555
randomizing, 555-557

building, 321-323
PlaneProjection, 470-471
pulse animations, creating, 44-45
shaders, 440-442
SketchFlow, 326
stop motion, 303

Animation panel (SketchFlow), 305
annotations, data input validation, 201-203
anonymous methods, 183
Anson, David, 98
App.xaml file, 31, 250-252
applets (Java), 15
application bars, Windows Phone 7

applications, adding, 429-431
ApplicationBar Event Handlers listing (15.17),

430-431
applications, 29

animations, building, 321-323
blendable applications, 275-289, 300
client applications, WCF, 241-243
code, sharing, 363
code profilers, 630-631
commands, binding events to, 547-554
component screens, creating, 309-310
creating, 29-31

Expression Blend, 40-46
MEF, 583-604
SketchFlow, 305

data applications, layers, 329
dependencies, inverting, 573-583
deploying, 323
dragging and dropping, 503-507
envisioning, 301
Fantasia, 25
GreetingCardMaker, 444-457
HelloSilverlight, 31-44
inspecting, 31
items, creating in batches, 620-624
life cycles, 635
LOB (line-of-business) applications, 8, 129,

329-331, 363-365
adding paging, 365-369
copying and pasting rows, 373
preparing client-side, 333
preparing server-side, 331-333
printing, 373-382
reconciling data, 371-372
refactoring to MVVM, 342-363
showing errors, 369-370
Visual Designer, 338-342

local communication, enabling, 563-567
localizing, 647-652
Matterhorn Deep Zoom, 19-20
memory leaks, avoiding, 631-638
mockups, 316-318
multithreading, 653-667
multitouch computing, 557-563
MVVM (Model-View-ViewModel) pattern. See

MVVM (Model-View-ViewModel) pattern
navigation applications. See navigation

applications

Adding DataForm listing (8.22)678

 From the Library of Wow! eBook

ptg

notification windows
adding, 531-533
displaying, 530-534
main window interactions, 533-534
queuing, 533
restrictions, 530

OOB (out of the browser) applications. See
OOS (out of the browser) applications

opening, 19
orders, deleting, 354-357
PhotoSynth, 22-23
Pilot viewer, 23, 25
prototypes, compared, 304
pulse animations, creating, 44-45
resource applications, downloading, 652
running, 323-324
saving, 40
server-side applications, adding domain

services, 334-336
shaders

adding properties, 440-442
integrating, 438-440

sketching, 301-304
SketchFlow, 304-308
wireframing tools, 302-303

Sobees, 20
splash screens, creating, 534-537
states, creating, 318-321
storyboards, triggering, 45-46
Streetside, 21-22
testing, 46-47

unit testing, 667-673
themes, applying, 271-272
transitions, creating, 318-321
UIs (user interfaces)

accelerating, 624-630
building, 308-309
virtualizing, 616-619

values, validating, 357-360
Viewmodel, adding, 342-345
websites, creating, 540
Windows Phone 7. See Windows Phone 7
XAM applications, adapting, 345-346

Application_Startup Event Handler in
App.xaml.cs listing (3.6), 54

AppManifest.xamlfile, 31
as keyword, casting elements, 111
ASMX web services, 241
ASP.NET

authentication services, 539-547
websites, creating, 540

assemblies
instrumenting, 630
merging resource dictionaries, 250-252

asynchronous, 87

How can we make this index more useful? Email us at indexes@samspublishing.com

Attach to Process dialog, 277
attached properties, 114

implementing behavior, 118-122
registering, 115-117
values, using for, 114-115
XAML, 118

Attaching Behavior in XAML listing (5.14), 122
Attaching Behavior to Element listing (5.11),

119-120
Attaching to KeyUp Event listing (11.9), 295-296
audience, Windows Phone 7 applications, 416
audio

capturing, 450-457
SaveFileDialog, 452-453
sink, 454
sinks, creating, 450-452
WAV formats, converting to, 450

audio recordings, testing, 457
authentication, logging in, 539-547
AuthenticationService Endpoint listing (19.1), 542
automatic columns, DataGrid data control,

204-208

B
background threads, 621-624
BackgroundWorker class, creating, 660-663
Ballmer, Steve, 415
Balsamiq Mockups, 303
base animations, creating and randomizing,

Expression Blend, 554-555
base values, properties, obtaining, 126
Basing a Style on Another One listing (10.10),

263-264
batches, items, creating in, 620-624
BeginInvoke method, 657-658

current threads, 659-660
behavior, attached properties, implementing,

118-122
behaviors (Blend), 289-292

code, adding to, 293
controls, 314-315
creating, 293-297
elements

adding multiple to, 291
attaching to, 119-120

finding online, 291-292
binding

data, 154-155
TextBox, 144
views, view-model, 163-167

binding 679

 From the Library of Wow! eBook

ptg

Binding and Service listing (18.22), 525
Binding CaptureImageCommand

listing (16.35), 459
Binding dialog (Expression Blend), 148
Binding dialog (Visual Studio), 146-147
Binding TextBox with Validation

listing (6.12), 144
Binding Through Localizer listing (22.11), 650
Binding to First Customer listing (4.1), 77
Binding to implicit data context listing (6.4), 135
Binding to Implicit Data Context listing (6.5), 135
Binding to List of Customers listing (4.2), 77
Binding to View-model in Resources

listing (7.1), 165
Binding View’s DataContext Through

ViewModelLocator listing (7.4), 166
binding viewmodel, Windows Phone 7

applications, 425-426
bindings. See data bindings
BindsDirectlyToSource, 154-155
Bing Maps control, 567, 571

adding maps, 568
location information, obtaining, 569-571

Bing Maps Streetside, 21-22
bitmaps, video, writing to, 457-461
Blake, Joshua, 563
Blend. See Expression Blend
blendable applications, 275-289, 300
browsers

building, 480-484
hardware acceleration, enabling, 624-630
hosting, OOB (out-of-browser) mode,

478-485
HTML content, loading, 484

Bubble Cream theme, 271
building PagedCollectionView data control,

190-191
Building PagedCollectionView listing (8.2), 191
Buxton, Bill, 303-304

C
C#, 641

Action class, 642-644
code, adding behaviors to, 293
dynamic objects, consuming, 646
extension methods, creating, 645-646
Func class, 642-644
improvements, 641-647
lambda expressions, 641-642
methods, chaining, 644-645
named parameters, 646-647
programming syntax, 641-647

caching
common assemblies, 615-616
XAP files, 610

calculating dependency property values,
124-126

Calculating Prime Number listing (22.16), 655
CallAsynchronousService method, 643
callbacks, modifying, 370
Calling CallAsynchronousService Method

listing (22.3), 643
calling queries, parameters, 339-340
Calling Server-Side Method listing (14.5),

368-369
Calling Setup listing (20.8), 582
Calling the Client listing (9.24), 242
CallMethodAction, 314
calls, placing, 218-231
Canceling the Operation listing (14.12), 375
CanExecute method, 80
CanExecuteChanged event, 80-81
CaptureImage Method listing (16.34), 458
capturing audio, 450-457
Care, hardware acceleration, 629
CastleWindsor, 578
catching

MouseRightButtonDown event, 474
InvalidOperationException event, 449

Catching InvalidOperationException
listing (16.19), 449

Catching MouseRightButtonDown Event in
ListBox listing (17.4), 474

causes, exceptions, detecting, 276-278
chaining methods, C#, 644-645
chaining requests, 218
ChangePropertyAction, 314
Changing HyperlinkButton Elements

listing (15.6), 408
Changing Sort Order of CollectionViewSource

listing (6.19), 154
Chart control (Toolkit), 94-95
CheckAccess method, 104, 658
CheckAccessService Class listing (19.3), 544
CheckAndSave Method listing (19.10), 551
Checking Access listing (22.18), 658
Checking and Downloading Update

listing (14.21), 391-392
Checking Before Saving listing (13.25), 358
child windows, adding, 374-375
ChildWindow, opening, 87-90
ChildWindow’s Code Behind listing (4.9), 88-89
Class Hierarchy listing (21.15), 634
classes. See also names of specific classes

Action, C#, 642-644
CollectionViewSource, 151-154
CookieContainer, 236-237
Customer, 169

Binding and Service listing (18.22)680

 From the Library of Wow! eBook

ptg

DataItem, 240
DependencyObject, 104-108, 127
design time data, creating from, 285-287
DesignDataService, 577
Func, C#, 642-644
IsolatedStorageSettings, 496-499
MainViewModel, 342
OpenFileDialog, 464-465
PresentationWindow, implementing, 115-116
refactoring, 575-576, 578
RelayCommand, 348
ScrollViewer, 104
ThreadPool, 654-657
ViewModelLocator, 579, 581
WebClient, 218-219, 231

client-side project, 219
server-side project, 219

WriteableBitmap, 466
cleaning unused resources, 259-260
client applications, connecting, WCF, 241-243
client HTTP stacks, using, 235
client-side applications

preparing, 333
server-side applications, combining, 334-337
WebClient class, 219

client/server communication, duplex polling,
519-530

clients
data input, validating, 203-204
LOB application, paging, 366-369
selected orders, deleting, 355-357
unregistering, 524
WCF services, implementing, 525-528
Windows Phone 7 applications, starting,

421-422
client_CanAccessManagerZoneCompleted Event

Handler listing (19.6), 546-547
Clipboard

access, revoking, 373
copying to and from, 510-511

Closing and Disposing Stream and
StreamReader listing (21.19), 637

CLR (Common Language Runtime)
namespaces, 50

mapping prefixes to, 49-51
mapping to URIs, 52-53
xmlns, 50

code
behaviors, adding to, 293
code profilers, 630-631
coverage, 673
CRUD operations, executing, 348-351
DataContext, 476
failed code, Expression Blend, 275-276

How can we make this index more useful? Email us at indexes@samspublishing.com

isolating, Expression Blend, 278-279
multithreaded code, enhancing, 666-667
OOB applications, installing from, 393-394
references, distributing, 317
resources, accessing in, 255-256
sharing, 363
threads

multithreading, 653-667
synchronizing, 657

unexecutable code, Expression Blend, 275
Windows Phone 7 applications, 423-425
XAML, generating from, 175

code behind, MVVM pattern, 180
code listings

2.1 (Setting a LinearGradientBrush), 33
2.2 (Implementing the Event Handler), 46
3.1 (Adding a Double value to Resources

and Using It), 51
3.2 (Adding an xmlns Mapping to a Local

Element), 52
3.3 (Mapping CLR Namespaces to a URI), 53
3.4 (UserControl Tag in MainPage.xaml), 54
3.5 (MainPage Declaration in

MainPage.xaml.cs), 54
3.6 (Application_Startup Event Handler in

App.xaml.cs), 54
3.7 (Adding a New xmlns Statement to Root

Tag), 59
3.8 (Adding New UserControl in Main Grid), 59
3.9 (UserControl’s Inner Elements), 61
3.10 (Adding Dependency Property in

MyNewUserControl.xaml.cs), 62
3.11 (Setting Binding to New Property in

MyNewUserControl.xaml), 62
3.12 (Parts and States for Threshold

Control), 65
3.13 (Value Dependency Property), 65
3.14 (Threshold Dependency Property), 66
3.15 (OnValueChanged Property Changed

Callback), 66
3.16 (GoToThresholdState Method), 67
3.17 (Implementing OnApplyTemplate), 68
3.18 (Default ControlTemplate for

ThresholdControl), 70-71
3.19 (Setting Control Template’s High

State), 72
4.1 (Binding to First Customer), 77
4.2 (Binding to List of Customers), 77
4.3 (Getting Control’s State), 78
4.4 (Using SelectedValue and

SelectedValuePath), 79
4.5 (Using SelectedItem), 79
4.6 (Implementing Command and Using It

as Property), 81-82

code listings 681

 From the Library of Wow! eBook

ptg

4.7 (Using Command in XAML), 83
4.8 (RichTextBox with Rich Content), 84-85
4.9 (ChildWindow’s Code Behind), 88-89
4.10 (Opening Window & Handling Its

Closed Event), 89-90
4.11 (Adding Accordion Control in XAML), 93
4.12 (Setting the GlobalCalendar’s

Culture), 96
4.13 (Expander and Accordion Controls),

97-98
4.14 (LayoutTransform Applied to Button), 99
4.15 (Setting Elements in DockPanel), 100
4.16 (Using WrapPanel as ItemPanel for

ListBox), 100
4.17 (Using ContextMenu), 101
5.1 (Customer Class Inheriting

DependencyObject), 105-106
5.2 (Customer Class with

INotifyPropertyChanged), 106-107
5.3 (Modified Name Dependency Property

with PropertyChangedCallback), 110
5.4 (Initializing DependencyObject), 112
5.5 (Creating Two DataObject Instances in

XAML), 114
5.6 (Setting Attached Properties in

XAML), 115
5.7 (PresentationWindow Implementation),

115-116
5.8 (Getting and Setting Attached

Properties in Code), 118
5.9 (Setting Custom Attached Properties in

XAML), 118
5.10 (ElementRotator Class and Attached

Behavior), 118
5.11 (Attaching Behavior to Element),

119-120
5.12 (Rotating the Element), 121
5.13 (Detaching the Event Handler), 122
5.14 (Attaching Behavior in XAML), 122
5.15 (Getting Property’s Base Value), 126
5.16 (Getting Property’s Local Value), 127
6.1 (Setting a Binding on Target in

Code), 131
6.2 (Failed Attempt to Bind to Element in

Another Namescope), 132
6.3 (Accessing TemplatedParent), 134
6.4 (Binding to implicit data context), 135
6.5 (Binding to Implicit Data Context), 135
6.6 (Setting Path in Code), 137
6.7 (Setting Path in XAML), 137
6.8 (Adding Converter in Resources and

Using It), 139
6.9 (Various Formatting), 140-141
6.10 (Setting UserControl’s Language), 141

6.11 (Viewmodel’s Property Throwing
Exception), 143

6.12 (Binding TextBox with Validation), 144
6.13 (IDataErrorInfo Members in

Viewmodel), 144-145
6.14 (Scene with Data Binding Error), 149
6.15 (Test Converter for Debug), 150
6.16 (Using Test Converter in XAML),

150-151
6.17 (Working with CollectionViewSource in

Code and in XAML), 152
6.18 (Creating CollectionViewSource in

XAML), 153
6.19 (Changing Sort Order of

CollectionViewSource), 154
6.20 (Using BindsDirectlyToSource to Ignore

Shortcut), 155
7.1 (Binding to View-model in

Resources), 165
7.2 (ViewModelLocator in Global

Resources), 166
7.3 (ViewModelLocator Implementation), 166
7.4 (Binding View’s DataContext Through

ViewModelLocator), 166
7.5 (Setting DataContext in View’s

Constructor), 167
7.6 (ICustomerServiceProxy Interface), 168
7.7 (CustomerViewModel Constructor and

Model Property), 170
7.8 (DirtyVisibility Property), 170
7.9 (Subscribing to PropertyChanged

Event), 171
7.10 (MainViewModel Implementation),

172-173
7.11 (Handling the Result), 173-174
7.12 (Setting DataContext), 174
7.13 (Setting the Bindings), 175-176
7.14 (ViewModelBase Class), 178-179
7.15 (Declaring the RelayCommand), 181
7.16 (Creating the RelayCommand), 181-182
7.17 (Using the RelayCommand), 183
8.1 (Setting DataGrid’s Columns), 189-190
8.2 (Building PagedCollectionView), 191
8.3 (Setting and Resetting Filter), 193
8.4 (Setting Page Size), 194
8.5 (Creating a New Row), 196
8.6 (Adding DataPager Control), 196
8.7 (Declaring IDataErrorInfo), 198
8.8 (Making Gateway to Model.Lastname),

198
8.9 (Subscribing to Changes for Model’s

LastName Property), 199
8.10 (Implementing IDataErrorInfo), 199-200
8.11 (Validation in Data Binding), 200

code listings682

 From the Library of Wow! eBook

ptg

8.12 (Validating Arbitrary Property), 202
8.13 (Defining Attributes and Validating), 202
8.14 (Modifying the Binding), 203
8.15 (Adding DataGrid), 204
8.16 (Customizing ContractNumber

Property), 205
8.17 (Customizing IsDirty Property), 205
8.18 (Using Localized Values), 206
8.19 (Setting Application in French), 207
8.20 (Splitting Grid in Two Columns), 209
8.21 (Adding xmlns Statement), 209
8.22 (Adding DataForm), 209
8.23 (Adding Description), 211
8.24 (Making EditTemplate), 212
8.25 (Simple Property Editor), 213
9.1 (Twitter CrossDomain.xml File), 217
9.2 (DownloadUploadHelper.GetString

Method), 220
9.3 (DownloadStringCompleted Event

Handler), 221
9.4 (Triggering the Download), 222
9.5 (Handling the Error), 223
9.6 (Getting a Stream and Making

BitmapSource), 225
9.7 (Server-Side Generic Handler

UploadString.ashx), 225-226
9.8 (Selecting File and Calling Helper), 228
9.9 (Opening WebClient for Writing), 228-229
9.10 (Reading and Sending File), 229
9.11 (Reading and Writing File’s

Content), 230
9.12 (Storing Information While

Sending), 231
9.13 (Preparing the Request), 232
9.14 (Sending the Request), 232
9.15 (Getting Server’s Response), 233
9.16 (Executing the Callback), 234
9.17 (Using New Stack for All Requests), 235
9.18 (Using New Stack for Specific

Domain), 235
9.19 (Creating Request for New Stack), 236
9.20 (Sending Cookie to Server and Getting

One Back), 237
9.21 (Implementing DataItem Class), 240
9.22 (Implementing New Method), 240
9.23 (Setting the UI), 242
9.24 (Calling the Client), 242
9.25 (Handling Completed Event), 243
10.1 (Using Local Resources), 248
10.2 (External Resource Dictionary), 250
10.3 (Merging External Dictionaries in

App.xaml), 250
10.4 (Merging External Dictionaries in

MainPage.xaml), 251

How can we make this index more useful? Email us at indexes@samspublishing.com

10.5 (Merging and Using Dictionary from
Different Assembly), 252

10.6 (Creating “Summary Resource
Dictionary”), 253

10.7 (Mixing Resources and Merged
Dictionaries), 253

10.8 (Accessing Resources in Code), 255
10.9 (Implicit Style and Template), 262
10.10 (Basing a Style on Another One,

263-264
10.11 (States and Parts for Scrollbar

Control), 266
10.12 (Custom Easing Function with

Property), 270
11.1 (Using IsInDesignTool Property),

278-279
11.2 (Sample XML Data File), 283
11.3 (ViewModelBase Class), 286
11.4 (MainViewModel Class), 286
11.5 (CustomerViewModel Class), 286
11.6 (Adding Blend Behavior in XAML), 293
11.7 (Adding Blend Behavior in C#), 293
11.8 (Adding Dependency Property), 294
11.9 (Attaching to KeyUp Event), 295-296
11.10 (Detaching KeyUp Event Handler), 296
11.11 (Implementing Invoke Method), 298
12.1 (Setting a Derived Style), 312
13.1 (Method GetOrdersByCity), 337
13.2 (MainViewModel Class), 342
13.3 (IsBusy Property), 343
13.4 (Orders Collection), 343
13.5 (MainViewModel Constructor,

Attributes, and Load Method), 344
13.6 (Creating MainViewModel in

Resources), 346
13.7 (Setting Application and Page

Culture), 347
13.8 (Adding SaveCommand), 348
13.9 (Creating SaveCommand), 349
13.10 (Executing SaveCommand), 349
13.11 (Adding AddCommand), 350
13.12 (Creating AddCommand), 350
13.13 (Adding an Order), 350
13.14 (Adding an Interface), 352
13.15 (Adding IDialogService in

MainViewModel Class), 352
13.16 (Modifying MainPage), 352
13.17 (Implement IDialogService), 353
13.18 (Setting DialogService), 353
13.19 (Modifying Server-Side DeleteOrder

Method), 355
13.20 (Adding DeleteOrderCommand), 355
13.21 (Creating DeleteOrderCommand), 356
13.22 (Implementing DeleteOrder Method

on Client), 356

code listings 683

 From the Library of Wow! eBook

ptg

13.23 (Adding Validation Rule to Freight
Column), 357

13.24 (Adding Validation Rule to ShipCity
Column), 358

13.25 (Checking Before Saving), 358
13.26 (Providing a Custom Error

Message), 359
13.27 (LoadAllOrdersByCity Method), 361
13.28 (Handling the LostFocus Event), 362
14.1 (Server Side Method to Get Numbers

of Rows), 366
14.2 (Declaring GoBackCommand and

GoForwardCommand), 367
14.3 (Initializing GoBackCommand and

GoForwardCommand), 367
14.4 (GoBack and GoForward Methods), 368
14.5 (Calling Server-Side Method), 368-369
14.6 (ShowError Method), 370
14.7 (Modifying the Callbacks), 370-371
14.8 (Detecting Conflicts and Refreshing

Data), 372
14.9 (Adding a Message), 374
14.10 (Constructing ChildWindow), 375
14.11 (Loading the Orders), 375
14.12 (Canceling the Operation), 376
14.13 (IPrintService Interface), 376
14.14 (Creating the PrintCommand), 376
14.15 (PrintOrders Method), 377
14.16 (Creating a DataTemplate), 378
14.17 (Setting Up PrintedReport

Markup), 378
14.18 (Implementing PreparePage Method),

379-380
14.19 (Preparing PrintDocument), 380
14.20 (Handling Print Events), 381-382
14.21 (Checking and Downloading Update),

391-392
14.22 (UpdateCompleted Callback), 392-393
14.23 (Installing Application in Code), 394
14.24 (SaveToFileCommand), 395
14.25 (Creating SaveToFileCommand), 396
14.26 (SaveToFile Method), 397
14.27 (Testing Network Connectivity), 398
15.1 (Grid with Two “Pages”), 402
15.2 (Navigating Back and Forth), 403
15.3 (Navigation Frame Element), 405-406
15.4 (Navigation with HyperlinkButton

Control), 406
15.5 (Navigation with Hyperlink Control), 407
15.6 (Changing HyperlinkButton

Elements), 408
15.7 (New URI Mapping), 408-409
15.8 (Method OnNavigatedTo), 409-410
15.9 (Adding Fragment to URI), 411
15.10 (Overriding OnFragmentNavigation), 411

15.11 (UI elements in Windows Phone 7
and on desktop), 418

15.12 (Creating ObservableCollection),
424-425

15.13 (Creating ViewModelLocator), 425
15.14 (Setting DataContext), 425
15.15 (Creating Simple ListBox), 425
15.16 (Adding ApplicationBar), 429-430
15.17 (ApplicationBar Event Handlers),

430-431
15.18 (Setting Command on Save

Button), 432
16.1 (Simple Monochrome Shader), 436
16.2 (Wave Effect Shader), 437
16.3 (WaveEffect Class), 439
16.4 (Adding WaveEffect), 439
16.5 (Combining Effects), 440
16.6 (Modified Wave Shader), 441
16.7 (Modifying WaveEffect Class), 441-442
16.8 (Creating Animation in XAML), 442
16.9 (Starting Animation in Code

Behind), 442
16.10 (Collections of Video and Audio

Devices), 444
16.11 (Storing CaptureSource), 444
16.12 (Selected Video Device), 445
16.13 (Retrieving Video and Audio

Devices), 446
16.14 (Creating DataTemplate), 447
16.15 (Two ListBox Elements), 447
16.16 (Rectangle and VideoBrush), 448
16.17 (Setting Source of VideoBrush), 449
16.18 (Creating CaptureSource), 449
16.19 (Catching InvalidOperationException),

449
16.20 (Implementing AudioSink), 450-451
16.21 (Three Attributes), 451
16.22 (OnFormatChange Method), 451
16.23 (OnSamples Method), 451
16.24 (Saving PCM Data to WAV), 452
16.25 (Extending IDialogService

Interface), 453
16.26 (Getting File with SaveFileDialog), 453
16.27 (Two Commands and a Sink), 454
16.28 (Instantiating the Commands), 454
16.29 (StartAudio Method), 455
16.30 (StopAudio Method), 455-456
16.31 (Start Audio and Stop Audio

Buttons), 456
16.32 (Adding the CaptureCommand), 457
16.33 (Initializing CaptureImageCommand),

457
16.34 (CaptureImage Method), 458
16.35 (Binding CaptureImageCommand), 459
16.36 (SaveToImage Method), 460

code listings684

 From the Library of Wow! eBook

ptg

16.37 (Retrieving and Modifying Pixels),
460-461

16.38 (New SaveToImage Method), 462-463
16.39 (Using OpenFileDialog Class), 464
16.40 (Getting Text Files and Reading

Them), 464-465
17.1 (Transform Composition with

TransformGroup), 472
17.2 (Transform Composition with

CompositeTransform), 472
17.3 (DeleteCustomer Method), 474
17.4 (Catching MouseRightButtonDown

Event in ListBox), 474
17.5 (ListBoxMouseRightButtonDown

Handler), 475
17.6 (Adding DeleteCustomerCommand), 477
17.7 (Instantiating

DeleteCustomerCommand), 477
17.8 (Adding Context Menu in XAML), 477
17.9 (Creating WebBrowser Control), 480
17.10 (Handling Completed Event), 480
17.11 (Navigate Method), 481
17.12 (GetNavigationUri Method), 481
17.13 (Navigating to string), 484
17.14 (Sample HTML Markup), 484
17.15 (FileContent Property and SaveFile

Method), 486
17.16 (Creating Directory Within Another

Directory), 487
17.17 (Increasing Isolated Storage

Quota), 487
17.18 (Getting List of Files and Checking

Whether File Exists), 488
17.19 (Modifying SaveFileChildWindow

Constructor), 488
17.20 (Handling the OK Button), 489
17.21 (Handling SaveFileButtonClick

Event), 489
17.22 (Getting File from Isolated

Storage), 492
17.23 (Creating LocalFileHelper), 493
17.24 (Retrieving Files List), 493
17.25 (Getting the File’s Content), 493
17.26 (Loading the File), 494
17.27 (Deleting File from Store), 495
17.28 (Implementing DeleteFile_Click Event

Handler), 495
17.29 (Constants for Settings), 496
17.30 (Saving the Settings), 496
17.31 (Loading the Settings), 496-497
17.32 (Filtering the Settings Filename), 497
17.33 (Creating LocalFileHelper in

MainPage), 498
17.34 (Saving Settings When Application

Exits), 498

How can we make this index more useful? Email us at indexes@samspublishing.com

17.35 (Restoring Initial Page), 498-499
17.36 (Adding Rectangle and

WebBrowserBrush), 500
17.37 (Redraw WebBrowserBrush), 500
17.38 (Handling

CompositionTarget.Rendering Event), 501
18.1 (Setting AllowDrop and Drop Event

Handler), 504
18.2 (Handling the Drop Event), 504-505
18.3 (JavaScript Code to Enable Drag and

Drop on Mac), 506
18.4 (Setting Application in Full Screen), 508
18.5 (Setting the FullScreenOptions), 509
18.6 (Copying, Cutting, and Pasting), 511
18.7 (EmailButtonClick Event Handler), 513
18.8 (Adding Input Elements), 513
18.9 (Initializing the Window), 514
18.10 (OKButton_Click Event Handler),

514-515
18.11 (Adding Data to Excel Sheet), 516
18.12 (Saving the File), 516-517
18.13 (Creating an Outlook Message), 518
18.14 (IFileChangedService Interface), 520
18.15 (IFilesChangedClient Interface), 521
18.16 (Skeleton of FilesChangedService

Class), 521
18.17 (Getting a Request), 522
18.18 (Creating FileSystemWatcher), 523
18.19 (Notifying Clients When File Is

Added), 523
18.20 (Unregistering a Client), 524
18.21 (Registering Extensions), 524
18.22 (Binding and Service), 525
18.23 (Setting the Behaviors), 525
18.24 (Setting the XAML), 526-527
18.25 (Declaring Client and List of Files), 527
18.26 (MainPage Constructor), 527-528
18.27 (Receiving a New File), 528
18.28 (Unsubscribing and

Resubscribing), 529
18.29 (Notification UserControl), 531
18.30 (Requesting to Close), 531-532
18.31 (Displaying NotificationWindow), 532
18.32 (Restoring the Main Window), 534
18.33 (Splash Screen in XAML), 535
18.34 (Updating the Progress), 536
18.35 (Naming Object Tag and Adding

Parameters), 536
19.1 (AuthenticationService Endpoint), 542
19.2 (Configuring the Service), 542-543
19.3 (CheckAccessService Class), 544
19.4 (LoginClick Event Handler), 545
19.5 (LoginCompleted Event Handler), 546
19.6 (client_CanAccessManagerZoneCompleted

Event Handler), 546-547

code listings 685

 From the Library of Wow! eBook

ptg

19.7 (Adding a Command), 549
19.8 (IsSaving Property), 550
19.9 (Instantiating the Command), 550
19.10 (CheckAndSave Method), 551
19.11 (Adding xmlns Prefixes), 552
19.12 (Adding EventToCommand in

XAML), 552
19.13 (Getting Animation in Code), 556
19.14 (StartAnimation Method), 556
19.15 (Receiver’s User Interface), 564
19.16 (Subscribing and Receiving

Message), 564-565
19.17 (Markup for the Receiver), 565-566
19.18 (Sending a Message), 566-567
19.19 (Adding xmlns Prefix), 568
19.20 (Adding a Map Control), 568
19.21 (Getting Mouse Click and Adding

Information), 569-570
20.1 (View-Model Without Dependency

Injection), 574-575
20.2 (IDataService Interface), 576
20.3 (Injecting the Service), 576
20.4 (DataService Implementation), 577
20.5 (DesignDataService Class), 577-578
20.6 (ViewModelLocator Class), 580
20.7 (Setting the DataContext), 581
20.8 (Calling Setup), 582
20.9 (Adding a ListBox), 582
20.10 (IMessageService Interface), 584
20.11 (MessageService Class), 584
20.12 (Importing the Service), 585
20.13 (Adding Constructor to

MessageService Class), 586-587
20.14 (Using Constructor with

Parameters), 587
20.15 (MorningDataService Class), 588
20.16 (Adding an Export Attribute), 589
20.17 (Importing the IDataService), 589
20.18 (GetItems Method), 589
20.19 (ViewModelLocator Class), 589-590
20.20 (IDataServiceInfo Interface), 590
20.21 (AfternoonDataService Class), 591
20.22 (MorningDataService Class), 591
20.23 (Importing the Services), 591-592
20.24 (Getting Right Data Service), 592
20.25 (Empty TabControl), 595
20.26 (Importing the Engines), 596
20.27 (Initializing the Main Page), 596
20.28 (Compose Method), 596-597
20.29 (Modifying SearchClick Event

Handler), 597
20.30 (Exporting BingTextSearch), 598
20.31 (ProcessRequest Method in

PluginsService Class), 598-599
20.32 (Modifying MainPage Constructor), 600

20.33 (LoadPlugins Method), 601
20.34 (AddXap Method), 601-602
20.35 (RefreshClick Event Handler), 602
20.36 (Adding Notifications), 605
20.37 (Adding Row and TextBlock), 605
20.38 (Counting Results), 606
20.39 (Registering to Receive

Messages), 606
20.40 (Sending a Message), 607
21.1 (Constructing an Absolute URI), 612
21.2 (Setting the Source Property), 612
21.3 (Initiating Media Download with

WebClient), 613
21.4 (Handling DownloadProgressChanged

and OpenReadCompleted Events), 614
21.5 (Aborting the Download), 614-615
21.6 (Virtualizing ItemsControl), 618
21.7 (ListBox Without Virtualization), 619
21.8 (ItemsService Creating Items), 620
21.9 (Getting Dispatcher and Starting

Background Operation), 621
21.10 (Creating the Items), 622-623
21.11 (Dispatching the Operation), 624
21.12 (Setting Hardware Acceleration on

Object Tag), 627
21.13 (Switching On Hardware Acceleration

in XAML), 627
21.14 (Enabling Cache Visualization), 628
21.15 (Class Hierarchy), 634
21.16 (Creating and Freeing Classes),

634-635
21.17 (Strong Event Handling), 635-636
21.18 (Removing Event Handler), 636
21.19 (Closing and Disposing Stream and

StreamReader), 637
21.20 (Using a WeakReference), 637-638
22.1 (Lambda Expressions), 642
22.2 (Action and Func), 642
22.3 (Calling CallAsynchronousService

Method), 643
22.4 (Using a Func to Filter Items), 643
22.5 (Verbose Syntax to Filter Items), 643
22.6 (Fluent Syntax), 644
22.7 (Creating Extension Method), 645
22.8 (Using Named Parameters), 647
22.9 (Localizer Class), 649
22.10 (Adding Localizer to Global

Resources), 650
22.11 (Binding Through Localizer), 650
22.12 (Loading the Culture), 650-651
22.13 (Modifying the UI), 654
22.14 (MainPage Constructor), 654
22.15 (Preparing Display and Testing

Numbers), 655
22.16 (Calculating Prime Number), 655

code listings686

 From the Library of Wow! eBook

ptg

22.17 (Using System.Windows.Deployment’s
Dispatcher), 658

22.18 (Checking Access), 658
22.19 (Initializing a Page), 659
22.20 (Making Asynchronous Call on

Current Thread), 659
22.21 (Adding BackgroundWorker), 661
22.22 (StartMonitoring Method), 661
22.23 (DownloadStringCompleted Event

Handler), 662
22.24 (Adding a ListBox), 663
22.25 (Adding Collection and Initializing), 663
22.26 (Starting Threaded Operations), 664
22.27 (Locking Critical Resource), 665
22.28 (Using object as lock), 666
22.29 (Implementing

TestViewModelInjectionNull), 669
22.30 (Making the Test Pass), 670
22.31 (Returning a null Collection), 671
22.32 (TestGetItemsNull Method), 671-672
22.33 (Making the Test Pass), 672

code profilers, 630-631
code snippets, 184

installing, 123
properties, adding, 123-124

collecting garbage and leaking memory,
632-635

Collections of Video and Audio Devices
listing (16.10), 444

CollectionViewSource proxy class, 151-154
creating, 153
grouping data, 152
sorting data, 152

colors, 38
Alpha transparency, 38
coding, 38
named colors, 38

columns
automatic columns, DataGrid data control,

204-208
customizing, 346-347

COM, 512, 537
Microsoft Office, communicating with,

512-519
restrictions, 512

Combining Effects listing (16.5), 440
ComboBox data control, 187
Command controls, adding, 79-84
CommandParameter controls, adding, 79-84
commands

events, binding to, 547-554
executing, TextBox, 548-551
GreetingCardMaker application, 454-456
MVVM pattern, 180-183
Windows Phone 7 applications, 431-432

How can we make this index more useful? Email us at indexes@samspublishing.com

common assemblies, caching, 615-616
Common Language Runtime (CLR) namespaces.

See CLR (Common Language Runtime)
communication

duplex polling, 519-530
local communication

enabling, 563-567
receivers, 564-565
restrictions, 564
senders, 565-567

WCF (Windows Communication Foundation),
239-245

community, 25-26
community requests, 9
compatibility, older versions, 9-10

cross-browser and platform, 10-12
compiling pixel shaders, 436-437
complex messages, sending, 231-234
component screens, creating, SketchFlow,

309-310
components, MVVM Light Toolkit,

discovering, 604
Compose Method listing (20.28), 596-597
composing transforms, 472
CompositeTransform event, 472, 501
configuration

OOB applications, 383-391
Shazzam, 438
WCF (Windows Communication Foundation)

services, 239-241, 421, 524-528
Configuring the Service listing (19.2), 542-543
Connection Properties dialog, 333
connections, cross-domain servers, 216, 218
Constants for Settings listing (17.29), 496
Constructing an Absolute URI listing (21.1), 612
Constructing ChildWindow listing (14.10),

374-375
constructors

defining default, 111-112
parameters, MEF, 586-588
PropertyPath, 136

consuming dynamic objects, 646
ContactNumber property, customizing, 205
containers, dependency injection containers, 578
content on demand, XAP files, loading, 611-615
context, design time data, 288-289
context menus, displaying, 476-478
ContextMenu control (Toolkit), 100-101
contracts, defining, 575-576
control classes, ScrollViewer, 104
“control ecosystem,” 49
controls, 49, 53, 73-76

ActiveX, 15
Bing Maps, 567-571

controls 687

 From the Library of Wow! eBook

ptg

creating, Expression Blend, 270-271
custom controls. See custom controls
data controls. See data controls
existing controls. See existing controls
Hyperlink, 406
HyperlinkButton, 406
parts, 266
SketchFlow, 310-318
states, 266
styles, 260-265
templates, 63, 265-271
unit tests, 63
user controls, 53-62, 274
WebBrowser, 479, 501

creating, 480
invoking JavaScript, 485
painting with HTML, 499-501

WebClient, 613-614
XAML, extending, 49-53

ControlStoryboardAction, 314
converters, 139

naming, 139
test converters, building, 150-151

converting values, data bindings, 138-139
CookieContainer class, networking stacks,

discovering, 236-237
copying

Clipboard, 510-511
rows, LOB applications, 373
templates, Expression Blend, 265-269

Copying, Cutting, and Pasting listing (18.6), 511
Counting Results listing (20.38), 606
CPUs, memory leaks, avoiding, 631-638
Create Data Binding dialog, 285
Creating “Summary Resource Dictionary”

listing (10.6), 253
Creating a DataTemplate listing (14.16),

377-378
Creating a New Row listing (8.5), 196
Creating AddCommand listing (13.12), 350
Creating an Outlook Message listing (18.13), 518
Creating and Freeing Classes listing (21.16), 634
Creating Animation in XAML listing (16.8), 442
Creating CaptureSource listing (16.18), 449
Creating CollectionViewSource in XAML

listing (6.18), 153
Creating DataTemplate listing (16.14), 447
Creating DeleteOrderCommand

listing (13.21), 356
Creating Directory Within Another Directory

listing (17.16), 487
Creating Extension Method listing (22.7), 645
Creating FileSystemWatcher listing (18.18), 523
Creating LocalFileHelper in MainPage

listing (17.33), 498

Creating LocalFileHelper listing (17.23), 493
Creating MainViewModel in Resources

listing (13.6), 346
Creating ObservableCollection listing (15.12), 424
Creating Request for New Stack

listing (9.19), 236
Creating SaveCommand listing (13.9), 349
Creating SaveToFileCommand listing (14.25), 396
Creating Simple ListBox listing (15.15), 425
Creating the Items listing (21.10), 622-623
Creating the PrintCommand listing (14.14), 376
Creating the RelayCommand listing (7.16),

181-182
Creating Two DataObject Instances in XAML

listing (5.5), 114
Creating ViewModelLocator listing (15.13), 425
Creating WebBrowser Control listing (17.9), 480
critical resources, locking, 663-666
cross-browser compatibility, 10-12
cross-domain content, saving, 491
cross-domain servers

connecting to, 216, 218
policy files

checking for, 216-217
restrictions, 217-218

cross-platform compatibility, 10-12
CRUD (create, read, update, and delete)

operations, 348
CRUD operations, executing, 348-351
current state, controls, acquiring, 78-79
custom controls, 63-72

default templates, creating, 69-71
implementing, 63-64
MVVM pattern, 163
parts

defining, 64-65
wiring, 67-69

properties, defining, 65-67
states

defining, 64-65
visual states, 71-72

templates, 63-64
unit tests, 63
user controls, compared, 274

Custom Easing Function with Property
listing (10.12), 270

custom easing functions, creating, 269
custom navigation, navigation applications,

413-414
custom properties, UserControl, 61-62
custom sorting, PagedCollectionView data

control, 195
Customer class, 169
Customer Class Inheriting DependencyObject

listing (5.1), 105-106

controls688

 From the Library of Wow! eBook

ptg

Customer Class with INotifyPropertyChanged
listing (5.2), 106-107

CustomerViewModel Class listing (11.5), 286
CustomerViewModel Constructor and Model

Property listing (7.7), 170
customizing columns, 346-347
Customizing ContractNumber Property

listing (8.16), 205
Customizing IsDirty Property listing (8.17), 205
cutting, Clipboard, 510-511

D
data, 129-130

filtering, 151-155, 192-194, 360-362
grouping, 151-155
paging through, PagedCollectionView data

control, 194-195
reconciling, LOB applications, 372
sorting, 151-155, 195

data applications, layers, 329
data bindings, 130, 141-142, 155

applying to targets, 130-132
converting values, 138-139
debugging, 149-151
element-to-element bindings, 133
ElementName property, 133
Expression Blend Binding dialog, 148
flowing from target to source, 138
formatting, 139-141
implicit data context, 134-135
input validation, 142-146
namescopes, 132
obtaining data from source, 131-132
property triggers, 142
refining path, 136-137
RelativeSource property, 133-134
ResouceManager, 649-650
silent errors, 133
Source property, 133
sources

binding directly, 154-155
obtaining data from, 131-132
setting, 133-135

targets, applying to, 130-132
values, converting, 138-139
Visual Studio Binding dialog, 146-147

data context
implicit, binding to, 134-135
MVVM pattern, 163-164

How can we make this index more useful? Email us at indexes@samspublishing.com

data controls, 187-188, 214
ComboBox, 187
data input, validating, 197-204
DataForm, 187, 208-214

adding descriptions, 210-211
committing changes manually, 211-212
creating simple property editor, 213-214
defining fields manually, 212-213
validating data input, 211

DataGrid, 187
automatic columns, 204-208

DataPager, 187, 196-197
IDataErrorInfo, 198-200
ItemsControl, 187
ListBox, 187
PagedCollectionView, 188

building, 190-191
custom sorting, 195
filtering data, 192-194
optimization, 195-196
paging through data, 194-195
preparing, 188-190

Data Encryption Standard (DES), 652
data grids, XCeed, 195
data input

interface-based validation, 198-201
validating

annotations, 201-203
clients, 203-204
data controls, 197-204
DataForm data control, 211
servers, 203-204
set data, 203

data stores, 315
data templates, MVVM pattern, binding to, 163
DataContext, code, 476
DataForm data control, 187, 208-214

adding descriptions, 210-211
committing changes manually, 211-212
creating simple property editor, 213-214
defining fields manually, 212-213
validating data input, 211

DataGrid data control, 187, 204
automatic columns, 204-208
ListBox data control, compared, 208

DataItem class, implementing, 240
DataObject instances, creating, 114
DataPager data control, 187, 196-197
DataService Implementation listing (20.4), 577
DataStateBehavior, 316
DataStoreChangeTrigger, 315
DataTemplate

rendering items, 162
simplifying, 619

DataTemplate 689

 From the Library of Wow! eBook

ptg

DataTrigger, 315
Debug configuration versus Release

configuration, 180
debugging

data bindings, 149-151
OOB applications, 386

Declaring Client and List of Files
listing (18.25), 527

Declaring GoBackCommand and
GoForwardCommand listing (14.2), 366

Declaring IDataErrorInfo listing (8.7), 198
Declaring the RelayCommand listing (7.15), 181
decoding error messages, 410
decrypting files, 652-653
deep linking, navigation applications, 407-409
default constructors, defining, 111-112
Default ControlTemplate for ThresholdControl

listing (3.18), 70-71
default templates

custom controls, creating, 69-71
implicit styles, creating, 262-263

default values, choosing, 111
defining

contracts, 575-576
default constructors, 111-112
fields, DataForm control, 212-213
metadata, 109-111
URIs, 52-53

Defining Attributes and Validating
listing (8.13), 202

DeleteCustomer Method listing (17.3), 474
DeleteCustomerCommand, 476
DeleteOrderCommand, creating, 355
deleting

files, isolated storage, 495-496
isolated storage, 385
orders, 354-357
Order_Detail instances, 354
selected orders, clients, 355-357

Deleting File from Store listing (17.27), 495
demos, 19

Fantasia, 25
Matterhorn Deep Zoom application, 19-20
PhotoSynth, 22-23
Pilot viewer, 23, 25
Sobees, 20
Streetside, 21-22

dependencies, inverting, Unity, 573-583
dependency injection containers, 578
dependency objects, initializing, 111-114
dependency properties, 61, 103-104, 127

adding, snippets, 123-124
base values, obtaining, 126
defining metadata, 109-111
DependencyObject class, 104-108, 127

local values, reading, 126
registering, 108-112, 114
values

accessing, 105
calculating, 124-126

DependencyObject class, 127
inheriting, 104-108
threading, 104

deploying animations, 323
DES (Data Encryption Standard), 652
descriptions, adding, DataForm data control,

210-211
design, Windows Phone 7 applications, 418-419
design mode (Blend), isolating code, 278-279
Design Patterns: Elements of Reusable Object-

Oriented Software, 158
design patterns, 157-158

MVC (Model-View-Controller) pattern, 159
MVVM (Model-View-ViewModel) pattern. See

MVVM (Model-View-ViewModel) pattern
Passive View pattern, 159
Presentation Model pattern, 159
separation, 158-159

design time data
context, 288-289
creating, Expression Blend, 280-288
importing from XML, 283-284

design-time data, 279
DesignDataService Class listing (20.5), 577-578
desktop-compatible applications, Windows

Phone 7 applications, 420-432
Detaching KeyUp Event Handler

listing (11.10), 296
Detaching the Event Handler listing (5.13), 122
detecting

conflicts, 372
manipulation frames, 561

Detecting Conflicts and Refreshing Data
listing (14.8), 372

developer runtime, 28
developers, Windows Phone 7, registering as, 420
development, Windows Phone 7 applications,

416-417
devices, lists, obtaining, 444-447
DHTML (Dynamic HTML), 12-13
DI containers, replacing, MEF, 584-585
dialogs

Add New Domain Service Class, 335
Add Service Reference, 525-526
Attach to Process, 277
Connection Properties, 333
Create Data Binding, 285
Install Application, 383
Microsoft Silverlight Configuration, 385
New Project, 29

DataTrigger690

 From the Library of Wow! eBook

ptg

New Silverlight Application, 30
opening, 380
Out-of-Browser Settings, 388
Save File, 464
Warning, 386

DialogService, setting, 353
dictionaries, resources, merging, 249-256
Digital Rights Management systems (DRMs), 465
directories, isolated storage, 487
DirtyVisibility Property listing (7.8), 170
Discover button, 241
discovering networking stacks, 234-237
Dispatcher property, 104
dispatching UI thread, 657-660
Dispatching the Operation listing (21.11), 624
displaying

context menus, 476-478
notification windows, 530-534
video output, webcams, 448-449

Displaying NotificationWindow
listing (18.31), 532

disposing objects, 637
distributing references, 317
DockPanel control (Toolkit), 99
domain services, server-side applications,

adding to, 334-336
DomainDataSource, 339

pagers, adding, 341-342
sorting data, 341

DomainUpDown control (Toolkit), 95-96
double values, adding to resources, 50-51
download operations, users, informing of,

218-219
download times, XAP files, improving, 609-616
downloading

resource applications, 652
strings, 219-222
Visual Studio, 27

downloading on demand
MEF, 594-603
Visual Web Developer Express, 28

DownloadStringAsync method, 219-222
DownloadStringCompleted Event Handler

listing (22.23), 662
DownloadStringCompleted Event Handler

listing (9.3), 221
DownloadUpload sample

accessing headers, 231
client-side project, 219
discovering networking stacks, 234-237
downloading operations, informing users,

218-219
downloading strings, 219-222
error detection, 223-224

How can we make this index more useful? Email us at indexes@samspublishing.com

opening resource for reading, 224-225
opening resource for writing, 227-230
placing simple calls, 218
sending complex messages, 231-234
server-side project, 219
uploading strings, 225-227

DownloadUploadHelper.GetString Method
listing (9.2), 220

dragging and dropping, 503-507
restrictions, 505-507

dragging and dropping, 537
DRMs (Digital Rights Management systems), 465
Drop event handler, setting, 504
duplex polling, 519-530, 537
dynamic objects, consuming, 646

E
easing functions, creating, 269
ECDH (Elliptic Curve Diffie-Hellman), 652
exceptions, Expression Blend, detecting cause,

276-278
edit panel, Windows Phone 7 applications,

adding, 427-428
editing

resources, 258
text, RichTextBox, 84-85
XAML markup, Expression Blend, 274

EditTemplate, creating, 212-213
EF (Entity Framework), 331
effects

HelloSilverlight application, adding to, 42-44
pixel shaders, 435

adding properties, 440-442
animating, 440-442
compiling, 436-437
creating with Shazzam, 437-438
finding, 436-437
integration, 438-440
transitions, 443
writing, 436-437

Eisenberg, Rob, 604
element-to-element bindings, 133
ElementName property, data bindings, 133
ElementRotator Class and Attached Behavior

listing (5.10), 118
elements. See also controls

behaviors, attaching to, 119-120
casting as keyword, 111
multitouch computing, 559
namespaces, adding to, 52

elements 691

 From the Library of Wow! eBook

ptg

Navigation Frame, 405
projections, transforming, 467-471
rotating, 560-561
scaling, 560-561
translating, 560-561

elevated permissions
COM, 512-519
full-screen mode, 507-510

elevated trusts, OOB applications, 390-391
Elliptic Curve Diffie-Hellman (ECDH), 652
EmailButtonClick Event Handler

listing (18.7), 513
emailing, Microsoft Outlook, 517-519
Empty TabControl listing (20.25), 595
emulator, multitouch, 419
Enabling Cache Visualization listing (21.14), 628
encapsulation of functionality, 55
encrypting files, 652-653
Entity Framework (EF), 331
environments, managed environments, 632-635
envisioning applications, 301
error messages, decoding, 410
errors

data bindings, 133, 149-151
DownloadUpload sample, error detection,

223-224
loaded errors, printing, 377-380
LOB applications, showing, 369-370
returning objects as, 146

event handlers
creating, Properties editor, 36
unregistering, 635-636

events
CanExecuteChanged, 80
commands, binding to, 547-554
CompositionTarget.Rendering, handling, 501
navigation, handling, 412-413
print events, handling, 381
right-click events, 473-478

EventToCommand action
ExpressionBlend, setting in, 553-554
XAML, setting in, 552-553

Excel
files, saving, 516-517
sheets, processing data, 515-516
workbooks, creating, 513-515

exceptions, ValidatesOnExceptions, 142-144
Execute method, 80
Executing SaveCommand listing (13.10), 349
Executing the Callback listing (9.16), 234
existing controls, 75-77, 90, 102

assessing, 90
ChildWindow, opening, 87-90
Command, adding, 79-84
CommandParameter, adding, 79-84

localizing for right-to-left languages, 77
locating, 90-101
mouse wheel support, 77
RichTextBox, 84-85
SelectedValue, adding, 79
SelectedValuePath, adding, 79
templates, obtaining current state, 78-79
text, editing, 84-85
third-party providers, 101-102
Toolkit, 91-94

Accordian, 97
Chart, 94-95
ContextMenu, 100-101
DockPanel, 99
DomainUpDown, 95-96
Expander, 96
GlobalCalendar, 96
LayoutTransformer, 98-99
NumericUpDown, 95-96
Rating, 95
TimePicker, 96
TimeUpDown, 95-96
TransitioningContentControl, 99
WrapPanel, 100

Viewbox, 85-87
zooming, 85-87

Expander and Accordion Controls listing (4.13),
97-98

Expander control (Toolkit), 96
exporting applications, Word, 326
Exporting BingTextSearch listing (20.30), 598
Expression Blend, 273-274, 300

actions, 292, 298-299
applications

creating, 40-46
testing, 46-47

attached behaviors, 122
base animations

creating, 554-555
randomizing, 555-557

behaviors, 289-292
adding multiple, 291
adding to code, 293
creating, 293-297
finding online, 291-292

Binding dialog, 148
blendable applications, creating, 275-289
controls, creating, 270-271
design mode, isolating code, 278-279
design-time data

context, 288-289
creating, 280-288

effects, adding, 440
EventToCommand action, setting in, 553-554
exceptions, detecting cause, 276-278

elements692

 From the Library of Wow! eBook

ptg

failed code, 275-276
fonts, 312
implicit styles, creating, 261
installing, 40-47
integrators, 274
MVVM pattern, 160
panels, reopening, 276
resource dictionaries, merging, 256
resources, 256-259

creating, 257
Resource Panel, 257-259
selecting for properties, 257

SharePoint, integration, 327
styles, creating, 264-265
templates, copying, 265-269
TFS (Team Foundation Server),

integration, 327
Toolkit, 93
triggers, 292, 299
unexecutable code, 275
UserControls, 55-57
web requests, 276
XAML markup, editing, 274

Expression Dark theme, 271
Expression Encoder, 465
expressions

lambda expressions, 171, 183, 641-642
regular expressions, 203

Extending IDialogService Interface
listing (16.25), 453

extending XAML, 49-53
eXtensible Application Markup Language

(XAML). See XAML (eXtensible Application)
extension methods, creating, 645-646
extensions, registering, 524
external resource dictionaries, 250
External Resource Dictionary listing (10.2), 250
external services, references, adding to, 526

F
Failed Attempt to Bind to Element in Another

Namescope listing (6.2), 132
failed code, Expression Blend, 275-276
fallback resources, 649
Fantasia, 25
feedback

showing, 362-363
SketchFlow, 324

giving, 324
importing and managing, 325

How can we make this index more useful? Email us at indexes@samspublishing.com

Feedback panel (SketchFlow), 305
fields, defining, DataForm control, 212-213
FileContent property, 486
FileContent Property and SaveFile Method

listing (17.15), 486
files

decrypting, 652-653
dragging on applications, 504-507
encrypting, 652-653
Excel, saving, 516-517
HelloSilverlight, 31
isolated storage, deleting, 495-496
OOB applications, saving, 395-398
posting to servers, HttpWebRequest,

231-234
XAP files, reducing size, 603

FileSystemWatcher, creating, 522
filling Excel workbooks, 513-515
filtering data, 151-155, 192-194, 360-362
Filtering the Settings Filename

listing (17.32), 497
finding pixel shaders, 436-437
Flash, 12
flicks, multitouch computing, 557
flowing data bindings from targets to

sources, 138
Fluent Syntax listing (22.6), 644
FluidLayout (SketchFlow), 320-321
FluidMoveBehavior, 316
FluidMoveSetTagBehavior, 316
fonts, 312
formatting data bindings, 139-141
Fowler, Martin, 159, 645
fragments, navigating to, 410-411
frames, manipulation frames, detecting, 561
frameworks

MVVM pattern, 184, 604-607
.NET framework, 641, 647-652

full-screen mode, 507-510, 537
Func class (C#), 642-644
functionality, TDD (test driven development),

668-672
functions, easing functions, creating, 269

G
garbage, collecting, 632-635
generic templates, custom control, 63-64
gestures, multitouch computing, 557
GetItems Method listing (20.18), 589
GetNavigationUri Method listing (17.12), 481

GetNavigationUri Method listing (17.12) 693

 From the Library of Wow! eBook

ptg

GetOrdersByCity method, 337
Getting a Request listing (18.17), 522
Getting a Stream and Making BitmapSource

listing (9.6), 225
Getting and Setting Attached Properties in

Code listing (5.8), 118
Getting Animation in Code listing (19.13), 556
Getting Control’s State listing (4.3), 78
Getting Dispatcher and Starting Background

Operation listing (21.9), 621
Getting File from Isolated Storage

listing (17.22), 492
Getting File with SaveFileDialog

listing (16.26), 453
Getting List of Files and Checking Whether

File Exists listing (17.18), 488
Getting Mouse Click and Adding Information

listing (19.21), 569-570
Getting Property’s Base Value listing (5.15), 126
Getting Property’s Local Value listing (5.16), 127
Getting Right Data Service listing (20.24), 592
Getting Server’s Response listing (9.15), 233
Getting Text Files and Reading Them

listing (16.40), 464-465
Getting the File’s Content listing (17.25), 493
global messages, registering, 565
global resources, ViewModelLocator, 165-167
GlobalCalendar control (Toolkit), 96
GoBack and GoForward Methods listing (14.4),

367-368
GoBackCommand

declaring, 366
initializing, 367

GoForwardCommand
declaring, 366
initializing, 367

GoToThresholdState Method listing (3.16), 67
graphics, PNG files, saving to, 459-460
GreetingCardMaker application, 443

capturing audio, 450-457
commands, adding and wiring, 454-456
device access, enabling, 448-449
list of devices, obtaining, 444-447
sink, 454-456
WritableBitmap, extending, 462-464
writing video to bitmaps, 457-461

Grid with Two “Pages” listing (15.1), 402
grouping data, 151-155
Guthrie, Scott, 8

H
handling

errors, 223
events. See event handling
responses, 237-239
right-click events, 473-478

Handling Completed Event listing (17.10), 480
Handling Completed Event listing (9.25), 243
Handling CompositionTarget.Rendering Event

listing (17.38), 501
Handling DownloadProgressChanged and

OpenReadCompleted Events listing (21.4), 614
Handling Print Events listing (14.20), 381
Handling SaveFileButtonClick Event, 489-490
Handling the Drop Event listing (18.2), 504-505
Handling the Error listing (9.5), 223
Handling the LostFocus Event listing (13.28), 362
Handling the OK Button listing (17.20), 489
Handling the Result listing (7.11), 173-174
hardware, Windows Phone 7, 416
hardware acceleration, browsers, enabling,

624-630
Hash-based Message Authentication Code

(HMAC), 652
headers, accessing, 231
heaps, objects, saving on, 631
height, text blocks, 39
HelloSilverlight

adding effects, 42-44
adding text blocks, 36-40
event handlers, creating, 36
files, 31
implementing, 33-40
locating properties, 36
opening, 41-42
saving, 40
testing, 46-47
XAP file, unpacking, 32

hierarchy of objects, MEF, 588-590
hierarchy, styles, 263-264
Hinkson, Grant, 259
HMAC (Hash-based Message Authentication

Code), 652
Home page, navigation applications, 404
hosting HTML browsers, OOB (out-of-browser)

mode, 478-485
HTML (HyperText Markup Language)

DHTML (Dynamic HTML), 13
painting with, 499-501

HTML browsers
building, 480-484
hosting, OOB (out-of-browser) mode, 478-485
HTML content, loading, 484

GetOrdersByCity method694

 From the Library of Wow! eBook

ptg

HTML content, memory, loading from, 484
HTML5, 13
HTTP client stacks, using, 235
HttpWebRequest, posting files to server, 231-234
Hyperlink control, navigation applications, 406
HyperlinkAction control, 314
HyperlinkButton control, navigation

applications, 406

I
ICustomerServiceProxy Interface listing (7.6), 168
IDataErrorInfo data control

implementing, 144-145, 198-200
IDataErrorInfo Members in Viewmodel

listing (6.13), 144-145
IDataService Interface listing (20.2), 576
IDataServiceInfo Interface listing (20.20), 590
IDialogService

implementing, 353
MainViewModel class, adding in, 352

IFileChangedService Interface listing (18.14), 520
IFilesChangedClient Interface listing (18.15), 521
IIS (Internet Information Services), 465
Illustrator, importing from, 326
images

PNG files, saving to, 459-460
Source property, setting, 276

IMessageService Interface listing (20.10), 584
Implement IDialogService listing (13.17), 353
Implementing AudioSink listing (16.20), 450
Implementing Command and Using It as

Property listing (4.6), 81-82
Implementing DataItem Class listing (9.21), 240
Implementing DeleteFile_Click Event Handler

listing (17.28), 495
Implementing DeleteOrder Method on Client

listing (13.22), 356
Implementing IDataErrorInfo listing (8.10),

199-200
Implementing Invoke Method listing (11.11), 298
Implementing New Method listing (9.22), 240
Implementing OnApplyTemplate listing (3.17), 68
Implementing PreparePage Method listing (14.18),

378-379
Implementing TestViewModelInjectionNull

listing (22.29), 669
Implementing the Event Handler listing (2.2), 46
implicit data context, binding to, 134-135
Implicit Style and Template listing (10.9), 262
implicit styles, 261-263

How can we make this index more useful? Email us at indexes@samspublishing.com

importing
design time data from XML, 283-284
IDataService, 589
Illustrator, 326
multiple instances, MEF, 590-593
Photoshop, 326
PowerPoint, 326
user feedback, 325

Importing the Engines listing (20.26), 596
Importing the IDataService listing (20.17), 589
Importing the Service listing (20.12), 585
Importing the Services listing (20.23), 591-592
Increasing Isolated Storage Quota

listing (17.17), 487
indexers, PropertyPath, 137
inertia, objects, 561
inheritance, DependencyObject class, 104-108
inheriting data context, 134, 164
Initializing a Page listing (22.19), 659
Initializing CaptureImageCommand

listing (16.33), 457
Initializing DependencyObject listing (5.4), 112
Initializing GoBackCommand and

GoForwardCommand listing (14.3), 367
Initializing the Main Page listing (20.27), 596
Initializing the Window listing (18.9), 514
Initiating Media Download with WebClient

listing (21.3), 613
Injecting the Service listing (20.3), 576
INotifyDataErrorInfo, implementing, 145-146
input, data bindings, validating, 142-146
inspecting applications, 31
Install Application dialog, 383
installation

Expression Blend, 40-47
OOB applications, 383-384

from code, 394-395
Silverlight, 18-19
snippets, 123
Toolkit, 92
Unity, 579
Visual Studio, 27-33

Installing Application in Code listing (14.23), 394
instances

BackgroundWorker, creating, 660-663
DataObject, creating, 114
importing, MEF, 590-593
Order_Detail instances, deleting, 354

Instantiating DeleteCustomerCommand
listing (17.7), 477

Instantiating the Command listing (19.9), 550
Instantiating the Commands listing (16.28), 454
instrumented applications, code profilers,

630-631

instrumented applications, code profilers 695

 From the Library of Wow! eBook

ptg

integration, Expression Blend, SharePoint, 327
integrators, Expression Blend, 274
IntelliSense, reopening, 59
interface-based validation, data input, 198-201
interfaces

accelerating, 624-630
building, SketchFlow, 308-309
MVVM pattern, 168-169
UIs, localizing, 347-348
underlying layers, separation, 158-159
virtualizing, 616-619

Internet Information Services (IIS), 465
inversion of control (IOC) containers, 578
inverting dependencies, Unity, 573-583
InvokeCommandAction, 315
IOC (inversion of control) containers, 578
IPrintService Interface listing (14.13), 376
IronPython, 28
IronRuby, 28
IsBusy Property listing (13.3), 343
IsDirty property, customizing, 205
isolated storage, 485

cross-domain content, saving, 491
deleting, 385
deleting files, 495-496
directories, 487
increasing quota, 487
IsolatedStorageSettings, 496-499
LocalFileHelper, 488-490
locating files, 487
reading from, 492-495
saving, 395
saving to, 485-491
trusting, 499

IsolatedStorageSettings class, 496-499
isolating code, Expression Blend, 278-279
IsSaving Property listing (19.8), 550
items, creating in batches, 620-624
ItemsControl data control, 187, 617-618
ItemsService Creating Items listing (21.8), 620

J–K
Java applets, 15
JavaScript, invoking, WebBrowser control, 485
JavaScript Code to Enable Drag and Drop on

Mac listing (18.3), 506
jQuery, 13
JSON responses, handling, 238-239

keyboard support, full-screen mode, 507-510
KeyTrigger, 316
keywords as casting elements, 111

L
lambda expressions, 171, 183
lambda expressions, 171, 183, 641-642
Lambda Expressions listing (22.1), 642
Languages, UserControl, setting, 141
layers, data applications, 329
LayoutTransform Applied to Button

listing (4.14), 99
LayoutTransformer control (Toolkit), 98-99
leaks (memory)

avoiding, 121-122, 631-638
locating, 638

libraries, multitouch, 560
life cycles, applications, 635
Lifetime Manager, 581-582
line-of-business (LOB) applications. See LOB

(line-of-business) applications
Linux, compatibility, 12
list of devices, obtaining, 444-447
ListBox data control, 187

DataGrid data control, compared, 208
unvirtualizing, 619

ListBox Without Virtualization listing (21.7), 619
ListBoxMouseRightButtonDown Handler

listing (17.5), 475
listings. See code listings
Live Messenger, 18
Live Writer, 18
LoadAllOrdersByCity Method listing (13.27), 361
loaded errors, printing, 377-380
loader screens, creating, 534-537
loading HTML content from memory, 484
Loading the Culture listing (22.12), 650
Loading the File listing (17.26), 494
Loading the Orders listing (14.11), 375
Loading the Settings listing (17.31), 496-497
LoadPlugins Method listing (20.33), 601
LOB (line-of-business) applications, 8, 129,

329-331, 363-365
adding paging, 365-369
client-side, 333
creating, Visual Designer, 338-342
errors, showing, 369-370
paging

from clients, 366-369
total number of rows, 366

printing, 373-380, 382
reconciling data, 371-372
refactoring to MVVM, 342-363
rows, copying and pasting, 373
server-side, 331-333

local communication
enabling, 563-567
receivers, building, 564-565

integration, Expression Blend, SharePoint696

 From the Library of Wow! eBook

ptg

restrictions, 564
senders, building, 565-567

local information, Bing Maps, obtaining, 569-571
local resources, 248-249
local values, reading, 126
LocalFileHelper, 488-490
localization

applications, 647-652
right-to-left languages, controls, 77
UIs (user interfaces), 347-348

localized values, 206
Localizer Class listing (22.9), 649
Locking Critical Resource listing (22.27), 665
locking critical resources, 663-666
logging in, authentication, 539-547
LoginClick Event Handler listing (19.4), 545
LoginCompleted Event Handler listing (19.5), 546

M
Macintosh

compatibility, 11
windowless mode, 506

magic strings, 108
main thread, 653
main window, notification windows, interacting

with, 533-534
MainPage Constructor listing (22.14), 654
MainPage Constructor listing (18.26), 527-528
MainPage control, renaming, 55
MainPage Declaration in MainPage.xaml.cs

listing (3.5), 54
MainPage.xaml file, 31, 54
MainViewModel class, 286, 342, 352
MainViewModel Class listing (11.4), 286
MainViewModel Class listing (13.2), 342
MainViewModel Constructor, Attributes, and

Load Method listing (13.5), 344
MainViewModel Implementation listing (7.10),

172-173
Making Asynchronous Call on Current Thread

listing (22.20), 659
Making EditTemplate listing (8.24), 212
Making Gateway to Model.Lastname

listing (8.8), 198
Making the Test Pass listing (22.30), 670
Making the Test Pass listing (22.33), 672
managed environments, 632-635
Managed Extensibility Framework (MEF). See

MEF (Managed Extensibility Framework)
manipulation frames, detecting, 561

How can we make this index more useful? Email us at indexes@samspublishing.com

manually creating, design time data, 280-281
Map panel (SketchFlow), 305
mapping

Bing Maps, 567-571
CLR namespaces to URIs, 52-53
prefixes, CLR namespaces, 49-51

Mapping CLR Namespaces to a URI listing (3.3), 53
markup extensions, 130, 254-255
Markup for the Receiver listing (19.17), 565-566
Martin, Robert C., 574
Matrix3DProjection, 470
Matterhorn Deep Zoom application, 19-20
MEF (Managed Extensibility Framework),

573, 608
applications, composing, 583-604
constructors, parameters, 586-588
DI containers, replacing, 584-585
downloading on demand, 594-603
hierarchy of objects, composing, 588-590
multiple assemblies, refactoring, 586
multiple instances, importing, 590-593

memory
garbage, collecting, 632-635
HTML content, loading from, 484

memory leaks
avoiding, 121-122, 631-638
collecting, 632-635
disposing objects, 637
locating, 638
weak references, 637-638

menus, context menus, displaying, 476-478
merged dictionaries, resources, mixing, 253
merging

dictionaries, 249-253
resource dictionaries, Expression Blend, 256

Merging and Using Dictionary from Different
Assembly listing (10.5), 252

Merging External Dictionaries in App.xaml
listing (10.3), 250

Merging External Dictionaries in MainPage.xaml
listing (10.4), 251

messages
adding, 374-375
complex messages, sending, 231-234
global messages, registering, 565
MVVM pattern, sending, 183-184
sending, MVVM Light Toolkit, 604-607

MessageService Class listing (20.11), 584
metadata

defining, 109-111
inspecting, 336

Method GetOrdersByCity listing (13.1), 337
Method OnNavigatedTo listing (15.8), 409-410

Method OnNavigatedTo listing (15.8) 697

 From the Library of Wow! eBook

ptg

methods
AddXap, 601
anonymous methods, 183
BeginInvoke, 657-660
CallAsynchronousService, 643
CanExecute, 80
chaining, C#, 644-645
CheckAccess, 104, 658
Compose, 596
DeleteCustomer, 474
DownloadStringAsync, 219-222
Execute, 80
extension methods, creating, 645-646
GetNavigationUri, 481
GetOrdersByCity, 337
GoBack, 367
GoForward, 367
LoadPlugins, 600
Navigate, 480
RegisterPrefix, 235
SaveFile, 486
Setup, 582-583

microphones
accessing, 443-444

enabling, 448
list of devices, 444-447

capturing audio, 450-457
Microsoft Office, COM, communicating with,

512-519
Microsoft Outlook, COM, emailing with, 517-519
Microsoft Patterns and Practices, Unity, 573
Microsoft Silverlight Configuration dialog, 385
Microsoft Surface, multitouch computing, 558
Microsoft Word, exporting to, 326
mixing resources, merged dictionaries, 253
Mixing Resources and Merged Dictionaries

listing (10.7), 253
mockups, 316-318
model-view, resources, creating in, 164-165
Model-View-Controller (MVC). See MVC

(Model-View-Controller)
Model-View-ViewModel (MVVM) pattern. See

MVVM (Model-View-ViewModel)
models, 158
Modified Name Dependency Property with

PropertyChangedCallback listing (5.3), 110
Modified Wave Shader listing (16.6), 441
Modifying MainPage Constructor

listing (20.32), 600
Modifying MainPage listing (13.16), 352
Modifying SaveFileChildWindow Constructor

listing (17.19), 488
Modifying SearchClick Event Handler

listing (20.29), 597

Modifying Server-Side DeleteOrder Method
listing (13.19), 355

Modifying the Binding listing (8.14), 203
Modifying the Callbacks listing (14.7), 370-371
Modifying the UI listing (22.13), 654
Modifying WaveEffect Class listing (16.7),

441-442
monitoring processes, 626
monochrome shaders, 436-437
MorningDataService Class listing (20.15), 588
MorningDataService Class listing (20.22), 591
mouse wheel support, controls, 77
MouseDragElementBehavior, 316
MouseRightButtonDown event, catching, 474
multiple behaviors, elements, adding, 291
multiple instances, importing, MEF, 590-593
multithreaded code, enhancing, 666-667
multithreading, 653-654

BackgroundWorker class, 660-663
critical resources, locking, 663-666
ThreadPool class, 654-657
UI thread, dispatching back to, 657-660

multitouch emulator, 419
multitouch computing, 557-560, 571

computers, 558-559
existing elements

investigating, 559
libraries, 560
manipulations, 560-561

flicks, 557
gestures, 557
implementing, 561-563
Microsoft Surface, 558
operating systems, 559

MVC (Model-View-Controller) pattern, 159
MVVM Light Toolkit, 573, 604, 608

components, discovering, 604
sending messages, 604-607

MVVM (Model-View-ViewModel) pattern, 157,
184-185, 604-607

architecture, 160-163
blendable MVVM, creating, 275-289
building sample application, 168-177
code behind, 180
commands, 180-183
CustomViewModel, 170-171
data context, 163-164
data templates, binding to, 163
disadvantages, 184
Expression Blend, 160
framework, 184
getting data through, 161
interfaces, 168-169
line-of-business applications, refactoring to,

342-363

methods698

 From the Library of Wow! eBook

ptg

MainViewModel, 172-174
origin, 159-160
sending messages, 183-184
separations, bridging, 178-184
translating to Silverlight, 161-163
view-models, 161-163

binding views to, 163-167
custom controls, 163
DataTemplate, 162
displaying messages, 351-353
preparing data in, 161-162
types, 162
UserControl, 162

MVVM RIA services, 363
MyNorthwind application. See

LOB (line-of-business) applications

N
Name property, 37
named colors, 38
named parameters, C#, 646-647
namescopes, data bindings, 132
namespaces

CLR namespaces, 49-53
elements, adding to, 52
.NET types, locating, 51

naming
converters, 139
object tags, 536

Naming Object Tag and Adding Parameters
listing (18.35), 536

Navigate Method listing (17.11), 481
NavigateBackAction (SketchFlow), 315
NavigateForwardAction (SketchFlow), 315
NavigateToScreenAction (SketchFlow), 315
Navigating Back and Forth listing (15.2), 403
Navigating to string listing (17.13), 484
navigation applications, 401-403

About page, 404
accessing navigation information, 412-413
advantages, 404
creating, 404-411
deep linking, pages, 407, 409
events, handling, 412-413
fragments, navigating to, 410-411
Home page, 404
Hyperlink control, 406
HyperlinkButton control, 406
multiple points of entry, 404
NavigationService, 413

How can we make this index more useful? Email us at indexes@samspublishing.com

non-navigation applications, adding to,
414-415

providing custom navigation, 413-414
query string parameters, 409-410
structure, 405-407
theming, 411

Navigation Frame Element listing (15.3),
405-406

Navigation with Hyperlink Control
listing (15.5), 407

Navigation with HyperlinkButton Control
listing (15.4), 406

NavigationMenuAction (SketchFlow), 315
NavigationService, 413
.NET framework, 641, 647-652
.NET types, locating, 51
Netflix, 86
networking stacks, discovering, 234-237
New Project dialog, 29
New SaveToImage Method listing (16.38),

462-463
New Silverlight Application dialog, 30
New URI Mapping listing (15.7), 408-409
NInject, 578
non-navigation, navigation, adding to, 414-415
Notification UserControl listing (18.29), 531
notification windows, 537

adding, 531-533
displaying, 530-534
main window interactions, 533-534
queuing, 533
restrictions, 530

Notifying Clients When File Is Added
listing (18.19), 523

NotifyOnValidationError property, 142
NumericUpDown control (Toolkit), 95-96

O
Object-Relational Mapper (ORM), 331
objects

dependency objects, initializing, 111-114
disposing, 637
dynamic objects, consuming, 646
heaps, saving on, 631
hierarchy, MEF, 588-590
inertia, 561
resolving, 578
returning as errors, 146
stacks, saving on, 631

Office, COM, communicating with, 512-519

Office, COM, communicating with 699

 From the Library of Wow! eBook

ptg

OKButton_Click Event Handler listing (18.10),
514-515

OnApply template, implementing, 67
OnFormatChange Method listing (16.22), 451
OnFragmentNavigation, overriding, 411
OnSamples Method listing (16.23), 451
OnValueChanged Property Changed Callback

listing (3.15), 66
OOB (out of the browser) applications, 382, 399

accessing host, 386
application files, locating, 387
assemblies, 616
configuring, 383-384, 387-391
debugging, 385-386
debugging icons, 389
elevated trusts, 390-391
files, saving, 395-398
GPU acceleration, 389
hardware acceleration, enabling, 628-629
HTML browsers, hosting, 478-485
Install menus, showing, 389
installing, 383-384
installing from code, 393-394
setting different icons, 388-389
shortcut names, setting, 388
uninstalling, 384-385
updating, 391-393
window titles, setting, 388
windows, positioning and sizing, 388
working offline, 398-399

OpenFileDialog, 464-465, 503
opening

applications, 19
ChildWindow, 87-90
dialogs, 380
HelloSilverlight application, 41-42
print window, 376-377
resources

for reading, 224-225
for writing, 227-230

Opening WebClient for Writing listing (9.9),
228-229

Opening Window & Handling Its Closed Event
listing (4.10), 89-90

operating systems, multitouch computing, 559
operations, multithreaded, 654, 666-667
orders

creating, 350-351
deleting, 354-357
updating, 348-349

Orders Collection listing (13.4), 343
Order_Detail instances, deleting, 354
ORM (Object-Relational Mapper), 331
out of the browser (OOB) applications. See OOB

(out of the browser) applications

Out-of-Browser Settings dialog, 388
Outlook, emailing, COM, 517-519
Output tab, 149
Overriding OnFragmentNavigation

listing (15.10), 411

P
pack URIs, 439
PagedCollectionView, 154
PagedCollectionView data control, 188

building, 190-191
custom sorting, 195
filtering data, 192-194
optimization, 195-196
paging through data, 194-195
preparing, 188-190

pagers, adding, DomainDataSource, 341-342
pages, deep linking, navigation applications,

407-409
paging

data, PagedCollectionView data control,
194-195

LOB applications, adding to, 365-369
painting, HTML, 499-501
panels

Expression Blend, reopening, 276
SketchFlow, checking, 305

parameters
constructors, MEF, 586-588
named parameters, C#, 646-647
queries, calling, 339-340

parts
controls, 266
custom controls

defining, 64-65
wiring, 67-69

Parts and States for Threshold Control
listing (3.12), 65

Passive View pattern, 159
pasting

Clipboard, 510-511
rows, LOB applications, 373

paths, data bindings, refining, 136-137
patterns, 157-158

MVC (Model-View-Controller) pattern, 159
MVVM (Model-View-ViewModel) pattern. See

MVVM (Model-View-ViewModel) pattern
Passive View pattern, 159
Presentation Model pattern, 159
separation, 158-159

OKButton_Click Event Handler listing (18.10)700

 From the Library of Wow! eBook

ptg

PCM (Pulse Code Modulation) format, 450
permissions, elevated

COM, 512-519
full-screen mode, 507-510

Photoshop, importing from, 326
PhotoSynth, 22-23
pictures, PNG files, saving to, 459-460
Pilot viewer, 23-25
Pistachio tool, unused resources, cleaning up,

259-260
pixel shaders, 44, 435

animating, 440-442
applications, integrating, 438-440
compiling, 436-437
creating, Shazzam, 437-438
finding, 436-437
monochrome shaders, 436-437
properties, adding, 440-442
transitions, 443
WritableBitmap, pixel shaders,

compared, 461
writing, 436-437

pixels
fonts, 312
manipulating, 460-461

PlaneProjections, animating, 470-471
PlaySketchFlowAnimationAction

(SketchFlow), 315
PlaySoundAction, 315
PNG files, saving pictures to, 459-460
points, fonts, 312
policy files, cross-domain servers, checking for,

216-217
PowerPoint, importing from, 326
prefixes

CLR namespaces, mapping to, 49-51
Xmlns, changing, 58

Preparing Display and Testing Numbers
listing (22.15), 655

Preparing PrintDocument listing (14.19), 380
Preparing the Request listing (9.13), 232
prerequisites, server-side applications, 332
Presentation Model pattern, 159
PresentationWindow class, implementing,

115-116
PresentationWindow Implementation

listing (5.7), 115-116
print events, handling, 380
print window, opening, 376-377
printing

loaded errors, 377-380
LOB applications, 374-382

PrintOrders Method listing (14.15), 377
Prism, 603-604

How can we make this index more useful? Email us at indexes@samspublishing.com

processes
monitoring, 626
running, 653

ProcessRequest Method in PluginsService Class
listing (20.31), 598-599

production designers, 274
programming languages, choosing, 28
programming syntax, C#, 641-645
projections

elements, transforming, 467-471
Matrix3DProjection, 470
PlaneProjections, animating, 470-471

projects, 29. See also applications
animations, building, 321-323
deploying, 323
mockups, 316-318
running, 323-324
sketching, 301-304

SketchFlow, 304-308
wireframing tools, 302-303

states, creating, 318-321
transitions, creating, 318-321

properties
adding, snippets, 123-124
attached properties, 114-122
base values, obtaining, 126
ContactNumber, customizing, 205
custom controls, defining, 65-67
dependency properties, 61, 103-104, 127

accessing values, 105
calculating values, 124-126
defining metadata, 109-111
DependencyObject class, 104-108
registering, 108-112, 114

ElementName, data bindings, 133
FileContent, 486
IsDirty, customizing, 205
local values, reading, 126
locating, Properties editor, 36
NotifyOnValidationError, 142
property changed callbacks, 65-66
RelativeSource, data bindings, 133-134
resources, selecting for, 257
RootVisual, assigning, 55
Source

data bindings, 133
images, 276
setting, 612

UserControl, 60-62
Properties editor, 34-36
property changed callbacks, 65-66
property editors, creating, DataForm control,

213-214
property triggers, data bindings, 142

property triggers, data bindings 701

 From the Library of Wow! eBook

ptg

PropertyChangedTrigger, 315
PropertyMetadata constructor, 109
PropertyPath, 136

constructors, 136
indexers, 137

prototypes
applications, compared, 304
mockups, 316-318
states, creating, 318-321
transitions, creating, 318-321

publishing WCF services, 244-245
pulse animations, creating, 44-45
Pulse Code Modulation (PCM) format, 450

Q–R
queries

adding, 354
calling, parameters, 339-340

query string parameters, navigation
applications, 409-410

queuing notification windows, 533
quotas, isolated storage, increasing, 487

Rainier Orange theme, 271
RAM, memory leaks, avoiding, 631-638
randomizing base animations, 555-557
Rating control (Toolkit), 95
reading isolated storage, 492-495
Reading and Sending File listing (9.10), 229
Reading and Writing File’s Content

listing (9.11), 230
reading local values, 126
Receiver’s User Interface listing (19.15), 564
receivers, building, 564-565
Receiving a New File listing (18.27), 528
reconciling data, LOB applications, 371-372
Rectangle and VideoBrush listing (16.16), 448
Redraw WebBrowserBrush listing (17.37), 500
refactoring

applications, MVVM, 342-363
classes, 575-578
multiple assemblies, MEF, 586

references
distributing, 317
external services, adding to, 526
weak references, 637-638

refining paths, data bindings, 136-137
RefreshClick Event Handler listing (20.35), 602
registering

attached properties, 115-117
dependency properties, 108-114
extensions, 524
global messages, 565

Registering Extensions listing (18.21), 524
Registering to Receive Messages

listing (20.39), 606
RegisterPrefix method, 235
registration, developers, Windows Phone 7, 420
regular expressions, 203
relative URIs, 483-484
RelativeSource property, data bindings, 133-134
RelayCommand class, adding, 348
relaying commands, MVVM pattern, 181-182
Release configuration versus Debug

configuration, 180
RemoveElementAction, 315
RemoveItemInListBoxAction (SketchFlow), 315
Removing Event Handler listing (21.18), 636
renaming

MainPage control, 55
resources, 258

reopening
IntelliSense, 59
panels, Expression Blend, 276

Requesting to Close listing (18.30), 531
requests

chaining, 218
HTTP stacks, 235

resetting web servers, 530
resolving

objects, 578
resources, 254-256

resource applications, downloading on
demand, 652

resource DLLs, XAP files, 648
resource files, adding, 647
Resource Panel (Expression Blend), 257-259
ResourceManager, data bindings, 649-650
resources, 248, 257-259

adding double values to, 50-51
code, accessing in, 255-256
creating, 257
critical resources, locking, 663-666
dictionaries, merging, 249-253, 256
editing, 258
Expression Blend, 256-259
fallback resources, 649
local resources, 248-249
merged dictionaries, mixing, 253
moving, 259
opening for reading, 224-225
opening for writing, 227-230
properties, selecting for, 257
renaming, 258
resolving, 254-256
unused resources, cleaning up, 259-260
view-model, creating in, 164-165
ViewModelLocator, 165-167
x:Name, 248

PropertyChangedTrigger702

 From the Library of Wow! eBook

ptg

responses, handling, 237-239
Restoring Initial Page listing (17.35), 498-499
Restoring the Main Window listing (18.32), 534
restrictions

COM, 512
cross-domain servers, checking for, 217-218
drag-and-drop, 505-507
local communication, 564
notification windows, 530

resubscribing to WCF services, 528-529
RESX files, adding, 647
Retrieving and Modifying Pixels listing (16.37),

460-461
Retrieving Files List listing (17.24), 493
Retrieving Video and Audio Devices

listing (16.13), 446
Returning a null Collection listing (22.31), 671
RIA services (WCF), creating, 334-337
RichTextBox, controls, 84-85
RichTextBox with Rich Content listing (4.8), 84-85
right-click events

context menus, displaying, 476-478
handling, 473-478
routed events, 473-476

right-to-left languages, controls, localizing for, 77
Ritscher, Walt, 437
RootVisual class

assigning, 55
dispatcher, 658
setting, 394

rotating, multitouch computing, 560-561
Rotating the Element listing (5.12), 121
routed events, handling, 473-476
rows, LOB applications

paging, 366
copying and pasting, 373

running
processes, 653
prototypes, 323-324

runtime states, switching, 320

S
sample applications, MVVM pattern, building,

168-177
Sample HTML Markup listing (17.14), 484
Sample XML Data File listing (11.2), 283
Save File dialog, 464
SaveFile method, 486
SaveFileDialog, 452-453
SaveToFile Method listing (14.26), 396-397

How can we make this index more useful? Email us at indexes@samspublishing.com

SaveToFileCommand listing (14.24), 395
SaveToImage Method listing (16.36), 460
saving

applications, 40, 498
cross-domain content, 491
Excel files, 516-517
files, OOB applications from code, 395-398
objects, 631
PCM data to WAV, 452

Saving PCM Data to WAV listing (16.24), 452
Saving Settings When Application Exits

listing (17.34), 498
Saving the File listing (18.12), 516-517
Saving the Settings listing (17.30), 496
scaling, multitouch computing, 560-561
Scene with Data Binding Error listing (6.14), 149
scenes, text blocks, adding to, 36-40
Schormann, Christian, 303
Schulte, Rene, 462
screens

component screens, creating, 309-310
creating, SketchFlow, 305-308
splash screens, creating, 534-537

ScrollViewer control class, 104
SDK (Software Development Kit), 29
security, authentication, logging in, 539-547
selected orders, clients, deleting, 355-357
Selected Video Device listing (16.12), 445
SelectedValue, controls, adding, 79
SelectedValuePath, controls, adding, 79
Selecting File and Calling Helper listing (9.8), 228
selling Windows Phone 7 applications, 420-432
senders, building, 565-567
sending

complex messages, 231-234
cookies to servers, 237
messages, MVVM Light Toolkit, 604-607

Sending a Message listing (19.18), 566-567
Sending a Message listing (20.40), 607
Sending Cookie to Server and Getting One Back

listing (9.20), 237
Sending the Request listing (9.14), 232
separation, design patterns, 158-159, 178-184
server applications, websites, creating, 540
server-side applications

client-side applications, combining, 334-337
domain services, adding, 334-336
preparing, 331-333
prerequisites, 332

Server-Side Generic Handler UploadString.ashx
listing (9.7), 225-226

server-side methods, calling, 368
server-side model, modifying, 354
server-side project, WebClient class, 219

server-side project, WebClient class 703

 From the Library of Wow! eBook

ptg

server-side queries, creating, 336-337
server-side services, implementing, 519-523
server/client communication, duplex polling,

519-530
servers

cross-domain servers, 216-218
data input, validating, 203-204
posting files to, HttpWebRequest, 231-234
third-party servers, accessing, 386
updating code, WCF, 244

service references, Windows Phone 7
applications, 423

SetDataStoreValueAction, 315
Setting a Binding on Target in Code

listing (6.1), 131
Setting a Derived Style listing (12.1), 312
Setting a LinearGradientBrush listing (2.1), 33
Setting AllowDrop and Drop Event Handler

listing (18.1), 504
Setting and Resetting Filter listing (8.3), 193
Setting Application and Page Culture

listing (13.7), 347
Setting Application in French listing (8.19), 207
Setting Application in Full Screen

listing (18.4), 508
Setting Attached Properties in XAML

listing (5.6), 115
Setting Binding to New Property in

MyNewUserControl.xaml listing (3.11), 62
Setting Command on Save Button

listing (15.18), 432
Setting Control Template’s High State

listing (3.19), 72
Setting Custom Attached Properties in XAML

listing (5.9), 118
Setting DataContext in View’s Constructor

listing (7.5), 167
Setting DataContext listing (15.14), 425
Setting DataContext listing (7.12), 174
Setting DataGrid’s Columns listing (8.1), 189-190
Setting DialogService listing (13.18), 353
Setting Elements in DockPanel listing (4.15), 100
Setting Hardware Acceleration on Object Tag

listing (21.12), 627
Setting Page Size listing (8.4), 194
Setting Path in Code listing (6.6), 137
Setting Path in XAML listing (6.7), 137
Setting Source of VideoBrush listing (16.17), 449
Setting the Behaviors listing (18.23), 525
Setting the Bindings listing (7.13), 175-176
Setting the DataContext listing (20.7), 581
Setting the FullScreenOptions listing (18.5), 509
Setting the GlobalCalendar’s Culture

listing (4.12), 96

Setting the Source Property listing (21.2), 612
Setting the UI listing (9.23), 242
Setting the XAML listing (18.24), 526-527
setting up WCF (Windows Communication

Foundation) service, 239-241
Setting Up PrintedReport Markup

listing (14.17), 378
Setting UserControl’s Language

listing (6.10), 141
Setup method, 582-583
shaders, 435

adding properties, 440-441
animating, 440-442
applications

adding properties, 442
integrating, 438-440

compiling, 436-437
creating, Shazzam, 437-438
finding, 436-437
monochrome shaders, 436-437
pixel shaders, 44
transitions, 443
WritableBitmap, pixel shaders,

compared, 461
writing, 436-437

shadow effects, text boxes, adding, 42-44
shapes, controls, 313
SharePoint, Expression Blend, integration, 327
sharing code, 363, 423-425
Shazam

configuring, 438
shaders, creating, 437-438

sheets, Excel, processing data, 515-516
Shifflett, Karl, 289
shortcut names, OOB applications, 388
ShowError Method listing (14.6), 370
showing

feedback, 362-363
errors, LOB applications, 370

silent errors, data bindings, 133
Silverlight, 7, 26

alternatives to, 12-15
community, 9, 25-26
compatibility, 9-12
development, 9, 15-17
future developments, 17-18
installing, 18-19
learning, 8-9
MVVM pattern, translating to, 161-163
Netflix, 86
origins, 15-17
programming languages, choosing, 28
WPF (Windows Presentation Foundation),

compared, 8

server-side queries, creating704

 From the Library of Wow! eBook

ptg

Silverlight 1.0, 16
Silverlight 2, 16
Silverlight 2 Unleashed, 7, 32-34, 255
Silverlight 3, 16-17
Silverlight 4, 17

demos, 19
Fantasia, 25
Matterhorn Deep Zoom application, 19-20
PhotoSynth, 22-23
Pilot viewer, 23, 25
Sobees, 20
Streetside, 21-22

installing, 18-19
Silverlight developer runtime, 28
Silverlight Toolkit. See Toolkit
Silverlight.js file, 31
Silverlight.net, 26
simple calls, placing, 218-231
Simple Monochrome Shader listing (16.1), 436
Simple Property Editor listing (8.25), 213
sinks, audio, creating, 450-454
Skeleton of FilesChangedService Class

listing (18.16), 521
SketchFlow, 303-308, 328

actions, 314
animations, 321-323, 326
applications

creating, 305
deploying, 323
running, 323-324

component screens, creating, 309-310
controls, 310-318
feedback, 324-325
FluidLayout, 320-321
mockups, 316-318
panels, checking, 305
screens, creating and connecting, 305-308
SharePoint, integration, 327
states, creating, 318-321
styles, deriving, 311-313
TFS (Team Foundation Server),

integration, 327
transitions, creating, 318-321
UIs, building, 308-309

sketching, 301-304
SketchFlow, 304-308
styles, deriving, 311-313
wireframing tools, 302-303

Sketching User Experiences, 304
snippets, 184

installing, 123
properties, adding, 123-124

Sobees, 20
software patterns. See design patterns

How can we make this index more useful? Email us at indexes@samspublishing.com

Solution Inspector, applications, inspecting, 31
sorting data, 151-155, 195
source code, references, distributing, 317
Source property

data bindings, 133
images, setting, 276
setting, 612

sources
binding data directly, 154-155
data bindings

flowing, 138
obtaining data from, 131-132
refining, 136-137
setting, 133-135

Splash Screen in XAML listing (18.33), 535
splash screens, creating, 534-537
Splitting Grid in Two Columns listing (8.20), 209
SQL (Structured Query Language), server-side

queries, creating, 336-337
stacks, objects, saving on, 631
Start Audio and Stop Audio Buttons

listing (16.31), 456
StartAnimation Method listing (19.14), 556
StartAudio Method listing (16.29), 455
Starting Animation in Code Behind

listing (16.9), 442
Starting Threaded Operations listing (22.26), 664
StartMonitoring Method listing (22.22), 661
states

controls, 266
creating, 318-321
custom controls

defining, 64-65
visual states, 71-72

Windows Phone 7 applications, adding,
428-429

States and Parts for Scrollbar Control
listing (10.11), 266-267

StaticResource markup extension, XAML,
setting in, 254-255

stop motion animation, 303
StopAudio Method listing (16.30), 455-456
storage, isolated storage, 485

deleting files, 495-496
directories, 487
increasing quota, 487
IsolatedStorageSettings, 496-499
LocalFileHelper, 488-490
locating files, 487
reading from, 492-495
saving cross-domain content, 491
saving to, 485-491
trusting, 499

Storing CaptureSource listing (16.11), 444

Storing CaptureSource listing (16.11) 705

 From the Library of Wow! eBook

ptg

Storing Information While Sending
listing (9.12), 231

StoryboardCompletedTrigger, 316
storyboards, triggering, 45-46
Streetside, 21-22
strings

binding strings, formatting, 141
downloading, 219-222
magic strings, 108
uploading, 225-227

Strong Event Handling listing (21.17), 635-636
structure, navigation applications, 405-407
StructureMap, 578
styles, 38, 247

creating, Expression Blend, 264-265
deriving, SketchFlow, 311-313
hierarchy, 263-264
implicit styles, 261-263

styling controls, 260-265
Subscribing and Receiving Message

listing (19.16), 564-565
Subscribing to Changes for Model’s LastName

Property listing (8.9), 199
Subscribing to PropertyChanged Event

listing (7.9), 171
summary resource dictionaries, creating,

252-253
Surface (Microsoft), multitouch computing, 558
switching states, runtime, 320
Switching On Hardware Acceleration in XAML

listing (21.13), 627
switching states, runtime, 320
synchronization, threads, 657
syntax, C#, 641-645

T
targets, data bindings

applying to, 130-132
flowing, 138

TDD (test-driven development), 667-672
Team Foundation Server (TFS), Expression

Blend, integration, 327
TemplateParent, accessing, 134
templates, 247

controls, 63
current state, 78-79

copying, Expression Blend, 265-269
default templates, creating, 69-71
implicit styles, creating, 262-263
OnApply, implementing, 67
Visual Studio, 28

templating controls, 265-271
Test Converter for Debug listing (6.15), 150
test converters, building, 150-151
test-driven development (TDD), 667-672
TestGetItemsNull Method listing (22.32), 671
testing

applications, 46-47, 667-673
audio recordings, 457
commands, MVVM pattern, 183

Testing Network Connectivity listing (14.27), 398
text, controls, editing, 84-85
text blocks

height, 39
scenes, adding to, 36-40
width, 39

text boxes, shadow effects, adding, 42-44
TextBox, commands, executing, 548-551
TFS (Team Foundation Server), Expression

Blend, integration, 327
themes, applying, 271-272
theming navigation application, 411
third-party web servers, accessing, 386
ThreadPool class, 654-657
threads, 653

background threads, 621-624
BeginInvoke method, 659-660
DependencyObject class, 104
main thread, 653
multithreading, 653-667
synchronizing, 657
UI thread, 653

Three Attributes listing (16.21), 451
Threshold Dependency Property listing (3.14), 66
ThresholdControl

default templates, creating, 69-71
parts

defining, 64-65
wiring, 67-69

properties, defining, 65-67
states

defining, 64-65
visual states, 71-72

TimePicker control (Toolkit), 96
TimerTrigger, 316
TimeUpDown control (Toolkit), 95-96
Toolkit, 37

controls, 91-94
Accordian, 97
Chart, 94-95
ContextMenu, 100-101
DockPanel, 99
DomainUpDown, 95-96
Expander, 96
GlobalCalendar, 96

Storing Information While Sending listing (9.12)706

 From the Library of Wow! eBook

ptg

LayoutTransformer, 98-99
NumericUpDown, 95-96
Rating, 95
TimePicker, 96
TimeUpDown, 95-96
TransitioningContentControl, 99
WrapPanel, 100

Expression Blend, 93
installing, 92
populating, 36
Visual Studio, 92-93

Transform Composition with
CompositeTransform listing (17.2), 472

Transform Composition with TransformGroup
listing (17.1), 472

TransformGroup, 472
transforms

composing, 472
projections, 467-471

TransitioningContentControl control (Toolkit), 99
transitions

creating, 318-321
shaders, 443

translating multitouch computing, 560-561
triggering storyboards, 45-46
Triggering the Download listing (9.4), 222
triggers (Blend), 292, 299, 315
Twitter CrossDomain.xml File listing (9.1), 217
Two Commands and a Sink listing (16.27), 454
Two ListBox Elements listing (16.15), 447

U
UI elements in Windows Phone 7 and on

desktop listing (15.11), 418
UI thread, 653, 657-660
UIs (user interfaces)

accelerating, 624-630
building, SketchFlow, 308-309
localizing, 347-348
virtualizing, 616-619
Windows Phone 7 applications, creating,

426-427
underlying layers, separation, 158-159
unexecutable code, Expression Blend, 275
uniform hardware platforms, Windows Phone 7

applications, developing for, 417
uninstalling OOB applications, 385
Unique Resource Identifiers (URIs), 52
unit testing, applications, 667-673
unit tests, controls, 63

How can we make this index more useful? Email us at indexes@samspublishing.com

Unity, 573, 578, 607
classes, refactoring, 575-578
dependencies, inverting, 573-583
installing, 579

unpacking XAP file, 32
unregistering

clients, 524
event handlers, 635-636

Unregistering a Client listing (18.20), 524
Unsubscribing and Resubscribing

listing (18.28), 529
unsubscribing to WCF services, 528-529
unused resources, cleaning up, 259-260
unvirtualizing ListBox, 619
UpdateCompleted Callback listing (14.22),

392-393
updating

OOB applications, 391-393
orders, 348-349

Updating the Progress listing (18.34), 536
uploading strings, 225-227
URIs (Unique Resource Identifiers), 52

absolute URIs, creating, 611
CLR namespaces, mapping to, 52-53
defining, 52-53
fragments, adding to, 410
pack URIs, 439
relative URIs, 483-484

user controls, 53-62
adding

Visual Studio, 58
XAML, 59

adding, Expression Blend, 56-57
creating

Expression Blend, 55-56
Visual Studio, 57-58

custom controls, compared, 274
custom properties, adding, 61-62
properties, setting on, 60-61
unit tests, 63

user experience developers, 274
user feedback

giving, 324
importing and managing, 325

user interfaces
MVVM pattern, 168-169
underlying layers, separation, 158-159

UserControl
properties, setting on, 60-61
setting language, 141
views, rendering, 162

UserControl Tag in MainPage.xaml
listing (3.4), 54

UserControl’s Inner Elements listing (3.9), 61

UserControl’s Inner Elements listing (3.9) 707

 From the Library of Wow! eBook

ptg

users, downloading operations, informing of,
218-219

Using a Func to Filter Items listing (22.4), 643
Using a WeakReference listing (21.20), 637-638
Using BindsDirectlyToSource to Ignore Shortcut

listing (6.20), 155
Using Command in XAML listing (4.7), 83
Using Constructor with Parameters

listing (20.14), 587
Using ContextMenu listing (4.17), 101
Using IsInDesignTool Property listing (11.1),

278-279
Using Local Resources listing (10.1), 248
Using Localized Values listing (8.18), 206
Using Named Parameters listing (22.8), 647
Using New Stack for All Requests

listing (9.17), 235
Using New Stack for Specific Domain

listing (9.18), 235
Using object as lock listing (22.28), 666
Using OpenFileDialog Class listing (16.39), 464
Using SelectedItem listing (4.5), 79
Using SelectedValue and SelectedValuePath

listing (4.4), 79
Using System.Windows.Deployment’s

Dispatcher listing (22.17), 658
Using Test Converter in XAML listing (6.16),

150-151
Using the RelayCommand listing (7.17), 183
Using WrapPanel as ItemPanel for ListBox

listing (4.16), 100

V
ValidatesOnExceptions class, 142-144
Validating Arbitrary Property listing (8.12), 202
validation

data input
annotations, 201-203
clients, 203-204
data bindings, 142-146
data controls, 197-204
DataForm data control, 211
servers, 203-204
set data, 203

values, 357-360
Validation in Data Binding listing (8.11), 200
Value Dependency Property listing (3.13), 65
values

attached properties, using for, 114-115
data bindings, converting, 138-139
default values, choosing, 111

dependency properties
accessing, 105
calculating, 124-126

localized values, 206
validating, 357-360

Various Formatting listing (6.9), 140-141
VB.NET, 28
Verbose Syntax to Filter Items listing (22.5), 643
verification, Visual Studio installation, 29-31
video, bitmaps, writing to, 457-461
video output, webcams, displaying, 448-449
View-Model Without Dependency Injection

listing (20.1), 574-575
view-models (MVVM), 161-163, 574-575

applications, adding, 342-345
binding, Windows Phone 7 applications,

425-426
custom controls, 163
DataTemplate, 162
displaying messages, 351-353
preparing data in, 161-162
types, 162
UserControl, 162
views, binding to, 163-167

Viewbox, controls, zooming, 85-87
Viewmodel’s Property Throwing Exception

listing (6.11), 143
ViewModelBase Class listing (11.3), 286
ViewModelBase Class listing (7.14), 178-179
ViewModelLocator class, 165-167, 579-581, 589
ViewModelLocator Class listing (20.6), 580
ViewModelLocator Class listing (20.19), 589
ViewModelLocator Implementation

listing (7.3), 166
ViewModelLocator in Global Resources

listing (7.2), 166
views, view-model, binding to, 163-167
Vimeo, 303
virtualization

ItemsControl, 617-618
UIs (user interfaces), 616-619

Virtualizing ItemsControl listing (21.6), 618
visual assets, integrating, 274
Visual C#, 28
Visual Designer, line-of-business applications,

creating, 338-342
visual states, custom controls, representing,

71-72
Visual Studio

Binding dialog, 146-147
binding strings, formatting, 141
downloading, 27
installing, 27-33
templates, 28
Toolkit, 92-93
UserControls, 57-58

users, downloading operations, informing of708

 From the Library of Wow! eBook

ptg

Visual Studio 2010, 27
Visual Studio Designer, 32-33
Visual Web Developer Express, downloading, 28

W
Warning dialog, 386
WAV formats, converting to, 450
Wave Effect Shader listing (16.2), 437
WaveEffect Class listing (16.3), 439
WCF (Windows Communication Foundation)

service, 161, 239-245
client application, connecting, 241-243
clients, 524-528
configuring, 524-525
publishing service, 244-245
RIA Services, creating, 334-337
servers, updating code on, 244
setting up, 239-241
unsubscribing from, 528-529
Windows Phone 7 applications,

configuring, 421
WCF RIA services, 365

adding paging, 365-369
creating, Visual Designer, 338-342
errors, showing, 369-370
printing, 373-382
reconciling data, 371-372
refactoring applications to MVVM, 342-363
rows, copying and pasting, 373

weak references, 637-638
web applications. See applications
web browsers

building, 480-484
hardware acceleration, enabling, 624-630
hosting, OOB (out-of-browser) mode,

478-485
HTML content, loading, 484

web headers, accessing, 231
web requests, Expression Blend, 276
web servers, resetting, 530
WebBrowser control, 479, 501

creating, 480
HTML, painting with, 499-501
JavaScript, invoking, 485

webcams
accessing, 443-448
output, writing to bitmaps, 457-461
video output, displaying, 448-449

WebClient class, 218-219
client-side project, 219
complex messages, sending, 231-234

How can we make this index more useful? Email us at indexes@samspublishing.com

downloading operations, user information,
218-219

networking stack, discovering, 234-237
opening for reading, 224-225
opening for writing, 227-230
server-side project, 219
web headers, accessing, 231

WebClient control, XAP files, downloading,
613-614

websites
authentication, logging in, 539-547
creating, 540

width, text blocks, 39
Wilcox, Jeff, 668, 673
WinDbg utility, memory leaks, locating, 638
window titles, OOB applications, 388
windowless mode (Mac), 506
windows (notification)

adding, 531-533
displaying, 530-534
main window interactions, 533-534
queuing, 533
restrictions, 530

Windows Communication Foundation (WCF)
services. See WCF (Windows Communication
Foundation) services

Windows Live, 18
Windows Phone 7, 415, 433

applications
application bars, adding, 429-431
binding viewmodel, 425-426
commands, 431-432
creating, 422-423
edit panel, adding, 427-428
service references, 423
sharing code, 423-425
starting clients, 421-422
states, adding, 428-429
UIs, creating, 426-427
unit testing, 673
WCF Service, 421

designing for, 418-419
desktop-compatible applications, building,

420-432
development, 416-417
hardware, 416
hardware acceleration, 630
navigation applications, 401-403

About page, 404
accessing navigation information, 412-413
adding to non-navigation applications,

414-415
advantages, 404
creating, 404-411
custom navigation, 413-414

Windows Phone 7 709

 From the Library of Wow! eBook

ptg

deep linking, 407-409
handling events, 412-413
Home page, 404
Hyperlink control, 406
HyperlinkButton control, 406
multiple points of entry, 404
navigating to fragments, 410-411
NavigationService, 413
query string parameters, 409-410
structure, 405-407
theming, 411

selling, 420-432
targeting audience, 416

Windows Phone 7 Unleashed, 432
Windows Phone developer site, registering as

developer, 420
Windows Presentation Foundation (WPF). See

WPF (Windows Presentation Foundation)
Windows Update program, 18
wireframing tools, 302-303
wiring, commands, GreetingCardMaker

application, 456
wiring parts, custom controls, 67-69
Word, exporting to, 326
workbooks (Excel), creating, 513-515
working offline, OOB applications, 398-399
Working with CollectionViewSource in Code and

in XAML listing (6.17), 152
WPF (Windows Presentation Foundation), 8,

14, 32
WrapPanel control (Toolkit), 100
WritableBitmap

extending, 462-464
pixel shaders, compared, 461

WriteableBitmap class, 466
writing pixel shaders, 436-437

X–Z
x:Name, resources, 248
XAML

attached behaviors, using in, 122
attached properties, 118
behaviors, adding to, 293
CLR namespaces, mapping prefixes to, 49-51
code, generating, 175
context menus, adding, 477
EventToCommand action, setting in, 552-553
extending, 49-53
resources, 248-253
StaticResource markup extension, setting

in, 254-255
UserControls, adding, 59

XAML files, opening, 32
XAML markup

adapting, 345-346
Expression Blend, editing, 274

XAP files
caching, 610
common assemblies, caching, 615-616
content on demand, loading, 611-615
download times, improving, 609-616
reducing size, 603, 610, 615-616
resource DLL, 648
unpacking, 32

XCeed, 195
XML. See also XAML

design time data, importing, 283-284
responses, handling, 238

xmlns prefixes
adding, 209
changing, 58
CLR namespaces, 50

XNA framework, applications, developing, 420

zooming, controls, 85-87
Zordan, Davide, 560

Windows Phone 7710

 From the Library of Wow! eBook

ptg

OTHER UNLEASHED TITLES

ASP.NET 3.5 AJAX

Unleashed

ISBN-13: 9780672329739

ASP.NET MVC Framework

Unleashed

ISBN-13: 9780672329982

C# 3.0 Unleashed

ISBN-13: 9780672329814

LINQ Unleashed

ISBN-13: 9780672329838

Microsoft XNA Game

Studio 3.0 Unleashed

ISBN-13: 9780672330223

Microsoft Dynamics

CRM 4.0 Unleashed

ISBN-13: 9780672329708

Microsoft Dynamics CRM

4 Integration Unleashed

ISBN-13: 9780672330544

Microsoft Expression

Blend Unleashed

ISBN-13: 9780672329319

Microsoft SharePoint

2010 PerformancePoint

Services Unleashed

ISBN-13: 9780672330940

Microsoft SQL Server

2008 Analysis Services

Unleashed

ISBN-13: 9780672330018

Microsoft SQL Server

2008 Integration Services

Unleashed

ISBN-13: 9780672330322

Microsoft SQL Server

2008 R2 Unleashed

ISBN-13: 9780672330568

Microsoft SQL Server

2008 Reporting Services

Unleashed

ISBN-13: 9780672330261

Microsoft Visual Studio

2010 Unleashed

ISBN-13: 9780672330810

Windows Communication

Foundation 3.5 Unleashed

ISBN-13: 9780672330247

Windows PowerShell

Unleashed

ISBN-13: 9780672329883

Windows Small Business

Server 2008 Unleashed

ISBN-13: 9780672329579

Unleashed takes you beyond the basics, providing
an exhaustive, technically sophisticated reference
for professionals who need to exploit a technology
to its fullest potential. It’s the best resource for
practical advice from the experts, and the most
in-depth coverage of the latest technologies.

informit.com/unleashed

informit.com/sams

ASP.NET 4 Unleashed

ISBN-13: 9780672331121

Microsoft Visual Studio 2010

Unleashed

ISBN-13: 9780672330810

WPF 4 Unleashed

ISBN-13: 9780672331190

UNLEASHED

 From the Library of Wow! eBook

	Table of Contents
	Foreword
	Introduction
	1 Three Years of Silverlight
	Discovering Silverlight 4
	Learning Silverlight Is Betting on the Future
	How Can They Be So Fast?
	How About Compatibility with Older Versions?

	Cross-Browser and Cross-Platform Compatibility
	Windows and Macintosh
	Linux

	Alternatives to Silverlight
	In the Web Browser
	Out of the Browser
	Legacy Technologies

	A Short History of Silverlight
	Silverlight 1.0
	Silverlight 2
	Silverlight 3
	And Silverlight 4

	Previewing the Future of Silverlight
	Installing Silverlight 4 as a User
	Opening a Silverlight 4 Application
	What to Do If Silverlight Is Not Installed?

	Exploring Silverlight 4 Demos
	Deep Zooming the Matterhorn
	Getting Involved Socially with Sobees
	Navigating with Bing Maps Streetside and PhotoSynth
	Visualizing Information with the Pivot Viewer
	Drawing on the Web with Fantasia

	How Can You Get Involved?
	Summary

	2 Setting Up and Discovering Your Environment
	Installing Visual Studio
	Visual Studio 2010
	Visual Web Developer Express
	Installing the Silverlight Tools for Visual Studio
	Verifying the Installation
	Inspecting the Application
	Unpacking an XAP File
	Using the Visual Studio Designer

	Implementing Hello Silverlight
	Checking the Properties Editor
	Adding Some Text
	Using Design Time Width and Height
	Saving the Application

	Installing Expression Blend
	Creating a New Silverlight Application
	Opening Hello Silverlight
	Adding an Effect
	Creating a Pulse Animation
	Triggering the Storyboard
	Testing the Application

	Summary

	3 Extending Your Application with Controls
	Extending XAML
	Mapping a Prefix to a CLR Namespace
	Why Is a Prefix Not Always Needed?
	Adding a Namespace to Any Element
	Defining Your Own URI and Mapping CLR Namespaces

	What's a Control?
	User Controls
	Custom Controls

	Summary

	4 Investigating Existing Controls
	Reviewing the Basics
	Show Me Some Code!
	Changes in Existing Controls
	Mouse Wheel Support
	Localizing for Right-to-Left Languages
	Getting a Control Template's Current State
	Adding SelectedValue and SelectedValuePath
	Adding Command and CommandParameter

	Presenting and Editing Text with the RichTextBox
	Zooming with the Viewbox
	Opening a ChildWindow
	Finding More Information
	Where to Find Additional Controls?
	Do You Really Need a Control?
	The Silverlight Toolkit
	Installing the Silverlight Toolkit
	Third-Party Providers

	Summary

	5 Understanding Dependency Properties
	Inheriting DependencyObject
	Threading
	Accessing a Dependency Property's Value
	Using a DependencyObject as Data Item

	Registering Dependency Properties
	Defining Metadata
	Initializing Dependency Objects

	Understanding Attached Properties
	Using Attached Properties for Values
	Registering an Attached Property
	Using Custom Attached Properties in XAML
	Implementing an Attached Behavior
	Building on Attached Behaviors with Blend Behaviors

	Adding a New Property with Snippets
	Installing the Snippets for Silverlight
	Using the Snippets

	Calculating a Dependency Property's Value
	Getting the Property's Base Value
	Reading the Local Value

	Summary

	6 Working with Data: Binding, Grouping, Sorting, and Filtering
	Diving into Data Bindings
	Understanding a Binding's Elements
	Understanding the Namescope
	Setting the Source
	Refining the Path
	Flowing in Two Directions
	Converting the Values
	Changing the Format
	Handling Special Cases
	Property Trigger
	Validating Input

	Using the Visual Studio Binding Dialog
	Using the Expression Blend Binding Dialog
	Debugging Data Bindings
	Checking the Output Tab
	Creating a Test Converter

	Grouping, Filtering, and Sorting Data
	Working with the CollectionViewSource
	Using a PagedCollectionView
	Binding Directly to the Source

	Summary

	7 Understanding the Model-View-ViewModel Pattern
	About Design Patterns
	Separating the Concerns
	Why Is Separation Good?
	Classic Separation Patterns

	History of MVVM
	Developing Expression Blend
	Presentation Model for WPF and Silverlight

	Architecture of MVVM
	Translating to Silverlight
	Two Kinds of View-models

	Binding the View to the View-model
	Understanding the Data Context
	Inheriting the Data Context
	Binding to the View

	Building a Sample Application
	The Model's Interface
	Building a CustomerViewModel
	Calling the Service in the MainViewModel
	Binding to Results
	Testing the Application

	Bridging the Separation
	Implementing a ViewModelBase Class
	Using Commands
	Sending Messages

	Using an MVVM Framework
	What Could Be Better?
	Summary

	8 Using Data Controls
	Filtering and Paging with the PagedCollectionView
	Preparing the Sample
	Building the PagedCollectionView
	Filtering Data
	Paging Through Data
	Optimizing Data Handling
	Implementing Custom Sorting

	Adding a DataPager Control
	Customizing the Display

	Validating Data Input
	Using Interface-Based Validation
	Validating with Data Annotations
	Validating Before or After the Data Is Set
	Validating on the Client and on the Server

	Reviewing the DataGrid
	Using the DataGrid with Automatic Columns
	Choosing Between DataGrid and ListBox

	Editing Data in the DataForm
	Adding a Description
	Validating the Input
	Committing Changes Manually
	Defining Fields Manually
	Getting More Information
	Making a Simple Property Editor

	Summary

	9 Connecting to the Web
	Getting Information from Cross-Domain Servers
	Checking Whether a Policy File Exists
	Working Around Cross-Domain Restrictions

	Placing Simple Calls
	Informing the User
	Learning with a Sample
	Downloading Strings
	Detecting Errors, Checking the Result
	Opening a Resource for Reading
	Uploading a String
	Opening a Resource for Writing
	Accessing Headers

	Sending Complex Messages
	Posting a File to the Server with HttpWebRequest

	Discovering the New Networking Stack
	Using the Client HTTP Stack
	Using Other HTTP Methods
	Using the CookieContainer

	Handling Responses
	Handling XML Responses
	Handling JSON Responses

	Communicating with WCF
	Setting Up a Service
	Connecting the Client Application
	Updating the Code on the Server
	Publishing the Service

	Summary

	10 Creating Resources, Styles, and Templates
	Working with Resources in XAML
	Using Local Resources
	Merging Dictionaries
	From the Same Assembly
	From a Different Assembly
	Resolving Resources

	Working with Resources in Blend
	Merging a Resource Dictionary
	Creating New Resources
	Selecting a Resource for a Property
	Using the Resources Panel

	Cleaning Up Unused Resources
	Using the Pistachio Tool

	Styling a Control
	Using Implicit Styles
	Creating a Hierarchy of Styles
	Creating a New Style in Blend

	Templating a Control
	Copying a Template in Blend
	Creating a Custom Easing Function
	Making a Control in Blend

	Applying a Theme
	Summary

	11 Mastering Expression Blend
	What Is Blend, Exactly?
	Working as a Tool for Integrators
	Editing XAML Markup
	When Should You Use User Controls?

	Making an Application Blend
	Why Is Some Code Not Executed?
	Why Does Some Code Fail?
	Detecting the Cause of an Exception
	Isolating Code in Design Mode
	Creating Design Time Data in Blend
	Understanding the Design-Time Data Context

	Using Blend Behaviors
	Behavior, Trigger, or Action?
	Adding a Blend Behavior in Code
	Creating a New Blend Behavior

	Finding More Information
	Summary

	12 Sketching User Experience
	Sketching as a Discovery Process
	Using Sketching and Wireframing Tools
	Other Kinds of Sketching

	Discovering SketchFlow
	Creating a New SketchFlow Application
	Checking the Panels
	Creating and Connecting Screens

	Building the UI
	Creating a Component Screen
	Using Sketch Controls
	Exploring the Sketch Controls
	Creating States and Transitions
	Building an Animation

	Deploying the SketchFlow Application
	Running the Prototype
	Giving Feedback

	Importing and Managing User Feedback
	Importing and Exporting
	Importing from Photoshop and Illustrator
	Importing from PowerPoint
	Exporting to Word

	Integrating and Collaborating
	Integrating into SharePoint
	Integrating into Team Foundation Server

	Summary

	13 Creating Line-of-Business Applications
	Preparing the Server-Side
	Prerequisites
	Preparing the Server-Side Application

	Creating the Silverlight Client
	Bringing the Client and the Server Together
	Adding a Domain Service
	Inspecting the Domain Service Class
	Inspecting the Metadata
	Creating a New Server-Side Query

	Working with the Visual Designer
	Understanding the DomainDataSource
	Calling a Query with Parameter
	Sorting the Data
	Adding a Pager

	Refactoring the Application to MVVM
	Adding a View-model
	Adapting the XAML Markup
	Customizing the Columns
	Localizing the User Interface
	Adding a RelayCommand Class
	Executing the CRUD Operations in Code
	Displaying Messages from the View-model
	Deleting an Order
	Validating the Values
	Filtering the Data
	Showing Feedback While Processing
	Sharing Code

	Summary

	14 Enhancing Line-of-Business Applications and Running Out of the Browser
	Enhancing LOB Applications
	Adding Paging
	Showing Errors
	Reconciling Data
	Copying and Pasting Rows
	Printing

	Taking Silverlight Out of the Browser
	Setting Up the Application
	Uninstalling the Application
	Debugging the OOB Application
	Looking Under the Hood
	Changing the Settings
	Updating the Application
	Installing from the Code
	Saving Files
	Working Offline

	Summary

	15 Developing Navigation Applications and Silverlight for Windows Phone 7
	Navigating with Silverlight
	Should You Always Use a Navigation Application?
	Creating a New Navigation Application
	Accessing Navigation Information
	Providing Custom Navigation
	Adding Navigation to a Non-Navigation Application

	Developing with Silverlight for Windows Phone 7
	Getting Hardware
	Targeting a Specific Audience
	Developing for Windows Phone 7
	Developing for a Uniform Hardware Platform
	Designing for the Phone
	Installing the Tools
	Selling Your Applications
	Building Compatible Applications for the Desktop and the Phone
	Continuing the Exploration

	Summary

	16 Using Effects and Recording Media
	Creating Effects with Pixel Shaders
	Writing, Finding, and Compiling Shader Files
	Creating and Modifying Shaders with Shazzam
	Integrating Shaders in the Application
	Adding Properties and Animating Shaders
	Using Shaders for Transitions in the VSM

	Accessing the Webcam and the Microphone
	Getting the List of Devices
	Enabling Access
	Displaying the Video Output
	Detecting Whether Other Applications Use the Device

	Capturing Audio
	Converting to a WAV File
	Creating a Sink
	Using the SaveFileDialog
	Using the Sink and Adding Commands
	Wiring the Commands
	Testing Audio Recording

	Writing to a Bitmap
	Saving the Picture to a PNG File
	Manipulating Pixels

	Extending WriteableBitmap
	Using the Open File Dialog
	Learning About News in Media
	Summary

	17 New Transforms, Right Click, HTML Browser, WebBrowserBrush, and Isolated Storage
	Transforming Elements in a Projection
	Setting Additional Properties
	Using a Matrix3DProjection
	Animating the PlaneProjection

	Composing Transforms
	Handling the Right-Click Event
	Handling a Routed Event
	Displaying a Context Menu

	Hosting an HTML Browser (Out-of-the-Browser Only)
	Understanding the Limitations
	Building a Simple Web Browser
	Loading HTML Content from Memory
	Invoking JavaScript

	Writing and Reading in the Isolated Storage
	Saving to the Isolated Storage
	Reading from the Isolated Storage
	Deleting Files
	Using the IsolatedStorageSettings
	Trusting the Isolated Storage or Not

	Painting with HTML
	Summary

	18 Drag and Drop, Full Screen, Clipboard, COM Interop, Duplex Polling, Notification Windows, and Splash Screens
	Dragging and Dropping
	Dragging Files on the Silverlight Application
	Drag-and-Drop Restrictions

	Working in Full Screen
	Getting Keyboard Support in Full-Screen Mode (Elevated Permissions)
	Using Full Screen on a Monitor While Working on Another

	Copying to and from the Clipboard
	Working with COM (Elevated Permissions)
	Understanding the Restrictions
	Communicating with Microsoft Office

	Communicating over Duplex Polling
	Implementing the Server-Side Service
	Unregistering a Client
	Configuring the Service
	Implementing the Client
	Unsubscribing and Resubscribing
	Testing the Application

	Displaying Notification Windows
	Understanding the Restrictions
	Adding a Notification Window
	Queuing Notification Windows
	Interacting with the Main Window

	Creating a Custom Splash Screen
	Summary

	19 Authentication, Event to Command Binding, Random Animations, Multitouch, Local Communication, and Bing Maps Control
	Logging In with Authentication
	Creating a New Website
	Adding and Managing Users
	Configuring the Authentication Web Service
	Checking the Access
	Adding References to the Services
	Implementing the Client

	Binding an Event to a Command
	Executing a Command When a TextBox Loses Focus

	Building Random Animations
	Creating the Base Animation in Blend
	Randomizing the Animation

	Implementing Multitouch in Silverlight
	Getting the Right Computer
	Investigating Existing Elements
	Using Multitouch Libraries
	Scaling, Rotating, and Translating
	Implementing a Multitouch Application
	Using Multitouch in Windows Phone 7 Applications
	Finding More Information

	Enabling Local Communication
	Understanding the Restrictions
	Building a Receiver
	Building a Sender
	Testing the Application

	Mapping with the Bing Maps Control
	Adding the Map
	Getting Location Information and Marking It
	Getting More Information

	Summary

	20 Building Extensible and Maintainable Applications
	Inverting Dependencies with Unity
	Refactoring to Smaller and Simpler Classes
	Setting Up the Services
	Calling the Setup Method and Wiring Up
	Discovering More About Unity

	Composing an Application with MEF
	Exporting and Importing
	Downloading on Demand
	What About Prism?

	Using an MVVM Framework
	Discovering the Components
	Sending Messages

	Summary

	21 Optimizing Performance
	Improving the XAP Download Time
	Loading Content on Demand
	Caching Common Assemblies

	Virtualizing the User Interface
	Virtualizing the ItemsControl
	Unvirtualizing the ListBox
	Simplifying the DataTemplate

	Creating Items in Batches
	Working in Threads

	Accelerating the User Interface
	Enabling Hardware Acceleration in the Browser
	Enabling Hardware Acceleration Out of the Browser
	Accelerating with Care
	Accelerating in the Windows Phone 7

	Using a Code Profiler
	Avoiding Memory Leaks
	Saving an Object on the Stack or the Heap
	Collecting Garbage and Leaking Memory
	Living a Shorter Life
	Unregistering Event Handlers
	Disposing Objects
	Using Weak References
	Finding a Leak

	Summary

	22 Advanced Development Techniques
	Using New C# and .NET Features
	Using Modern Programming Syntax
	Creating Extension Methods
	Consuming Dynamic Objects
	Using Named/Optional Parameters

	Localizing Applications
	Adding a Resource File
	Making an Application Localizable
	Using Tools
	Downloading Resource Applications on Demand

	Encrypting and Decrypting
	Understanding the Encryption/Decryption Mechanism

	Multithreading
	What Is a Thread?
	Using the ThreadPool
	Dispatching Back to the UI Thread
	Creating and Using a BackgroundWorker
	Locking Critical Resources
	Enhancing Multithreaded Code

	Unit Testing the Application
	Installing a Unit Test Framework
	Adding Functionality with TDD
	Using Code Coverage
	Unit Testing Windows Phone 7 Applications

	Summary

	Conclusion
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

